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While design automation plays a crucial role in contemporary large-scale digital systems, 

the automation of the transistor-level circuit design process continues to pose significant 

challenges. Recent studies indicate that deep learning algorithms may be utilized to 

determine optimal transistor dimensions in compact circuitry, such as voltage-controlled 

oscillators. However, achieving robust and efficient analog circuit design automation in 

integrated circuit field remains challenging. A deep neural network architecture is 

introduced for the automatic sizing of analog circuit components, specifically targeting 

radio frequency applications within the 2 to 5-GHz range. A novel deep learning model 

designed to simulate voltage-controlled oscillators for microwave applications. This work 

introduces four algorithms: DNN, CNN, RNN, and SCINet. Two characteristics have been 

evaluated: output power and phase noise. The models achieved an accuracy of 96%-97% 

and exhibited a loss ranging from 0.0024 to 0.0036. The prediction of the required features 

demonstrates outstanding performance across all utilized models. We aim to determine the 

most effective deep learning model suitable for a specific dataset and computational 

setting. 
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1. INTRODUCTION

Deep learning has garnered increasing attention in various 

emerging sectors, including computer aided design (CAD) 

and integrated circuit design. Electronic circuits are based on 

analog signals, which are transformed, processed, amplified, 

measured, and displayed by analog circuits. However, many 

circuit characteristics need to be changed while designing 

analog ICs. It must rely on numerous simulations because the 

relationship between parameters and performance is nuanced 

and occasionally unclear from mathematical computations 

[1]. 

A crucial component of phase locked loop PLL that 

determines the PLL's power consumption and spatial 

occupancy is a CMOS voltage-controlled oscillator (VCO). 

A vital part of many RF transceivers, VCOs are frequently 

linked to signal processing functions such as frequency 

selection and signal creation. Today's RF transceivers use 

PLLs to achieve the customizable carrier frequencies that 

they need. These PLLs incorporate a feedback loop with a 

less precise RF oscillator whose frequency is controllable by 

a control signal. Because they provide periodic signals used 

in digital circuits for timing and frequency conversion in RF 

circuits, VCOs are essential components of communication 

systems. They depend on a control input, often a voltage, to 

determine their output frequency. A circuit whose output 

frequency is a linear function of its control voltage is an ideal 

voltage-controlled voltage oscillator. For the majority of 

applications, the oscillator had to be tunable, meaning that its 

output frequency had to be dependent on a control input, 

often a voltage [2, 3]. 

The effectiveness of electronic circuits and design 

approach is inherently connected to the growing demand for 

improved energy efficiency in engineering systems. The 

efficacy of electronic circuit and design process is 

intrinsically linked to the growing demand for enhanced 

energy efficiency in engineering systems. The production of 

electronic circuits, such as analog circuit, is a demanding 

endeavor that necessitates much time and effort from circuit 

designers. It necessitates considerable human expertise and 

encompasses multiple labor-intensive phases. The designer 

uses the circuit simulator repeatedly during the circuit 

parameter optimization process to achieve an optimal design. 

To achieve high-performance optimal designs, it is essential 

to reduce the time and effort expended by circuit designers in 

the design process. Furthermore, to attain high-performance 

optimal designs, it is essential to reduce the workload on 

circuit’s designers and accelerate the design process of the 

circuits. Proposals for methodologies in simulation based 

optimization for analog circuit design have been made. 

Sequential Bayesian Optimization (SBO) entails the 

incorporation of an optimization agent into the interaction 

loop between experts and simulator [4, 5]. 

The expert-agent-simulator loop has been created using 

several optimization techniques, including simulated 

annealing, genetic algorithms, and particle swarm 

optimization. The expert-agent-simulator loop has been 

developed with several optimization techniques, such as 
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genetic algorithm, simulated annealing, and particle swarm 

optimization [6, 7].  

