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This study introduces a novel method for predicting earthquake parameters using radon 

as a precursor to address uncertainties and limitations in the dataset. The dataset comprises 

radon observation data from Yogyakarta, Indonesia, and earthquake records collected 

from a radon monitoring site and the USGS earthquake database from December 11, 2022, 

to August 8, 2023. The proposed method was trained on 80% of the dataset, which was 

utilized to generate a probability distribution for the Monte Carlo process to handle the 

constraints of limited precursor data. The results from the Monte Carlo simulations were 

then used to develop a model for predicting earthquake parameters. Experimental results 

demonstrate that the proposed method performs well within a monitoring station's radius 

of 300 and 400 km. At 300 km, the method outperforms in predicting magnitude, distance, 

and time, with RMSE values of 0.48, 60.60 km, and 57.85 hours, respectively. At 400 km, 

it achieves excellent performance with RMSE values of 0.61, 76.29 km, and 46.69 hours. 

This study shows that the proposed method outperforms benchmark methods in predicting 

earthquake parameters using radon gas as an earthquake precursor. 
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1. INTRODUCTION

Earthquake early prediction technology is an exciting 

innovation to develop, especially in Indonesia. Indonesia is at 

the meeting point of the world's active tectonic plates, causing 

high seismic activity. Earthquakes with large magnitudes have 

the potential to create damage that impacts the lives of affected 

communities. If not anticipated, infrastructure damage, chaos, 

and even loss of human life are examples of the impacts of 

natural disasters. Early prediction technology is built to 

provide earlier information before an earthquake occurs. With 

this technology, mitigation can be achieved to reduce the 

impact of the disaster. 

Before an earthquake occurs, several natural phenomena 

can be used as precursors. Potential earthquake precursors that 

can be used are the Earth’s magnetic field anomalies, radon 

gas emissions, and soil temperature. Radon is a naturally 

occurring radioactive gas found in Earth’s crust. Radon is a 

potential seismic precursor because it is released from the 

Earth’s cavity during a seismic event. The radon gas anomaly 

is internationally recognized as one of the seven seismic 

precursors [1]. One significant advantage is its ability to serve 

as a short-term pre-seismic indicator due to its rapid emission 

changes preceding earthquakes [2]. 

In comparison to other seismic precursors like 

electromagnetic anomalies and soil temperature, radon 

emissions provide a distinct geochemical signal directly linked 

to subsurface stress changes [3]. This geochemical nature 

allows radon monitoring to detect stress accumulations that 

may not produce immediate electromagnetic responses or soil 

temperature changes. Moreover, when used in conjunction 

with other precursors, radon data can enhance the robustness 

of earthquake forecasting models by providing 

complementary information [3]. The monitoring of radon gas 

concentrations for earthquake precursors has been established 

as a valuable approach given the abundance of this radioactive 

gas in groundwater with a short half-life, making it a suitable 

indicator for seismic activity [4]. However, the reliability of 

radon as a sole predictor is challenged by its sensitivity to 

environmental factors such as precipitation and atmospheric 

pressure changes, which can obscure seismic-related 

anomalies [5]. 

Radon anomalies observed before earthquakes have been a 

focal point of research, with findings suggesting that changes 

in radon release rates could be key precursory phenomena for 

earthquakes [6]. Previous studies have shown that changes in 

radon concentrations in groundwater and soil can be an early 

sign of an earthquake, because sudden changes in radon 

concentrations often occur before seismic events [7]. This is 

reinforced by many recent studies that showed changes in 

radon concentrations before major earthquakes [8]. Radon gas 

emissions can be a short-term pre-seismic precursor [9]. 

Radon concentration anomalies indicate impending 

earthquakes. This is reinforced by research that highlights the  

correlation between radon gas concentrations, 

meteorological data, hydrology, and seismic activity [10]. 
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Radon gas concentration fluctuations can also be used as 

medium and long-term indicators to reveal abnormal 

underground air changes before an earthquake occurs [2]. 

Radon-based earthquake precursors in Indonesia have also 

been reported [11, 12]. The phenomenon of anomalous radon 

gas concentrations before the 5.6 M earthquake on June 8, 

2023, south of Java Island, Indonesia, is shown in Figure 1. 

