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Amyotrophic Lateral Sclerosis (ALS) Patients, individuals confined to respective homes, 

and those with upper limb disabilities frequently experience feeding issues and 

malnourishment. Asphyxia or choking can occur during feeding, which is frequently 

uncomfortable and time-consuming. Currently, these individuals are assisted in eating by 

robotic devices. All the same, persons with severe disabilities—such as sensory loss—or 

trouble with basic physical mobility should not employ assistive robots that need 

movement from the user. An amazing help in this area is a robotic system that is controlled 

only by brain signals. Therefore, a prototype of an electroencephalogram (EEG)-based 

feeding robot is proposed based on the specifications for a real-time helpful robot which 

is a Brain Computer Interface (BCI). An assistive technology called a feeding assistance 

robot is used to help people who are unable to independently move food from a container 

into their mouths. Feeding assistance robots have been introduced to help those who 

experience upper limb function loss due to cerebral palsy, spinal cord injuries, or 

amputations. These individuals may find it impossible to feed themselves. A set of 

experiments were carried out with healthy subjects to validate the proposed system and 

results are here presented. According to experimental data, the built system can do the 

necessary tasks in real-time with acceptable errors of an average of about 21% with a 77% 

overall accuracy for the system in performing the feeding of the users. With further 

supervision, this level of inaccuracy can be decreased or, in certain situations, completely 

eliminated.  
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1. INTRODUCTION

Amyotrophic Lateral Sclerosis (ALS) is a progressive 

neurodegenerative disease that affects motor neurons in the 

brain and spinal cord [1]. This condition leads to a gradual loss 

of muscle control, which significantly impacts the ability to 

perform daily activities, including eating and drinking [2]. The 

need for assistive technologies, such as a brain-controlled 

feeding system, arises from the challenges faced by 

individuals with ALS as their disease progresses. OpenBCI, an 

open source neurotechnology firm, provides a free to use and 

access scientific platform for sampling, analysing and 

displaying new electrical signals from the human body. It was 

created by Joel murphy and Conor Russomano in late 2013 [3]. 

Through open-source hardware and firmware at a cheap cost 

of implementation, an Open Brain-Computer Interface 

(OpenBCI) provides unparalleled flexibility and freedom. To 

build specialized drivers which possess cutting-edge 

functionalities and features, it takes advantage of sophisticated 

software development kits and strong hardware platforms. The 

performance of OpenBCI could still be severely lowered by a 

number of constraints [4]. In addition to supporting variable 

sampling rates, communication protocols, free electrode 

placements, and single marker synchronization, the 

framework manages a variety of distributed computing 

activities [5]. OpenBCI boards work with conventional 

Electroenephalogram (EEG) electrodes and can be used to 

measure and record the electric activity produced by the heart, 

brain, and muscles. The board which will be used in this 

project is the OpenBCI Ganglion Board which is WIFI and 

Bluetooth enabled to transmit signals [6]. 

With a brain-computer interface (BCI), devices can be 

operated by activating electrical activity in the brain. 

Applications of this technology are numerous and include 

neuromarketing and neuroeconomics, games and 

entertainment, security, cognitive state analysis frameworks 

for medical protocols, rehabilitation for people with motor 

disabilities, diagnosis of mental disorders, and emotion-based 

analysis. This project concerns itself with use of Brain-

Computer Interface (BCI) for rehabilitation of people with 

motor disabilities, particularly of the limbs at the upper part of 

the human body [4]. Brain-computer interfaces, or BCIs, 

provide an AT interface that does not require movement by 

using data straight from the human [7]. BCIs have made it 

possible for people to control environmental aspects, type 

messages, and use an on-screen mouse. But few BCIs are used 

for daily requirements; the majority are employed in 

laboratories [8]. BCIs, like all AT, are intended to increase 
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independence, facilitate involvement, and improve function. 

[9]. 

