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This paper proposes a backtracking control strategy for speed regulation of Permanent 

Magnet Synchronous Motors (PMSMs). The approach is based on the Lyapunov stability 

principle to ensure global system stability and accurate trajectory tracking. Compared with 

conventional control methods, including proportional integration (PI), model predictive 

control (MPC), and slip mode control (SMC), our technique provides faster response, 

improved disturbance rejection, and greater adaptability to parameter changes. 

MATLAB/SIMULINK simulations show that backtracking reduces the settling time by 

45% and improves the tracking accuracy by 30% relative to PI control. Moreover, the 

system maintains stability under torque disturbances up to ±5 Nm without deviating from 

the reference speed. It also significantly mitigates sudden speed fluctuations, achieving a 

50% reduction in response time compared with conventional methods. These results 

highlight Backstepping as a robust and efficient control strategy. It is highly suitable for 

applications requiring precise speed regulation, high stability, and superior dynamic 

performance, such as electric vehicle propulsion and industrial automation. 
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1. INTRODUCTION

Permanent Magnet Synchronous Motors (PMSMs) have 

become indispensable in various electromechanical 

applications in recent decades due to their high efficiency, 

compact size, and superior power density. These motors are 

widely used in electric vehicles, industrial robotics, 

aerospace propulsion systems, and renewable energy 

applications such as solar and wind power. Their ability to 

deliver high performance with precise control makes them 

ideal for energy-efficient and high-precision applications [1, 

2]. 

Despite their advantages, PMSMs exhibit nonlinear 

behavior that introduces significant control challenges. These 

include abrupt changes in electrical load, thermal variations, 

and magnetic field saturation, which can hinder performance 

stability under varying operating conditions [3, 4]. 

The proportional-integral (PI) controller remains the most 

commonly used approach due to its simplicity and ease of 

implementation. Nevertheless, PI control struggles in 

nonlinear systems, failing to adequately compensate for 

dynamic parameter variations and sudden disturbances, 

leading to degraded tracking performance and stability 

issues. MPC offers improved adaptability to system changes 

but is computationally intensive, making it less suitable for 

real-time applications requiring fast response. Similarly, 

SMC is highly robust against disturbances but suffers from 

chattering effects, which can negatively impact motor 

efficiency and stability in high-precision applications [5-9]. 

Backstepping control has emerged as a promising 

alternative for handling nonlinear systems. By structuring the 

control process into sequential stages, each stabilized before 

proceeding to the next. Backstepping ensures a systematic 

and robust approach to nonlinear control. Grounded in 

Lyapunov stability theory, this method effectively adapts to 

system variations, making it particularly well-suited for 

PMSM applications [10, 11]. 

This paper proposes an improved backstepping control 

strategy for PMSMs, incorporating advanced mathematical 

analysis and MATLAB/SIMULINK simulations. A 

comparative performance evaluation is conducted against 

conventional PI control to assess response time, tracking 

accuracy, and robustness under varying load conditions and 

external disturbances. The results demonstrate that 

backstepping reduces settling time by 45% and improves 

tracking accuracy by 30% relative to PI control. Additionally, 

the method effectively mitigates torque disturbances up to ±5 

Nm, reinforcing its reliability for industrial applications 

demanding high stability and precision. 

2. BACKSTEPPING CONTROL PRINCIPLE IN

NONLINEAR SYSTEMS

Backstepping control is a sophisticated approach for 

managing complex nonlinear systems, particularly in 

PMSMs. This method structures the control process into a 

sequence of stabilization steps, where each subsystem is 

individually stabilized before progressing to the next stage. 

Unlike traditional linear control models, which rely on 

simplifying assumptions, backstepping provides a systematic 

framework for effectively handling nonlinearities and 
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external disturbances [12]. 

By leveraging Lyapunov-based stability principles, 

backstepping ensures that the control laws are designed to 

guarantee the system's overall stability while responding 

dynamically to parameter variations and external 

perturbations. 

 

2.1 Stability analysis using the Lyapunov function 

 

The Lyapunov function is a fundamental tool for analyzing 

and ensuring the stability of nonlinear systems. In the case of 

PMSM, the Lyapunov function ensures the system's stability 

under varying operating conditions. The core principle of this 

method is that a system’s total energy must decrease over 

time until it reaches equilibrium. For PMSM systems, the 

Lyapunov function is generally chosen as a quadratic energy 

function representing the dynamic states of the motor, such 

as rotor speed and current. This approach guarantees that the 

system's behavior is stable under steady-state conditions and 

when exposed to dynamic changes like torque disturbances 

or load variations [13]. 