Time series data refers to a sequential collection of results 

from a process, measured or seen at specified intervals. The 

objective of a dataset is to document data and actions 

pertinent to its subject matter. The primary task in time series 

applications is to identify underlying patterns in previous data, 

with an emphasis on forecasting future states or data. Time 

series forecasting (TSF) is extensively utilized in predicting 

the stock market, weather forecasting, traffic congestion 

anticipation, and various other domains.  

Decision-makers get the ability to recognize and reduce 

risks and support well-informed decision-making through 

forecasting. Particularly, deep learning models provide 

encouraging outcomes after achieving remarkable success in 

computer vision and natural language processing. For TSF 

problems, each model offers a possible remedy. With some 

frameworks, multi-objective and multi-granularity prediction 

and multi-modal TSF have been performed [8]. 

In this work, deep learning models have been proposed for 

the simulation of a microwave VCO. Two features were 

predicted which are output power and phase noise. Four 

algorithms have been introduced in this work, deep neural 

network (DNN), convolutional neural network (CNN), 

recurrent neural network (RNN), and sample convolution and 

interaction network (SCINet). 

This paper has been organized as follows: the related work 

is presented in section two. The work preliminaries are 

explained in section three. Section four shows the description 

of the deep learning models used in this work. In section five, 

the system design has been proposed. The results and their 

discussion are presented in section six. Finally, section seven 

shows the conclusion and suggestions for future work. 

 

 

2. RELATED WORK 

 

Chen [1] employs a RNN to enhance parameter sizing in 

circuit design. Following a brief training period of 15 minutes, 

the RNN demonstrates the ability to predict essential 

parameters such as gain, bandwidth, power, and frequency, 

thereby accelerating critical design decision-making. The 

algorithm's reliability and applicability were validated 

through the prediction of parameters for integrated 

operational amplifiers and VCOs. The research introduces 

augmented neural networks (AugNN) formulated to simulate 

the behavior of steady state oscillator in the temporal domain. 

This study introduces a multi-output AugNN that integrates a 

gradient scheme and a training mechanism tailored for multi-

phase oscillators. The AugNN presents a novel methodology 

for modeling VCOs through the utilization of RNNs to 

accurately represent nonlinear dynamic current-voltage 

interactions. The model functions as a black box, is 

safeguarded by intellectual property rights, and exhibits 

efficacy in time-domain analysis. 4 This paper introduces the 

MODE-CNN optimization framework, which combines the 

Multi-Objective Differential Evolution method with CNN 

surrogate models. The method reduces resource use in 

simulations while maintaining precision. The framework 

utilizes Latin Hypercube Sampling and Quantile 

Transformation to enhance predictive accuracy, in 

conjunction with CNN surrogate models for evaluating 

circuit performance. The framework exhibits enhanced 

performance relative to traditional methods in optimization 

outcomes, confirming its effectiveness in analog ICs. Tang et 

al. [9] examined the utilization of machine learning methods 

for voltage management in distribution networks that include 

electric vehicles and dispersed power sources. The system 

integrates electronic on-load tap changers and line voltage 

regulators inside an operational feeder comprising 9 solar 

systems, 2 charging stations, and 41 substations. Hourly 

measurements and irradiation data are employed to build a 

DNN for accurate tap position predictions. Musiqi et al. [10] 

utilized shallow neural networks (SNNs) to limit learning to 

one component size at a time, enabling the usage of little 

training dataset set and managing component 

interdependencies. 

The approach has been confirmed across three categories 

of RF microcircuits, yielding predictions that are within 5% 

of actual values and achieving responses in under 5 seconds. 

The approach is efficient and can be utilized for various 

analog circuit configurations [11]. 