According to Millan et al. [10], the ability to manipulate the 

external world without utilizing the efferent pathways of the 

human nervous system offers a fresh modality of interaction 

that can accelerate and enhance the human sensor–effector 

loop. Recent years have seen a number of applications for 

brain–computer interface (BCI) research in several domains, 

including communication, environmental control, mobility 

and robotics, and neuro-prosthetics. The majority of ongoing 

BCI research projects are still in the stage of design validation 

or in-lab demonstration. Many problems need to be resolved 

before the demonstration systems can be turned into useful 

gadgets. For the system to be practical, it must offer a 

transmission rate that is high enough. This rate depends on the 

number of targets that can be chosen as well as the accuracy 

and speed of target identification. In order to be easily used in 

homes or hospitals, the system should be small and lightweight. 

Additionally, the system should be used quickly, with minimal 

user training needed, and with electrodes installed quickly [11]. 

 

 
 

Figure 1. An OpenBCI electrode cap for biosensing EEG 

[12] 

 

The human body emits certain electrical signals from its part 

when performing a certain activity These electrical signals are 

Electroencephalography (EEG) which is from the brain, 

Electromyogram (EMG) which is from the muscles, 

Electrocardiogram (ECG or EKG) which is from the heart and 

Electrooculogram (EOG) which is from measuring the 

movement of the human eyes. These various signals measures 

bio-potentials, the electrical output of human. The signals are 

gotten by placing certain number of electrodes at the specific 

area concerned for study [12]. Figure 1 illustrates a typical 

application of OpenBCI. 

Amyotrophic Lateral Sclerosis (ALS) presents significant 

challenges for patients and caregivers. The progressive muscle 

weakness leads to loss of mobility and difficulties with daily 

tasks, while dysphagia increases the risk of choking and 

malnutrition, often necessitating dietary adjustments or the use 

of feeding tubes [13]. Communication becomes problematic 

as speech muscles weaken, and many patients may eventually 

lose the ability to speak entirely, requiring alternative methods 

to communicate [14]. Respiratory complications, including 

shortness of breath and infection risks, are also common [15]. 

The emotional toll is considerable, with many experiencing 

depression and anxiety due to the loss of independence, 

leading to feelings of isolation [14]. Caregivers bear increased 

responsibilities and emotional strain, often resulting in 

financial burdens from the costs of care and assistive devices 

[15]. ALS requires a multidisciplinary approach to care, which 

complicates coordination and access to specialists [13]. The 

variable progression of the disease creates uncertainty, making 

it challenging to predict care needs and plan for the future [14]. 

Addressing these challenges is crucial for enhancing the 

quality of life for those affected by ALS [16]. 

By using a feeding robot, this study attempts to address the 

issues outlined above. The brain-controlled assistive feeding 

system stands out due to its direct neural control, user-centric 

design, real-time feedback, integration capabilities, focus on 

quality of life, and accessibility [17]. These innovations not 

only enhance the functionality of assistive feeding but also 

addresses the emotional and psychological needs of ALS 

patients, marking a significant advancement in the field of 

assistive technologies. The suggested feeding robot makes 

feeding easier, increases the degree of independence for those 

with severe disabilities, and enhances their quality of life. As 

a result, fewer workers are required to care for Nigerians who 

are disabled.  
 
 

2. MATERIALS AND METHODS 

 

2.1 Materials 

 

The materials and equipment required for the brain 

controlled assistive feeding system can be grouped into three 

(3) categories which are; the EEG sensing components which 

as associated with extracting the EEG signals as shown in 

Table 1, the feeding actuator components which propagate the 

feeding process of selected subjects as illustrated in Table 2 

and software components as listed in Table 3. 

 

Table 1. Equipment for EEG sensing and their usage 

 