The Lyapunov stability criterion provides a robust 

framework for evaluating system behavior under nonlinear 

and dynamically varying conditions. This ensures the system 

reaches stability without oscillations, even in external 

disturbances. 

To analyze the stability of PMSM, two types of Lyapunov-

based stability analyses are commonly used: 

Local stability analysis: This method uses linear 

approximations to evaluate system behavior near an 

equilibrium point. While it effectively analyzes minor 

deviations from equilibrium, it does not guarantee stability 

under all operating conditions [14]. In this context, the 

Lyapunov function is typically defined in Eq. (1): 

 

( )2 2

1 2

1
( )

2
V x x x= +  (1) 

 

where, x1 and x2 are the system states, such as rotor speed and 

current, the local stability ensures that, for minor 

disturbances, the system will converge back to the desired 

equilibrium. 

Global energy-based analysis: Unlike local analysis, this 

method uses the Lyapunov function to ensure that the 

system’s energy continuously decreases until it reaches a 

stable state, providing a more comprehensive stability 

assessment. This global analysis guarantees the system will 

always return to a stable state, even after significant 

disturbances or initial state variations [15]. The derivative of 

the Lyapunov function is expressed by Eq. (2): 
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where, k1 and k2 are positive constants, the negative sign in 

the derivative indicates that the system's total energy is 

decreasing, guaranteeing global stability. 

In the case of PMSM, this global energy-based analysis 

ensures that the system will permanently stabilize, no matter 

the starting conditions or external disturbances. Thus, the 

backstepping control method is highly reliable for controlling 

nonlinear systems like PMSM. 

 

 

2.2 Backstepping in control 

 

In nonlinear systems such as PMSMs, the backstepping 

control method decomposes the system into multiple 

hierarchical control stages, where each stage is 

systematically stabilized before progressing to the following 

[16]. This structured approach enables precise error 

regulation and enhances system robustness against 

disturbances. 

The backstepping control process follows three 

fundamental steps: 

Step 1- Error computation 

The first step involves calculating the error between the 

monitored system variable (e.g., rotor speed) and its desired 

reference value. This is defined in Eq . (3): 

 

1 1 0
   -  e x a=  (3) 

 

where, x1 is the output that follows the reference signal yref.  

Step 2- Intermediate control law design 

At this stage, an intermediate control law is formulated to 

regulate key system parameters, such as direct and quadrature 

currents in the PMSM. The error dynamics are described by 

Eq. (4): 

 

1 1 0 1 1 0 1 2 0
 ( ) ( )e x a f x g x x a= − = + −  (4) 

 

The Lyapunov function for the first stage is  defined in Eq . 

(5): 
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Its time derivative is given in Eq. (6): 

 

1 1 1 1 1 1 0 1 2 0
[ ( ) ( ) ]v e e e f x g x x a= = + −  (6) 

 

Step 3- Control law refinement 

The final control input is adjusted to ensure the system 

remains stable across all stages. The control law is derived to 

guarantee that the Lyapunov function continuously 

decreases, leading to system convergence.  

The control law is given in Eq. (7):  

 
2

1 1 1
0v k e= −   (7) 

 

In this framework, Lyapunov stability principles ensure 

that the system’s total energy decreases progressively until it 

reaches the reference state without oscillations or instability. 

The sequential nature of the equations guarantees smooth and 

stable system performance across all backstepping stages. 

 

 

3. USING THE PMSM TO APPLY THE 

BACKSTEPPING CONTROL 

 

This section details the application of backstepping control 

in regulating PMSM. Figure 1 illustrates the overall structure 

of the PMSM speed control system using the backstepping 

approach. The proposed control scheme ensures speed 

regulation while maintaining stability through sequential 
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control steps. The system architecture comprises the PMSM 

dynamic model, current controllers, and a backstepping-

based regulator, which dynamically adjusts the control 

voltages 𝑉𝑑  and 𝑉𝑞 based on Lyapunov stability conditions 

[17]. 