This paper introduces an optimization framework for 

analog circuit design that leverages machine-learning 

techniques to identify the ideal device sizes for enhanced 

performance. The approach employs machine learning 

models alongside spice simulations to inform the 

optimization algorithm, leading to quicker convergence and 

fewer spice calls. Multi-layer perceptron and random forest 

(RF) regression are utilized to predict circuit specification, 

whereas multilayer perceptron classifiers are employed to 

predict saturation conditions in transistors. The framework 

has been validated through three circuit topologies, and the 

results indicate improved optimum values along with reduced 

standard deviations [12].  

 

 

3. PRELIMINARIES 

 

VCOs have been utilized in the creation of clock 

frequencies during transmission and receiving. The produced 

clock signal can be utilized in digital, analog, or hybrid 

circuits. Various solutions have been devised to diminish the 

power consumption of oscillators and enhance tuning 

efficiency. In contemporary power ICs, on-chip integrated 

VCO circuits often produce clock signals to modify 

switching power supply. In a VCO, the clock frequency is 

regulated by a tuning voltage. VCO circuits are classified into 

ring VCO circuits and LC-VCO circuits. This work examines 

the LC VCO. 

 

3.1 LC VCO topologies 

 

The CMOS cross-coupled structure is used by several LC 

VCO topologies to supply the negative resistance. Three 

distinct LC VCO architectures have been examined in this 

paper. Performance metrics have been taken into account, 

including power, area, phase noise, tuning range, and central 

frequency. NMOS LC VCO, PMOS LC VCO, and NMOS 

PMOS LC VCO are the three general categories into which 

LC VCO can be divided. Figure 1(a)-(b) and Figure 2(a)-(b) 

display the LC VCOs that were analyzed. Every architecture 

has unique benefits and drawbacks, therefore the VCO tuning 

range is a design consideration for the designer. 1/√2πLC, 

where L is the inductance and C is the tank's total capacitance, 

provides the center frequency of an LC VCO. The necessary 

LC tank is formed using a varactor. Essentially, a varactor is 

a variable capacitor that can have its capacitance altered by 

varying the voltage differential between its two plates. The 

inductor typically determines the LC tank's quality factor, 
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and the quality factor for inductance is directly proportional 

to its inductance. However, when a designer attempts to raise 

the inductance, two main effects occur. First, the design's area 

grows significantly, and second, the inductor's parasitic 

capacitance restricts the varactor's capacitance and, 

consequently, the range of capacitance that may be varied. 

The varactor's capacity to be tuned decreases as the parasitic 

capacitance increases [13]. 

 

 
 

Figure 1. (a) NMOS VCO; (b) NMOS VCO with footer 

 

 
 

Figure 2. (a) PMOS VCO; (b) PMOS VCO with header 

 

3.2 The benchmark dataset  

 

A series of systematically recorded observations arranged 

in chronological order is essential for the formulation and 

validation of a time series model. The model to be developed 

must effectively characterize the relationship between data 

points within a specified dataset. A VCO produces a periodic 

signal whose frequency can be adjusted over a broad 

spectrum, ruled by a voltage input value. The cross-coupled 

VCO has emerged as a widely adopted configuration for 

achieving sustainable oscillation because of its power 

consumption and low phase noise [14]. Figure 3 illustrates 

the characteristics of the dataset. 

 

 

 
 

Figure 3. VCO dataset features 

 

 

4. DEEP LEARNING MODELS 

 

This section will examine advanced deep learning 

architectures for TSF. Each of these deep learning algorithms 

has unique benefits and appropriateness for TSF. Selecting 

the suitable model is contingent upon the data attributes, the 

problem's complexity, and the performance criteria [15]. 

Moreover, proficient hyperparameter optimization and data 

pretreatment are essential for attaining precise forecasts. This 

section will present an overview of models categorized as 

DNN, CNN, RNN, and SCINet. 

 

4.1 Deep neural network 

 

A DNN is a neural network including two or more hidden 

layers. Deep learning models mostly consist in multilayer 

perceptron (MLP) and feedforward neural networks with two 

or more hidden layers. Every deep learning algorithm starts 

with DNN models. The several hidden layers help the DNN 

models to understand the complex characteristics in the large 

dataset. This feature helps the DNN to efficiently manage 

extremely dynamic and nonlinear data. Several DNN models 

have been lately presented [16]. 