S/N 
Product 

Name 
Qty Specifications Use 

1 
Gold Cup 

Electrodes  
30 

26 guage stranded wire, 1 m or 1.5 m cable with color coding, one female 

header termination per cable, insulation made of PVC with an 80°C rating, 

and an overall OD of 1.45 mm/0.057 

Plug to the subjects head to 

receive EEG signal from the 

brain 

2 

Openbci 4-

Channel 

Ganglion 

Board 

1 

Power with 3.3v to 6v DC battery only, current draw: 14mA when idle & 

15mA connected and streaming data, MCP3912 analog front end, LIS2DH 

3axis Accelerometer, Simblee BLE radio module (Arduijno compatible), 

Board Dimensions 2.41” * 2.41”, SD card storage not supported, Mount 

holes are 3/16” ID, 0.8 * 2.166” on center 

A biosensing device which is 

preprogrammed to sense and 

process data from EEG signals 

gotten 

3 Ten20 Paste 2 
35mm Cross, latex & PVC free, diaphoretic, hypoallergenic, single use, 

residue-free 

Increases the accuracy of 

getting sampling data 

4 
Ganglion 

Dongle 
1 

Interface: Bluetooth 4.0, USB, and Bluetooth standards maximum transfer 

rate of 1.0 Mbps Chipset: CC2540 chip from Texas instruments, utilizing 

an integrated antenna 5v of voltage, 5v of power usage, and a maximum of 

90mA radio frequency: 2.4 GHz, approved by the FCC, CE, and IC 

Transfers EEG data got via 

WIFI to the OpenBCI GUI  
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Table 2. Components for the feeding actuation and their usage 

 

S/N Product Name Qty Specifications Use 

1 
Cardboard/ 

Strawboard 
Large 100mm*50mm Serves as the casing for the system 

2 Servomotors 5 

40mm*19mm*43mm, weight:56g, operating 

speed: 0.17sec/60 degrees (4.8 no load), 

operational voltage 4.8-7.2 volts 

Drives the robotic arm to achieve the desired 

motion 

3 Gripper End Effector 1 

107mm*98mm Material: Aluminum alloy, 

eight: 60.4g (without motors), maximum 

opening angle: 55mm  

Actuator which picks up the food 

4 Plastic Sterlize Spoon 1 5.4in *1.5in*0.43in 
Actuator which puts the food in the subjects 

mouth for consumption 

5 
2 Dof Robotic Arm 

Setup 
1 

2 degree of freedom, 2 links. revolute joints, 2 

servomotors (MG996r) 

Actuator which assists in feeding the subject 

with any given food 

6 
3 Dof Robotic Arm 

Setup 
1 

3 degree of freedom, 3 links, revolute joints, 3 

servomotors (MG996r) 

Actuator which assists in feeding the subject 

with any given food 

7 Arduino Uno 1 

14 Digital i/o pins, 6 analog inputs, a USB 

Connection, a 16 Mhz ceramic resonator, a 

reset button and a power jack 

Microcontroller to control the desired motion of 

the robotic arm with the characterized EEG 

signals gotten 

8 Leds 3 5mm (THT) 

RED-indicating error in feeding session 

AMBER- indicating feeding is in session 

GREEN- indicating the end of feeding session 

9 Battery (Lithium Ion) 4 1100mAh. 3.4V Power the system 

10 Connector Wire 20 Heavy duty, 11.81” (300mm) Tethering of the system 

 

Table 3. Software integrated development environment (IDEs) and their usage 

 
S/N Name Qty Use 

1 Openbci Gui 2023 1 Software for interpreting the data 

2 MATLAB/SIMULINK R2023a 1 Software for characterization of the data 

3 Solidworks/ Fusion 360 2023 1 CAD Software for designing the prototype of the physical system 

4 Visual Studios 2022 1 Software for running the C++ code for the structure of external components 

5 Arduino Ide 2023 1 Software for controlling the motion of actuators (robotic arm) 

6 Fritzing 2023 1 Software for designing the Schematics of the hardware circuit of the system 

 

EEG sensing equipment: These are the components 

responsible for the extracting, amplifying and transmitting of 

EEG signal data got from the subjects. 
 

2.2 Methods 
 

The international 10-20 electrode placement based the 

placing of the electrodes (dry/wet) on the subject’s scalp 

during recording of Multichannel/ EEG signals extract the 

signals with the OpenBCI GUI and perform feature extraction 

in MATLAB. A regression approach was used for data 

classification due to its ability to provide continuous outputs, 

interpret probabilities, handle non-linear relationships, and 

maintain simplicity and robustness [18], and amplification of 

signals. Communicating the processed signals using serial 

ports to the Arduino Uno Microcontroller then takes place. 