 

 
 

Figure 1. Structure of PMSM speed adjustment by 

backstepping 

 

The PMSM model can be rewritten in Eq. (8): 
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The fundamental backstepping control method is 

cascading first-order subsystem stabilization utilizing the 

Lyapunov stability criteria. This strategy improves system 

resilience and asymptotic stability [18].  

While backstepping control is highly effective in handling 

nonlinearities and disturbances, it can be computationally 

demanding due to the multiple steps involved in error 

computation and Lyapunov function evaluation. This 

increases the overall processing time, which can be a limiting 

factor for real-time applications, such as embedded systems 

or motor control with high-speed requirements. In practice, 

to mitigate these computational challenges, optimization 

techniques and hardware acceleration (such as parallel 

processing or the use of GPUs) may be employed to reduce 

the computational burden. Moreover, reducing-order models 

or approximations of the Lyapunov function can help achieve 

real-time performance while maintaining system stability 

[19]. 

The main objective is to control velocity by choosing 

expressions for subsystems (di/dt) and (diq/dt), utilizing stator 

currents (id and iq) as intermediate variables The goal is to 

manage PMSM speed while preserving system stability by 

determining voltage commands (Vd and Vq) [20]. 

 

 
 

Figure 2. Internal structure of backstepping regulator block 

Figure 2 presents the internal configuration of the 

backstepping regulator block. The system employs a multi-

stage feedback mechanism to generate the required control 

voltages based on stator currents (id, iq) and rotor speed 

measurements. This hierarchical control strategy enables 

real-time stability adjustments by progressively minimizing 

system errors through Lyapunov-based adaptation. 

Step 1-Calculation of the control law 𝑉𝑑
𝑟𝑒𝑓

 

The first step in designing the backstepping control law 

involves regulating the direct axis current 𝑖𝑑. The regulation 

error is defined by Eq. (9): 

 

1
0,

ref ref

d d d
i e i i= = −  (9) 

 

The dynamic equation of error derived from Eq. (9) is 

shown in Eq . (10): 
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We employ the Lyapunov function V1 as a form of energy 

to ensure the error converges to zero and the current is 

controlled, as shown in Eq. (11): 
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The derivative of the function is given by Eq. (12): 
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For the derivative of V1 to be negative, the following form 

is used (as introduced by the Backstepping method), as 

shown in Eq. (13): 
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This equation forces the current id to follow its reference, 

and the voltage Vd controls the subsystem to guarantee 

Lyapunov stability. From this, we derive the reference 

voltage 𝑖̇𝑑
𝑟𝑒𝑓

, as given in Eq. (14): 

 

1 1
 

qref s

d d d q

d d
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V L k e i i
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 (14) 

 

Step 2-Calculation of the Virtual Control Law 𝒊𝒒
𝒓𝒆𝒇

:  

The second step in the backstepping control design focuses 

on regulating the rotor velocity Ω. The velocity error is 

defined by Eq. (15): 

 

1 ref
e n=  −  (15) 

 

The derivative of this error is expressed as follows in Eq. 

(16): 
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e =  −  (16) 

 

Eq. (17) shows how the Lyapunov function approach 

creates the virtual control law. 
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The goal is for the error to converge to zero by choosing iq 

as the virtual control. The extended Lyapunov function is 

defined as shown in Eq. (18): 
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The time derivative is given by Eq. (19): 
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Step 3-Calculation of the final control law 𝑽𝒒
𝒓𝒆𝒇

  

In this step, the final control law is derived to determine 

the reference voltage for the entire system. The objective is 

to stabilize the system by extending the control strategy from 

the virtual control stage to the actual control input. The 

regulation error is given by Eq. (20): 
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q q
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The dynamic equations of error are given by Eq. (21): 
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The Lyapunov function is extended as shown in Eq. (22): 
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The derivative is given by Eq. (23): 

 

3 1 2 3 3
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By choosing 𝑉̇3 to be semi-definite negative, we obtain Eq. 

24: 
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From this, we obtain the final control law for 𝑉𝑞
𝑟𝑒𝑓

, as 

given in Eq. (25): 
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This final control law ensures that the quadrature-axis 

current 𝑖𝑞  tracks its reference value accurately, leading to 

precise speed regulation. Consequently, the reference voltages 

are determined to guarantee the asymptotic stability of the 

entire PMSM control system. The backstepping control 

approach achieves a robust and optimized overall system 

performance by systematically stabilizing each subsystem. 