 

 
 

Figure 1. Radon concentration anomaly phenomenon 

 

Earthquake parameter prediction using artificial 

intelligence (AI) technology is being increasingly developed 

along with advances in the field of computing. In particular, 

the application of machine learning as a branch of AI has great 

potential for the development of prediction algorithms that can 

provide more accurate and faster results. However, one of the 

main challenges in applying machine learning to earthquake 

prediction is the requirement for a large amount of high-

quality data. These data are required for the model training 

process and for validating the accuracy of the algorithm. An 

earthquake is a natural event that occurs suddenly and in 

limited quantities; therefore, collecting sufficient data for 

machine learning is a challenge. In addition, specifically for 

data on radon gas concentration fluctuations, one of the 

precursors of earthquakes, this data collection takes a long 

time because significant changes in radon concentration occur 

only before an earthquake. 

Earthquake event simulation efforts have been conducted 

previously [13-15]. Simulations were conducted using the 

Monte Carlo method. This work modified the machine 

learning method using the Monte Carlo approach to predict 

earthquakes based on radon gas precursors. This study is 

expected to increase the accuracy of predictions, so that 

earthquake early warning technology can be created to benefit 

the community. This study modified the limited training data 

to develop a more accurate prediction model. This 

modification was performed by increasing the training data 

using the Monte Carlo method to produce variations close to 

real conditions. The training data generated from this method 

is then used to build a more robust prediction model. The 

prediction model was then subjected to an aggregation process 

to produce more reliable prediction results. 

The main contribution of this study is to solve the issue of 

limited datasets to improve the prediction accuracy of 

earthquake parameters based on radon gas precursors. This 

paper is divided into four sections. The first Section, the 

Introduction, discusses the background and objectives of the 

problem. The second Section, Related Work, provides a 

review of previous studies that have been conducted in 

earthquake prediction. Section Proposed Method describes the 

steps for implementing the Monte Carlo method and 

aggregation techniques. The fourth Section, Results and 

Discussion, presents the simulation results using radon-based 

earthquake precursor data and the analysis of these results. 

Finally, the Conclusion Section summarizes the main findings 

of this study. 

 

 

2. RELATED WORKS 

 

Several researchers have reported radon gas fluctuations 

before earthquakes. Muto et al. [16] conducted observations 

and concluded that there was a decrease in radon gas 

concentration before the 2018 North Osaka earthquake. 

Attanasio and Maravalle [17] also revealed a relationship 

between radon emissions and earthquakes in Italy. However, 

the use of this precursor to predict the magnitude of 

earthquakes is still a challenge. D'Incecco et al. [2] have also 

designed a real-time monitoring system for radon gas to study 

earthquake prediction. Efforts to utilize radon precursors for 

prediction were carried out by Feng et al. [18]. The EMD-

LSTM method was developed for the early detection of 

earthquakes using groundwater radon monitoring. The results 

showed that the developed method could predict earthquakes 

early. These studies have revealed the potential of radon as an 

important precursor in earthquake prediction. 

Radon concentration fluctuations can be classified into 

three types: single (sudden spike), multiple, and persistent 

[19]. Three types of radon concentration fluctuations can be 

used as earthquake precursors: single fluctuations, multiple 

fluctuations, and persistent fluctuations. Single fluctuations 

refer to situations in which data samples experience significant 

fluctuations in a relatively short period. These fluctuations 

were characterized by one prominent peak. In contrast, 

multiple fluctuations include sudden changes in the value that 

occur over a certain time interval. These fluctuations were 

characterized by several prominent peaks. Persistent 

fluctuations describe situations where sample data show wide 

fluctuations over a long period of time and consistently exceed 

abnormal thresholds. 

Machine learning methods have made significant 

contributions to earthquake prediction based on radon 

precursors. Mir et al. [20] analyzed the performance of several 

machine learning methods, such as boosted tree, bagged cart, 

linear model, support vector machine, and k-nearest neighbor, 

to predict anomalies in radon time-series data related to 

seismic activity. The results show that the boosted tree and 

support vector machine with radial kernel are better models for 

predicting anomalies in soil radon gas concentration during 

seismic activities. Zhu et al. [21] also used machine learning 

algorithms to detect anomalies in the hadrochemical data of 

hot springs to predict earthquakes based on radon 

concentration data. Wang et al. [22] explored the use of 

machine learning methods for seismic hazard evaluation. The 

exploration results showed that small earthquakes can help 

predict larger earthquakes. Jarah et al. [23] applied the 

Random Forest method to identify factors that precede 

earthquakes. Furthermore, Gitis and Derendyaev [24] and Deb 

et al. [25] discussed the use of machine learning methods for 

seismic hazard forecasting. These studies have shown that 

machine learning methods are popular for the early detection 

of radon-based earthquakes. 