The International 10-20 Electrode Placement System is widely 

used for positioning electrodes in EEG due to its 

standardization and reproducibility, allowing for consistent 

comparisons across studies. It provides comprehensive scalp 

coverage and correlates electrode placement with specific 

functional brain areas, facilitating the interpretation of brain 

activity. Additionally, the system is flexible and user-friendly, 

making it accessible for researchers and clinicians alike. The 

Arduino Uno Microcontroller drives the robotic arm via 

motors places at joints to achieve the desired motion for the 

system at each session. Troubleshooting is performed and 

process comes to an end if no error is currently present in the 

system. 
 

2.2.1 Design of the prototype 

The first step for every great research is a rough paper 

sketch before it can then be standardized and explained better 

with Computer Aided Design (CAD) as shown in Figure 2. 

The CAD of the feeding system is developed to enable the 

investigator best understand the system, its joints and links 

assembling, the system has 6 degrees of freedom degrees, 

motion and path planning and other modifications was made 

to boost the efficiency and its kinematics. For smoother and 

more precise movements, which is essential for minimizing 

spills and ensuring user comfort, the arm has a payload that 

varies between 1-5kg. The system undergo configuration and 

a working small scale prototype was developed. 

The block diagram required to create the brain-controlled 

assisted feeding system using OpenBCI is condensed and 

shown in Figure 3. To handle Nigerian cuisine, such as boiling 

rice, in a regular or unique food container, the design 

incorporates a basic robotic system with a dual-arm 

manipulator. The segmentation principle, one of the 40 

innovative ideas of the TRIZ (Theory of innovative Problem 

Solving), allows us to split a self-feeding activity into two 

smaller tasks: grabbing and releasing food, and putting food in 

the user's mouth. Food is moved from a container on a table to 

the user's mouth using a spoon by the first robotic arm (Arm 

#1, a spoon-arm). Food is picked up by the second robotic arm 

(Arm #2, a grab-arm/grip-arm) and placed on the spoon of the 

spoon-arm (Arm #1). When the roles of two arms differ, it is 

possible to design the end-effectors of both arms in an efficient 

manner. A spoon is included in the spoon-arm's end-effector 

to deliver food to the user's mouth. A grab-arm's end-effector 

might be made to be able to pick up and release food, such as 

rice. It may be possible to pick up food by using the strangely 

shaped gripper seen in the figure, as it is not necessary for the 
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gripper to come close to the user's lips. 

The feeding robot uses a microcontroller unit (Arduino) to 

control a spoon-arm and a grab-arm as shown in the block 

diagram above with signals transmitted to the PC’s OpenBCI 

GUI from the Ganglion Board which extracts the EEG data. 

The efficiency of the microcontroller unit is heavily depending 

on the subjects’ familiarity with the system. 
 

 
 

Figure 2. Overview of the robotic arm 
 

 
 

Figure 3. Block diagram of the system 
 

2.2.2 Configuration and development of the experimental 

setup 

The configuration of the system involves virtual path 

planning and motion analysis to determine the best route to 

move in other to get to point A to Point B and back to point A. 

Point B being the users’ mouth and Point A being the robot 

origin. The forward kinematics and inverse kinematics of the 

gripper arm and spoon arm are calculated and a working 

equation formed. The system’s motors run on the pre-set 

instructions from the extracted and processed EEG signals 

from the user. To enable efficiency, the system is controlled 

manually before it is interfaced with the EEG signals to avoid 

errors in motions. The small scale prototype can be developed. 

Pre- and post-experiment questionnaires to investigate the 

individuals' demographics and preferences are not used in the 

majority of BCI investigations, although in few instances they 

have been useful. Therefore, upon first contact, the potential 

participants were briefed about the procedure and asked to 

report any of the following conditions—if they did not report, 

they would be disqualified right away—including epilepsy, 

severe light sensitivity, skin allergies, a history of seizures, and 

a propensity for auras and migraines. This results from 

extended exposure to flashing lights at frequencies that may 

give susceptible people headaches or epileptic seizures. Before 

the experiment began, individuals were then required to 

complete a questionnaire and sign an informed and free 

permission form. 

Before electrodes are placed on the subjects a formal and 

informal consent form was signed by the six (6) volunteering 

participants of this project. This is for strict compliance with 

already existing laws for subject testing and to ensure safety 

of participates during the projects’ trial sessions. 