 

 

4. RESULTS AND DISCUSSION 

 

This section presents the simulation results of the 

Backstepping control strategy applied to a PMSM using 

MATLAB/SIMULINK. The goal is to evaluate system 

performance under different operational conditions, including 

no-load scenarios, variable loads, speed variations, and 

directional reversals. 

Figure 3 illustrates the simulation environment setup, 

consisting of a PMSM model, a backstepping controller, and a 

real-time feedback loop for adjusting control voltages. This 

setup enables precise performance assessment across various 

operating scenarios. 

 

4.1 Simulation Setup 

 

To evaluate the effectiveness of the Backstepping control 

strategy, simulations were conducted in 

MATLAB/SIMULINK using the parameters specified in 

Table 1. 

 

Table 1. Simulation parameters of the PMSM model used in 

the MATLAB/SIMULINK environment 

 
Parameter Value 

Stator Resistance (Rs) (Ohms) 0.4578 

Direct Stator Inductance (Ld) (H) 3.34 × 10-3 

Quadrature Stator Inductance (Lq) (H) 3.58 × 10-3 

Moment of Inertia (J) 1.469 × 10-3 

Friction Coefficient (ƒ) 0.3035 × 10-3 

Permanent Magnet Flux (φ) (Wb) 0.171 

Number of Pole Pairs (Np) 4 

Concontrollerains (k1, k2, k3) 640, 320, 130 

 

The control gains k1=640, k2=320, and k3=130 were selected 

based on the system's physical parameters and their impact on 

its dynamic behavior. These gains were determined using a 

combination of optimization algorithms and empirical 

formulas to achieve fast response, minimal overshoot, and 

robust disturbance rejection. k1 was chosen to accelerate the 

system's initial response, and k2 contributes to the system's 

stability in the later stages. k3 was selected to ensure stability 

and accuracy at high speeds. The gains were optimized using 

algorithms based on the motor’s physical parameters, such as 

resistance (Rs = 0.4578), direct inductance (Ld = 3.34 × 10-3 

H), and moment of inertia (J = 1.469 × 10-3). 
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Figure 3. Simulation diagram of the PMSM backstepping control system in MATLAB/SIMULINK 

 

4.2 Simulation results 

 

The system’s performance was tested in multiple scenarios 

to analyze the impact of the Backstepping strategy. The key 

results are summarized as follows: 

 

4.2.1 No-load operation (Reference Speed = 150 rad/s) 

As shown in Figure 4, the rotor speed response under no-

load conditions demonstrates that the motor speed closely 

tracks the reference speed with minimal delay. The 

Backstepping controller achieves convergence to 150 rad/s 

within 0.01 s, a 45% improvement over the PI controller, 

which required 0.018 s. The system exhibits no overshoot, and 

the steady-state error remains negligible. As shown in Figure 

5, the source currents at no load demonstrate minimal 

fluctuation, confirming the system's stability. Figure 6 further 

illustrates the stator currents under no load conditions, 

providing additional insight into the system's behavior during 

operation. 
 

 
 

Figure 4. Rotor speed response under no-load conditions 
 

 
 

Figure 5. Source currents at no load 

 
 

Figure 6. Stator currents at no load 

 

4.2.2 Performance under load (Speed step change: 150 to 450 

rad/s, Load Cr = 5 N.m at t = 0.1 s) 

When a load or force of 5 N.m is applied at 𝑡=0.1 s, initial 

oscillations appear in the three-phase currents, as shown in 

Figure 7. However, the Backstepping controller stabilizes the 

current within 0.15 s, demonstrating a 35% improvement in 

transient damping over PI control. 

 

 
 

Figure 7. Dynamic behavior of three-phase source currents 

during load variation 

 

4.2.3 Speed reversal test (speed step of ±150 rad/s with 

direction reversal at t=0.4 s, Load Cr=5 N.m at t=0.1 s) 

A robustness evaluation was further conducted by reversing 

the speed direction at t = 0.4 s while maintaining a constant 

load torque of 5 N·m. Figure 8 illustrates a smooth transition 

of speed to the opposite direction without significant 

fluctuations. 
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Figure 8. Transient response of stator currents (id, iq) under 

load variation 

 

Figure 9 presents the source currents during speed reversal, 

revealing transient oscillations before reaching stabilization. 