 

4.2 RNN-based model 

 

RNNs are a specialized neural network architecture 

designed for the analysis of sequential data, such as time 
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series and natural language text. Unlike traditional 

feedforward neural networks, RNNs possess recurrent 

connections that facilitate the transfer and preservation of 

information over time. The core principle of RNN entails 

employing the output from the prior time step as the input for 

the present time step. This establishes connections among 

sequential data, enables RNNs to handle sequences of 

differing durations, and captures temporal linkages and 

contextual nuances within the sequences [17]. The hidden 

state in RNN serves as the memory element within the 

network at each time step. At each time step, the concealed 

state is revised and subsequently conveyed to the subsequent 

layer or time step of the network. RNNs employ a memory 

propagation mechanism to save information from prior data, 

enabling them to apply that information to adjust current 

outputs. Figure 4 depicts the internal architecture of a 

conventional recurrent neural network. The graph indicates 

that x(t) represents the input vector to the neurons at a time t, 

and h(t) denotes the hidden vector at that same time t. The 

conventional RNN neuron is structured to receive the 

preceding hidden state h(t)-1 in conjunction with the current 

input x(t). The essential component of an RNN is its unit, 

which possesses an internal memory state that retains prior 

knowledge. The equation employed to determine the internal 

concealed state of a RNN [18]. 

 

4.3 SCINet 

 

SCINet employs an encoder-decoder framework. The 

encoder operates as a hierarchical convolutional network, 

skilled in capturing dynamic temporal dependencies across 

different resolutions, employing a wide range of 

convolutional filters. The SCI-Block shown in Figure 5(a) 

functions as the core element of the SCINet. It divides the 

input features F into two sub-features, Fodd and Feven, using 

splitting and interactive learning mechanisms. The splitting 

divides the original features F into two sub-sequences, Feven 

and Fodd, by differentiating between the odd and even 

elements. This leads to a less refined temporal resolution, yet 

it preserves most of the information from the original 

sequence. The SCINet is organized hierarchically by several 

SCI-Blocks, leading to a tree-structured framework. 

At the i-th level, there exist 2l SCI-Blocks, where l varies 

from 1 to L, with L denoting the total number of levels as 

shown in Figure 5(b). In the k-th stacked SCINet, the input 

series X (k = 1) or the feature vector �̂�𝑘−1 =
�̂�1

𝑘−1, … . , �̂�𝜏
𝑘−1 (k>1) experiences a systematic 

downsampling process and is analyzed by SCI-Blocks at 

multiple levels, enabling efficient feature learning across 

diverse temporal resolutions. The data collected from the 

earlier stages will be systematically compiled, indicating that 

the attributes of the deeper stages will integrate more nuanced 

temporal details communicated from the shallower stages. 

This method enables the effective capture of short and long 

terms temporal dependencies presented in the time series 

sequence data. The data collected provides a foundation for 

future studies and potential applications in the field. It is 

essential to analyze the results thoroughly to draw 

meaningful conclusions. When there are sufficient samples 

of training dataset, it could stack K layers of SCINets to 

obtain much better prediction accuracy as shown in Figure 

5(c), but with more complex model structure [19, 20]. 

 

 
 

Figure 4. RNN architecture 
 

 
(a) SCI-Block     (b) SCINet                (c) Stacked SCINet 

 

Figure 5. SCINet block diagram [19] 
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Figure 6. CNN applied to TSF [21] 

 

4.4 CNN 

 

CNNs [22] illustrated in Figure 2, possess a complex 

architecture that typically encompasses convolution, pooling, 

and fully connected layers. CNNs are characterized by three 

primary attributes: local connectivity, shared weights, and 

translation equivariance. Local connectivity is characterized 

by the exclusive connection of each neuron in a CNN to its 

specific input region, known as the receptive field. 