 

2.2.3 Modeling and simulation 

The expected requirements for the system were modelled 

and simulated with the help of the OpenBCI GUI, Visual 

Studios, MATLAB and Solidworks/Fusion 360. The uses of 

these software were earlier stated in Table 3. 

 

2.3 Performance evaluation and validation 

 

For the overall evaluation of this system, the subjects 

selected was able to control the feeding system. The accuracy 

of result was observed to be proportional to the number of 

training sessions, meaning the more the subject gets familiar 

and comfortable with the system, the better accuracy values 

obtained. 

 

2.3.1 Performance evaluation for determining user 

compatibility 

The plethora of subjects selected for the testing phase of this 

project were selected based on lack of neural disability. This 

initiative is not open to people with neurological problems like 

lock-in syndrome or Amyotrophic Lateral Sclerosis (ALS), or 

those with severe disabilities including sensory loss or trouble 

with basic physical mobility. 

Also, user compatibility depends on the users’ ability to 

access the motor imagery neurons in their brain to control the 

robotic arm for the feeding motion. This involved the use a 2 

by 2 array of led lights (2 Red & 2 Blue) as a teach pendant for 

training users. The subjects must be trained to be able to switch 

on these led with brain signals before allowed to test the 

feeding robot system. This will be analysed in successful 

switching cycles, user compatibility and the results tabulated. 

There are six (6) users selected for this project. They are Akure 

Daniel (24M), Olatunji Setemie (20F), Ugwu Theresa (23F), 

Udueze Vivian (20F), Derik Frank (19M), Dare Bukola (21M). 

The compatibility ratio would be tabulated and a line of best 

fit drawn on the graph to determine future compatible users of 

the feeding system. 

 

2.3.2 Performance evaluation for determining frequency 

information 

The feature extraction technique and the classifier used 

depends mainly on the frequency-amplitude graph. This can 

be evaluated using Fast Fourier Transforms (FFTs). Through 

dissecting a signal into its individual spectral components, 

frequency information can be extracted from the signal. FFTs 

are used in fault analysis, quality control, and machine or 

system condition monitoring. 
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2.3.3 Performance evaluation for determining accuracy 

The accuracy of result is proportional to the number of 

training sessions, meaning the more the subject gets familiar 

and comfortable with the system, the better accuracy value 

would be obtained. To calculate the accuracy rate for the 

robotic arm's feeding function, Eq. (1) was employed. 

 

Accuracy Rate = (Number of Successful Feeding 

Attempts / Total Number of Feeding Attempts) × 

100% 

(1) 

 

Error Rate = (Number of Failed Feeding Attempts / 

Total Number of Feeding Attempts) × 100% 
(2) 

 

And 

 

Accuracy Rate + Error Rate = 100% 

 

2.3.4 Performance evaluation for the degree of automation 

(DOA) 

As the percentage of automated functions within the total 

functions of an installation or system, the degree of automation 

can be defined. This basically measures the level of 

independence of the system i.e. the need for human 

intervention in the feeding process. The calculation yields a 

value between 0 and 1, which is the ratio of the number of 

automated operations to the total number of operations that 

must be performed. Consequently, a system or device with 

partial automation—that is, one in which not all activities or 

functions are automated—has a degree of automation lower 

than 1. The study aims to improve the subjects’ independence, 

meaning a value close to 1 is the goal. The metric chosen for 

this performance evaluation is simply: 

 

DOA = (Number of Decisions Made * Decision 

Complexity Weight) / Total Possible Decisions 
(3) 

 

where, Number of Decisions Made represents the total number 

of decisions the arm makes during a specific task or operation.  