Similarly, Figure 10 demonstrates the stator currents’ dynamic 

response, confirming the effectiveness of the control 

mechanism. Figure 11 displays the torque response to speed 

reversal, where a momentary deviation occurs before 

stabilizing. 

Additionally, Figure 9 illustrates the rotor speed response 

under load conditions, showing that the system successfully 

tracks a speed transition from 150 rad/s to 450 rad/s within 

0.015 s, which is 50% faster than conventional PI control. 

Moreover, this method significantly reduces overshoot, 

ensuring smooth speed transitions. 

Figure 10 presents the electromagnetic torque behavior 

under load conditions. The initial transient deviation is ±6.5 

N·m; however, the system stabilizes within 0.018 s, reducing 

torque ripple by 25% compared to PI control. The precise 

torque adjustment verifies the backstepping controller’s 

capability to maintain smooth operation under dynamic 

loading. 

Finally, Figure 11 depicts the stator flux response when a 

load is applied. The quadrature flux component (𝜙𝑞) 

demonstrates a 35% improvement over PI control, with minor 

oscillations stabilizing within 0.02 s. Meanwhile, the direct 

flux component (𝜙𝑑) remains stable, ensuring consistent 

electromagnetic field management. 

 

 
 

Figure 9. Rotor speed response under load conditions (Cr = 5 

N.m) 

 

 
 

Figure 10. Electromagnetic torque response under load 

 
 

Figure 11. Stator flux response under load 

 

Figure 12 shows the behavior of source currents during a 

0.4 s speed reversal event. The transient peak current reaches 

± 2.1 A, yet the backstepping controller effectively damps 

these oscillations within 0.025 s, yielding 40% faster 

stabilization than PI control. This modification lowers energy 

losses and improves motor efficiency. 

Figure 13 depicts the stator current response when the speed 

direction is reversed. The system passes through a transitory 

phase but stabilizes within 0.03 s, lowering current oscillations 

by 40% compared to PI control. This displays the 

backstepping controller's capacity to manage fast speed 

changes while keeping a constant current flow. 

 

 
 

Figure 12. Source currents respond during speed reversal at 

t=0.4 s 

 

 
 

Figure 13. Stator currents during speed reversal 

 

 
 

Figure 14. Rotor speed response during speed reversal 
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Figure 15. Electromagnetic torque response during speed 

reversal 

 

 
 

Figure 16. Dynamic behavior of stator flux during speed 

transition 

 

Figure 14 depicts the rotor speed response during a speed 

reversal from 150 rad/s to -150 rad/s. The shift occurs 

smoothly in 0.02 s, representing a 60% improvement above PI 

control. The absence of overrun and speedy convergence 

demonstrates that backstepping control can efficiently handle 

bidirectional speed variations. 

Figure 15 shows the electromagnetic torque response during 

speed reversal. The system has a short transient, but the torque 

stabilizes within 0.025 s, lowering oscillations by 50% 

compared to PI control. This ensures smooth torque shifts 

while minimizing mechanical stress on the motor. 

Figure 16 shows the stator flux response during a speed 

reversal event. The quadrature flux 𝜙𝑞 shows a significant 

transient variation of less than 10% before settling within 0.03 

s, resulting in a 55% improvement over the PI control (0.067 

s). This indicates that the backstepping controller regulates the 

magnetic field even during high-speed transitions. 

 

 
 

Figure 17. Comparison of control strategies: Backstepping 

control, MPC, and SMC 

The simulation in Figure 16 shows that backstepping 

control achieves accurate and rapid motor speed regulation for 

the PMSM compared to other control methods. However, it is 

also essential to compare the performance of Backstepping 

Control with other advanced techniques, such as MPC and 

SMC, to highlight the unique advantages of this control 

strategy. 

Figure 17 illustrates the comparative results between the 

three control methods. Backstepping Control shows a 

noticeable advantage in reaching stability faster than MPC and 

SMC in settling time. In speed tracking, Backstepping Control 

achieves better accuracy and less fluctuation in tracking the 

reference speed. Backstepping Control outperforms MPC and 

SMC in handling load changes effectively in disturbance 

rejection. 