Furthermore, the neurons in a particular layer employ an 

identical weight matrix. Translation equivariance refers to the 

capability of CNNs to identify specific patterns, irrespective 

of their location within the input image. The application of 1D 

convolution (refer to Figure 6) to an input sequence X = 

[x1, …, xL] using a specified kernel w of size q is articulated 

as follows [21]: 

 

𝑦(𝑡) = (𝑤 × 𝑋)(𝑡) = ∑ 𝑤(𝑎)𝑋(𝑡 − 𝑎)

𝑞
2

𝑎=−
𝑞
2

 ∀𝑡 ∈ [1, … . , 𝐿] 

 

where, X represents the input sequence, y is the output 

sequence, w is the model weights. It is crucial to recognize that 

in the autoregressive approach, the kernel size q correlates 

with the model order, which is usually established through 

model selection methods like cross-validation [23]. 

Additionally, CNN can stack multiple convolutional layers, 

transforming the input data (such as historical time series 

values) into a more suitable higher-level representation for the 

forecasting task. 

 

 

5. PROPOSED SYSTEM DESIGN 

 

The VCO utilizes a symmetrical cross-coupled 

configuration, as depicted in Figure 7. This configuration is 

frequently employed in VCOs, enabling an output swing that 

nearly reaches rail-to-rail levels. The cross-coupled pMOS–

nMOS configuration is critical for minimizing 1/f noise [24]. 

Table 1 displays the design variables of the different designs 

criterion, including the ranges of values considered. The 

source input and inductance values were established prior to 

each case and utilized as inputs for the design of sizing process, 

while Vtune was adjusted in each design to achieve the 

necessary tuning range. A VCO produces a periodic signal 

with a tunable frequency over a broad spectrum, based on a 

voltage input. The cross-coupled VCO is commonly utilized 

for sustainable oscillation owing to its low phase noise and 

reduced power consumption. 

 
 

Figure 7. VCO 

 

Table 1. VCO design values  

 

Variable 
Minimum- 

Value 

Maximum-

Value 

Oscillation-

frequency (GHz) 
2.0223 9.92 

Tuning-range 

(MHz) 
52.44 724.4 

Phase-noise (db/Hz) -101.7 -88.2 

Power-consumption 

(mW) 
1.386 3.33 

TransistorQ1 length 

(µm) 
0.5 4.1 

TransistorQ1 width 

(µm) 
2.5 55 

TransistorQ2 length 

(µm) 
0.5 4.4 

TransistorQ2 width 

(µm) 
3 55 

TransistorQ3 length 

(µm) 
0.8 4.2 

TransistorQ3 width 

(µm) 
15 98 

 

Figure 8 illustrates the comprehensive workflow framework 

that has been proposed. The process starts with obtaining a 

dataset of parameters that meet the size constraints, utilizing 

VCO features as input for various deep learning models. This 

work proposes three types of training algorithms: DNN, RNN, 

CNN, and SCINet. We explore the fundamental architectures 

for processing an input dataset and provide a thorough 

evaluation of the latest advancements in deep learning 

prediction models. Various models are likely tailored to meet 

distinct design objectives. We rigorously analyze the 

performance of these models using the same time series input 
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dataset on an identical hardware computing system. The 

observed performance may indicate the design adaptability 

across all the ranked models achieved or the predetermined 

number of iterations has been completed. This section offers 

an in-depth analysis of the development and implementation 

of the CNN model, along with enhancements in the 

optimization process. We input performance metrics into the 

model and allow it to predict the design parameters. The 

codebase includes a comprehensive model training and 

evaluation pipeline, illustrated in Figure 7. This facilitates a 

seamless integration of the machine learning process with the 

analog circuit process. In the training phase, we adhere to the 

conventional machine learning process to import data and 

develop the model. Given the varying ranges of performance 

metrics and parameters targeted by the models, we initiate the 

process by applying preprocessing to normalize the data 

within the range of [-1, 1]. The training data is divided by 

randomly selecting 60% of the data points for the training 

dataset, 20% for the test dataset, and 10% for the validation 

dataset. The neural networks are trained for 100 epochs 

utilizing the Adam optimizer, set at a learning rate of 0.001.  