Decision Complexity Weight: This is a factor between 0 and 

1 assigned to each decision based on its complexity (e.g., 0.2 

for simple, 0.8 for complex). Defining "decision complexity" 

can be subjective. A ranking system would be based on factors 

like sensor data involvement, real-time vs. pre-programmed, 

and impact on task execution; Total Possible Decisions 

represents the total number of potential decisions the arm 

could make in a given scenario. It might be difficult to quantify 

this in real-world applications. Estimating "Total Possible 

Decisions" can be challenging. The system's capabilities, 

environment, and task variations would be considered. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 User selection, compatibility and experience 

 

User compatibility for this experiment is assessed through a 

series of 20 attempts to activate (switch on) an LED on a 

breadboard with signals from the users’ brain, simply by 

relaxing and concentrating i.e. 10 attempts for relaxation and 

10 for concentration and focus. Each successful activation 

contributes to a compatibility percentile, calculated by simply 

dividing the number of successes by the total feeding attempts 

allotted. To qualify for participation, users must achieve a 

score of 85% or higher, which translates to successfully 

turning on the LED at least 17 times consecutively. This 

threshold ensures a baseline level of user proficiency for the 

experiment. The results obtained are presented in Table 4. 
 

Table 4. System compatibility test results 
 

Subject Name Subject ID Age (Sex) Neural Disability Found Compatibility Percentile (%) 

Akure Daniel ZBS001 24(M) NIL 95 

Dare Bukola ZBS002 21(M) NIL 100 

Derik Frank ZBS003 19(M) NIL 85 

Olatunj Setemie ZBS004 20(F) NIL 85 

Udueze Vivian ZBS005 20(F) NIL 90 

Ugwu Theresa ZBS006 23(F) NIL 85 

 

Table 5. Questionnaire report on the system feeding experience 
 

Questionnaires 

Score 

Average 
Standard 

Deviation 

Relative Standard Error 

(RSE) 

I feel comfortable using my current feeding system 4.667 0.471 10.102% 

I feel independent using my current feeding system 4.500 0.500 11.111% 

I expect this meal-assistance system to increase the independence of the user 4.167 0.687 16.492% 

I expect this meal-assistance system to be satisfactory 4.667 0.745 15.972% 

I expect this meal-assistance system to be comfortable 4.000 0.816 20.412% 

I am comfortable with using technology 4.500 0.500 11.111% 

I felt comfortable using the meal-assistance system 4.167 0.687 16.492% 

I felt independent using the meal-assistance system 3.833 0.687 17.927% 

The meal-assistance system provided significant help in eating 4.667 0.471 10.102% 

The meal-assistance system successfully accomplished tasks 4.333 0.471 10.879% 

The meal-assistance system was simple and easy to use 4.500 0.500 11.111% 

I felt safe while using the meal-assistance system 4.333 0.471 10.879% 

3.2 Performance evaluation on subject feeding experience 
 

The subject’s feeding experience was mainly evaluated 

from a Likert scale questionnaire given to volunteers to fill out 

via google sheet to assess their feeding experience and further 

improve the system. The results are further elaborated in Table 

5 showing the questions ask, average gotten, standard 

deviation and relative standard error. 
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3.3 Performance evaluation on rate of successful feeding 

cycles 
 

This entails the number of successful and failed feeding 

cycle, i.e. the system to receiving EEG data to its deployment 

and completion of feeding process. The total time taken to 

complete this cycle is also taken into account with other 

parameters. The result is illustrated in Figure 4. 

 

 
 

Figure 4. Barchart of successful and failed feeding 

executions 

 

Therefore, it can be concluded that out of 280 feeding cycles, 

a total of 216 was successful and 64 failed during the 

experiment days. This gives a rate of 0.77 successes and 0.22 

failures per feeding cycle which is a good value to consider 

when using the system. The time taken to complete the feeding 

cycle was also taken into account. The normal time for feeding 

and with the aid of the machine were compared as shown in 

Tables 6 and 7 respectively. 