 

 

5. DISCUSSION 

 

The simulation results confirm the superiority of 

Backstepping control in regulating PMSM speed under 

various operating conditions.  

Compared to MPC and SMC, the backstepping control 

method offers several advantages. While MPC is more 

adaptive and can optimize control inputs over a predictive 

horizon, it tends to be computationally expensive, which limits 

its application in real-time systems. On the other hand, SMC 

provides robust disturbance rejection but suffers from 

chattering effects, which can impact system stability and 

efficiency, especially in high-precision applications. The 

backstepping control, however, balances robustness and 

precision, ensuring system stability without the computational 

complexity of MPC or the chattering effects of SMC. 

Moreover, the ability of backstepping to handle nonlinearities 

directly, without the need for linear approximations, makes it 

a superior choice for systems with significant nonlinear 

dynamics, such as PMSM. 

The key observations include: 

• Fast dynamic response: The backstepping controller 

achieves a rapid response time of t=0.01 s, significantly 

outperforming conventional PI controllers. 

• No overshoot or instability: The controller ensures smooth 

tracking of the reference speed without exceeding set points. 

• High robustness to load variations: Under a load torque of 

5 N.m, the PMSM speed remains stable, demonstrating strong 

disturbance rejection capabilities. 

• Efficient speed reversal: The system successfully 

transitions between positive and negative speed directions 

without oscillatory behavior. 

• Decoupled control of torque and flux: Similar to a DC 

motor, the Backstepping approach effectively separates torque 

and flux components, improving efficiency and stability. 

Overall, these results validate the effectiveness of the 

Backstepping method in handling nonlinear PMSM dynamics 

and improving system reliability across different operating 

scenarios.  A detailed performance comparison between the 

Backstepping control method and the conventional PI 

controller reveals significant advantages in dynamic response, 

stability, and robustness. 

The results indicate that Backstepping reduces settling time 

by 50%, current regulation by 40%, and flux variations during 

speed transitions significantly decrease.  

The performance of backstepping control was analyzed at 

both low and high speeds. The backstepping controller 
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demonstrated superior responsiveness at low speeds, 

achieving faster convergence to the reference speed with 

minimal overshoot. The system maintained smooth operation 

despite rapid load changes, showcasing its effectiveness in 

precise low-speed regulation. At high speeds, backstepping 

control showed enhanced stability and tracking accuracy 

compared to traditional control methods. It handled rapid 

speed transitions effectively without losing accuracy, ensuring 

smooth and efficient motor operation across various speeds. 

These results confirm that backstepping control provides 

robust performance at low and high speeds, making it ideal for 

applications requiring precise speed regulation across the 

entire speed range. Future work will conduct hardware-in-the-

loop (HIL) testing further to validate the performance of the 

backstepping control strategy.  

 

 
 

Figure 18. Performance comparison of control methods 

 

Figure 18 compares backstepping, MPC, and SMC control 

methods based on three key performance metrics: settling time 

(s), steady state error, and overshoot (%). The data highlights 

the superior performance of Backstepping control across all 

metrics. Specifically: 

Settling time: Backstepping achieves the shortest settling 

time, demonstrating faster convergence than MPC and SMC. 

Steady state error: Backstepping also shows the lowest 

steady-state error, ensuring greater accuracy in maintaining 

the reference speed. 

Overshoot: Backstepping outperforms MPC and SMC by 

maintaining the lowest overshoot percentage, indicating better 

stability under varying conditions. 

These improvements illustrate why Backstepping control is 

more efficient in systems requiring fast response, minimal 

error, and robust performance. 

HIL simulation offers a bridge between the simulation 

environment and real-world systems, allowing real-time 

validation of the control strategy. The PMSM model will be 

implemented on a real-time simulator, and control signals will 

be sent to a physical PMSM system to evaluate the 

performance of the backstepping controller under actual 

operational conditions. This testing will help assess the 

robustness and effectiveness of the control strategy, ensuring 

that the backstepping control method is suitable for 

deployment in practical applications, such as electric vehicle 

propulsion systems and industrial automation. 

One crucial aspect to consider when applying backstepping 

control to PMSM is the variation of motor parameters, 

particularly resistance and inductance. These parameters can 

change due to environmental factors such as temperature 

fluctuations or mechanical wear. 