 

 
 

Figure 8. Conventional procedure of VCO 
 

 

6. RESULTS AND DISCUSSION 

 

DNN, RNN, CNN, and SCINet are the four distinct 

algorithms that were utilized in the process of training and 

evaluating the proposed system when it was applied to the 

VCO dataset. The results of the tests conducted on the various 

deep learning algorithms are presented in Table 2. The 

accuracy and loss are the most important performance metrics 

which represents how the model is trained well or may be 

overfitting learning. These metrics are evaluated in two phase 

first, while training, in this phase a validating datasets is 

required which in this work chosen to be 10% from the total 

dataset. Secondly, the model is tested on a test dataset (unseen 

dataset 30% of the total dataset) to check the final model 

performance which should be close to those of the training 

metrics. 

 

Table 2. Testing hyperparameter of the proposed models 

 

Model Accuracy Loss Precision Recall 

SCINet 0.96819 0.0036 1.0 0.3603 

DNN 0.9755 0.0027 1.0 0.3754 

RNN 0.9723 0.0024 1.0 0.3661 

CNN 0.9709 0.003 1.0 0.3675 

 

Figure 9 illustrates the accuracy and loss of training by 

demonstrating that the SCINet method demonstrates superior 

training performance, even though other algorithms also 

provide strong performance. As can be seen in Figure 10, the 

SCINet algorithm is the one that produces the most accurate 

prediction for output power when compared to other 

algorithms. As can be seen in Figure 11, the prediction of 

phase noise is displayed, and SCINet also displays the best 

results. Figure 12 shows a combination of the different 

prediction models together, as a result of the results that were 

acquired, it is possible to observe that the forecast is nearly 

identical to the initial characteristics that are displayed in 

Figure 3. 

 

 

 
 

Figure 9. Different deep learning models accuracy and loss 

266



 

 

 

 

 

 
 

Figure 10. Output power prediction 

 

 

 

 

 

 
 

Figure 11. Phase noise prediction 
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Figure 12. Comparison of prediction of different deep 

learning models 

 

 

7. CONCLUSIONS 

 

Through the examination of time series data, TSF is a 

powerful instrument that not only offers decision-making 

techniques but also provides predictive insights. It also extends 

across a wide range of applications. During this research, we 

suggested an alternative deep learning model for simulating 

VCOs for microwave applications. In the course of this work, 

four different algorithms—namely, DNN, CNN, RNN, and 

SCINet—have been presented. Output power and phase noise 

are the two characteristics that have been examined and 

evaluated. After training, the models achieved an accuracy of 

96%-97% and a loss that ranged from 0.0024 to 0.0036. 

Additionally, the prediction of the necessary characteristics 

demonstrates an outstanding performance across all of the 

models that were utilized. Our objective is to determine which 

deep learning model is the most suitable for a certain dataset 

and the computational environment that is available. Our 

research findings indicate that SCINet outperforms other deep 

learning models in terms of accuracy, loss, precision, and 

recall. While our testing configuration may not demonstrate 

that SCINet excels among all timeseries applications, it 

exemplifies a meticulously designed model that warrants 

comprehension of its architectural framework. Integrating 

analog circuit simulations with machine learning predictions 

directs the genetic algorithm towards optimal solutions. It is 

essential to ensure that the transistors operate within the 

required region for the proper functioning of analog circuits. 

In preparing for future projects, it is essential to evaluate 

multiple datasets and to simulate various VCO architectures. 
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