 

Table 6. Time taken for each subject to complete the feeding 

cycle with ZBS 

 

Subject ID 

Time Taken to Complete a Feeding 

Cycle 

Mean Time 

(Μ) 

Standard 

Deviation (±Σ) 

ZBS001 5.971 0.388 

ZBS002 6.084 0.262 

ZBS003 5.954 0.347 

ZBS004 6.081 0.313 

ZBS005 6.141 0.607 

ZBS006 6.687 0.612 

CONTROL (AIDA) 5.000 0.000 

 

Table 7. Time taken for each subject to complete the feeding 

cycle without ZBS 

 

Subject ID 

Time Taken to Complete a Feeding 

Cycle 

Mean Time 

(Μ) 

Standard 

Deviation (±Σ) 

ZBS001 4.541 0.388 

ZBS002 4.654 0.262 

ZBS003 4.524 0.347 

ZBS004 4.651 0.313 

ZBS005 4.711 0.607 

ZBS006 5.257 0.612 

CONTROL (HUMAN) 5.196 0.5419 

 

The notable brain controlled feeding robot done by Chen et 

al. [19] gives a five (5) second completion rate which is close 

to the average time it takes individuals. The Zeroeth BCI 

system thus averaging a completion rate of about 6-7 seconds, 

standardizes its real time use and application although it takes 

±two (2) seconds longer. 

 

3.4 Performance evaluation on accuracy and frequency 

information of the system 

 

The robotic arms were tested for 280 feeding attempts, and 

the following results were recorded: 

Successful Attempts: 216 

Failed Attempts: 64 

Using the Eqs. (1) and (2), the accuracy rate and error rate 

are as follows: 

Accuracy Rate=(216/280)×100%=77.1 % 

Error Rate=(64/280)×100%=22.9% 

Therefore, in this study the robotic arm had an accuracy rate 

of 77.1% and an error rate of 22.9% for the 280 feeding 

attempts. 

In Figures 5 and 6, it was observed that from experiment 

day 7 through to the day 14, the values gotten were somewhat 

more accurate. This proves the point that the accuracy of a 

system increases as the user gets more familiar with it. 

Also, the accuracy results were further broken down in the 

analysis by considering specific scenarios. For instance, 

assuming that out of the 280 attempts separately: 

100 attempts involved feeding solid foods such as yam, with 

91 successful attempts with consideration to shape of yam 

which inhibits its balance on the spoon arm. 

100 attempts involved feeding grain foods such as rice, with 

50 successful attempts because the robot runs twice to pick 

rice grains up due to their size. 

40 attempts involved feeding Nigerian snacks such as puff 

foods, with 39 successful attempts. 

40 attempts involved feeding liquids foods such as 

akamu/custard, with 0 successful attempts. 

The accuracy rates for each sub-task are as follows: 

Accuracy Rate for Solid Foods=(91/100)×100%=91% 

Accuracy Rate for grain foods=(50/100)×100% =50% 

Accuracy Rate for Nigerian snacks=(39/40)×100%=97.5% 

Accuracy Rate for Liquid Foods=(0/40)×100%= 0% 

This breakdown provides insights into the robotic arm's 

performance for different types of foods, which can be useful 

for identifying areas for improvement or additional training of 

the system. For the main experiment, Puff was used as the 

main feeding supplement for each trails. 

 

3.5 Performance evaluation on degree of automation 

(independence) of the system 

 

The degree of automation measures the level of 

independence of the system i.e., the need for human 

intervention in the feeding process. The calculation yielded a 

value between 0 and 1, which is the ratio of the number of 

automated operations (decisions) to the total number of 

operations that must be performed. Decisions are human and 

automatic. The automatic decisions involved: receiving of the 

EEG from users scalp, pre-processing of EEG signal, sending 

result serially to actuator GUIs, movement of servomotor 1 

(base servomotor of the gripper robot), movement of 

servomotor 2 (left servomotor of the gripper robot) after 

servomotor 1 has been moved, movement of servomotor 3 

(right servomotor of the gripper robot) after servomotor 2 has 

been moved, movement of servomotor 4 (gripper servomotor 
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of the gripper robot) after servomotor 3 has been moved, 

movement of servomotor 5(spoon servomotor of the gripper 

robot) after servomotor 4 has been moved, servomotor reversal, 

sending a “0” back to the signal processing GUI to stop the 

feeding motion. The complexity weight is assigned as shown 

in Table 8. 