The findings indicate that backstepping control outperforms 

MPC and SMC in key performance metrics. Specifically, 

backstepping control achieves a 44.44% improvement in 

settling time and a 33.33% improvement in disturbance 

rejection compared to MPC and SMC, respectively. This 

makes backstepping an ideal choice for applications requiring 

fast, accurate, and stable performance, such as PMSM motor 

control in industrial automation and electric vehicles. 

In this study, we analyzed the effect of these variations on 

system performance. The results showed that backstepping 

control remained stable despite significant changes in 

resistance and inductance. However, more considerable 

variations in motor parameters slightly affected the system's 

response time and steady-state accuracy. To mitigate these 

effects, adaptive techniques or real-time recalibration of the 

control gains (k1, k2, and k3) could be employed to ensure 

optimal performance even when motor parameters change. 

Additionally, backstepping control can be extended to 

ensure coordinated operation between multiple motors in 

multi-motor systems, such as those used in electric vehicles or 

industrial automation. The challenge lies in synchronizing the 

motor speeds and torques to ensure efficient system 

performance. Backstepping control can be applied to each 

motor individually, with the control laws designed to 

guarantee global system stability. This coordination is 

achieved by creating a distributed control strategy that ensures 

all motors operate within their stability limits while sharing the 

load. By integrating backstepping with a cooperative control 

approach, multi-motor systems can achieve improved 

performance, load distribution, and fault tolerance, even under 

dynamic operational conditions. 

This superior performance is attributed to the adaptive 

nature of the Backstepping approach, which effectively 

manages nonlinearities and external disturbances. 

Furthermore, backstepping's ability to maintain system 

stability under various operating conditions highlights its 

suitability for high-performance applications requiring precise 

speed and torque control. 

Table 2 clearly illustrates that Backstepping significantly 

improves transient and steady-state performance compared to 

the PI controller. While PI control is computationally more 

uncomplicated, it struggles with load variations and exhibits 

higher torque overshoot, making it less suitable for high-

precision applications.  In contrast, Backstepping control 

provides smoother responses, minimal steady-state errors, and 

robust adaptation to dynamic changes, making it ideal for 

advanced motor control applications such as electric vehicle 

propulsion and industrial automation. 

 

Table 2. Performance comparison between backstepping and 

PI control strategies 

 
Performance 

Metric 
Backstepping Control PI Control 

Settling Time 0.015s (50% faster) 0.03s 

Steady-State Error ≈ 0% ≈ 2% 

Torque Overshoot 
Minimal (Smooth 

response) 

Higher 

fluctuations 

Robustness to 

Load Variations 

High (Resistant to 

disturbances) 
Moderate 

Computational 

Complexity 

Higher (Requires more 

processing power) 

Lower (Simpler 

implementation) 
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6. CONCLUSION 

 

This study presented an advanced Backstepping control 

strategy for PMSM to enhance dynamic performance, 

robustness, and precision in speed and torque regulation. The 

proposed control methodology was validated through 

extensive MATLAB/SIMULINK simulations, demonstrating 

substantial improvements over conventional PI control. 

The results validate the effectiveness of Backstepping 

control, demonstrating a 50% improvement in settling time 

and a significant reduction in steady-state errors. The superior 

disturbance rejection capabilities make it an ideal choice for 

systems exposed to dynamic load variations, ensuring 

enhanced reliability and precision. Additionally, it provides 

smooth speed transitions and reversals with minimal current 

overshoot, reinforcing its effectiveness in handling nonlinear 

dynamics. The Lyapunov-based stability analysis further 

guarantees global system stability, making this technique well-

suited for high-performance industrial applications. 

While the Backstepping controller outperforms PI control 

in transient response and robustness, its practical 

implementation presents computational challenges due to 

increased processing demands. Future research should focus 

on developing adaptive and intelligent Backstepping control 

strategies that dynamically adjust to real-time variations in 

system parameters. Moreover, hardware-in-the-loop (HIL) 

testing and real-time implementation will be essential to 

validate the proposed approach beyond simulations and assess 

its feasibility in real-world applications. 

Another promising research direction involves integrating 

Backstepping with MPC to balance robustness with 

computational efficiency. Exploring hybrid control 

frameworks could further optimize performance, making 

Backstepping an even more viable solution for applications in 

electric vehicle propulsion, industrial automation, and 

precision motor control systems. 
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