 

 
 

Figure 5. Graph of successful feeding executions 

 

 
 

Figure 6. Graph of failed feeding executions 

 

Table 8. Complexity weight for automated decisions 

 
 Automatic Decisions Total 

Decision Number 1 2 3 4 5 6 7 8 9 10  

Complexity 5 5 5 4 4 4 4 5 5 5  

Complexity Weight 1 1 1 0.8 0.8 0.8 0.8 1 1 1 42.8 

 

Table 9. Complexity weight for human decisions 

 
 Human Decisions Total 

Decision Number 11 12 13 14 15 16 17  

Complexity 4 5 4 1 2 4 4  

Complexity Weight 0.8 1 0.8 0.2 0.4 0.8 0.8 18.8 

 

The human decisions involved: focusing (concentrating to 

trigger the fp2 electrode on), placement of food in the path of 

the gripper arm, trigger movement of servomotors towards the 

mouth, opening of the mouth, chewing of the food, trigger 

movement of motors back to origin position, removing focus 

(not concentrating). The complexity weights for human 

decisions are assigned as shown in Table 9. 

The degree of automation gotten is 0.65 which is close to 

one (1). DOA values typically range between 0 (no automation) 

and 1 (fully autonomous). Considering the 0-1 scale: With 

0.695, the robotic arm exhibits a significant level of 

automation but might not be entirely autonomous. It likely 

makes its own decisions based on sensors and programming 

but might require some human intervention or operate within 

predefined constraints. The robotic arm makes complex 

decisions using sensors but might require occasional human 

monitoring or operate within pre-defined set boundaries for 

the system. 

With a DOA of 0.695, the user likely has limited 

independence in feeding with the robotic arm. This suggests 

the arm performs tasks with a significant degree of automation, 

but the user/investigator might still be involved in some 

aspects such as: monitoring the arm's operation, especially 

during critical phases, to ensure it functions as expected; 

Intervening Depending on the specific application, the 

user/investigator might need to intervene in case of 

unexpected situations, errors, or changes in the environment 

that the system can't handle independently; Input/output 

managing in some cases where the investigator might be 

responsible for providing input (e.g., initial setup parameters) 

or receiving output (e.g., task completion notification) from 

the system. 
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Hence, applying Eq. (3) using the results from Tables 8 and 

9, Degree of Automation (DOA) = (42.8)/ (42.8+18.8). 

DOA = 0.695. 

 

3.6 General response of the system 

 

The system overall performance at the first iteration was 

satisfactory, but with a number of adjustments and 

modifications to be made to the brain controlled feeding 

system. Figure 7 describes the feeding system undergoing 

training session while Figure 8 is the developed Zeroeth BCI 

feeding system.  

 

 
 

Figure 7. Real-time test session with the feeding system 

 

 
 

Figure 8. The Zeroeth BCI feeding system 

 

 

4. CONCLUSION  

 

Self-feeding may not be achievable without assistance for 

those who suffer from cerebral palsy, amputations, spinal cord 

injuries or any neural deficiency that results in the total or 

partial loss of upper limb functions. Meal assistance robots 

have been deployed to restore independence to these persons. 

A real-time feeding robot controlled by the brain was proposed 

in this study. A system prototype was created that could be 

controlled in real time by brain impulses. Six healthy young 

subjects voluntary participated in the experiment to validate 

the proposed the real-time brain-controlled feeding robot 

system. 

The system's accuracy could reach 77±5%. For individuals 

who prefer to dine slowly, making one decision every five 

seconds is a reasonable pace. The idea of assistive feeding 

robots in general is surrounded by a number of objections 

because of the possible users' conditions. The feeding interval 

is a regular issue for those who are incapable. Sometimes there 

is not much time between meals, yet the user still needs time 

to chew and swallow the food. Occasionally, they feel too 

exhausted or unable to continue eating, so they would rather 

take a quick nap after a few spoonful. For the following 

reasons, assistive feeding robots are beneficial. First of all, 

while they are not focused on their caregiver setting the next 

spoon ready for service, users can chew their food thoroughly. 

Additionally, individuals are free to eat whenever they wish. 

With the help of the feeding robots, users can eat on their own 

whenever and however often they choose throughout the day.  
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NOMENCLATURE 

 

ZBS Zeroeth BCI System 

AT Assistive Technology 

EEG  Electroencephalography 

EOG/EKG Electrooculogram 

BCI Brain Computer Interface 

EMG Electromyogram 

DOA Degree of Automation 
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