The integration of machine learning with radon monitoring 

for earthquake prediction has yielded promising results. 

Tehseen et al. [26] mapped various expert systems for 

earthquake prediction and analyzed research evolution. Asim 

et al. [27] developed a Support Vector Regression and Hybrid 
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Neural Network (SVR-HNN) model for earthquake 

prediction. The results show that the SVR-HNN model 

enhanced earthquake prediction capabilities in the Hindukush, 

Chile, and Southern California regions. The main challenge in 

machine learning methods is the requirement of large amounts 

of data to train the model. The development of accurate 

earthquake prediction models is obstructed by the limited 

availability of radon-precursor datasets. Machine learning 

models require larger datasets to identify significant patterns 

associated with seismic events. 

Unfortunately, radon precursor datasets used for earthquake 

prediction are often limited. Researchers have used Monte 

Carlo to predict potential earthquake and tsunami hazards. 

Goda and Song [14] used Monte Carlo analysis simulation to 

assess the characteristics of earthquake sources in tsunami risk 

in the 2011 Tohoku tsunami, especially in the Rikuzentakata 

area, Japan. This study emphasized the importance of the 

uncertainty approach in tsunami risk models to make 

predictions more realistic and accurate. Muhammad et al. [15] 

used Monte Carlo simulation (MCS) techniques together with 

the Autoregressive Integrated Moving Average (ARIMA) 

method to find a significant relationship between radon gas 

anomalies and micro-seismic activity in the North Anatolian 

Fault Zone (NAFZ) of Turkey. The study showed a strong 

correlation between radon gas (Rn-222) concentration 

anomalies in the soil and micro-seismic activity around the 

fault zone. Meanwhile, Crowley and Bommer [13] used the 

Monte Carlo method to create multi-earthquake scenarios that 

generate ground motion based on seismicity models. The 

Monte Carlo method in the study provides advantages in 

modeling earthquake losses in more detail. The research shows 

that the Monte Carlo method can be used to overcome data 

limitations by simulating various scenarios using probability 

distributions. 

One of the challenges in earthquake prediction is the need 

for more representative data [28]. Predicting earthquakes 

using precursors faces challenges due to data limitations and 

uncertainties. In this study, the Monte Carlo method is 

proposed as an alternative solution to address issues related to 

uncertainty and dataset limitations. The application of the 

Monte Carlo method to enhance data quantity for earthquake 

prediction using machine learning has yet to be explored in 

previous studies. 

 

 

3. PROPOSED METHOD 

 

3.1 Monte Carlo Aggregating 

 

Fluctuations in radon gas concentrations at the radon 

monitoring station prior to the earthquake exhibited a sudden 

and significant increase. The gain at the monitoring station 

was defined as the ratio of the peak fluctuation value to the 

average radon gas concentration measured over the seven days 

preceding the fluctuation. This station gain value was used to 

predict the earthquake parameters. A visualization of the 

station gain is shown in Figure 2. Figure 2 shows that a single 

fluctuation occurred, which has been identified as a precursor 

to earthquakes [20]. The gain of the monitoring station is 

expressed by Eq. (1). 
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where, 

GS = Gain of the monitoring station, 

Rmax = Maximum Radon value (Bq/m3), 

Rt-i = Daily average Radon value (Bq/m3). 

In this study, an algorithm was designed to predict 

earthquake parameters using the gain of the Radon Monitoring 

Station. Owing to the random nature of earthquakes, with a 

distribution that is challenging to determine, the algorithm was 

required to account for this randomness and uncertainty. One 

approach employed was the use of a Monte Carlo simulation. 

A simulation was conducted to obtain all possible output 

values of the prediction. The illustration of the Monte Carlo 

approach is presented in Figure 3. 

 

 
 

Figure 2. Gain monitoring of radon concentration anomaly 

 

 
 

Figure 3. Monte Carlo approach in data training 
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The Monte Carlo method applied in this study utilized 

probability distributions derived from historical data of radon 

concentration anomalies and seismic activity. To ensure that 

the generated synthetic data closely aligned with observed 

patterns, an empirical distribution was selected, providing a 

more accurate representation of the variability present in real-

world data. Random samples were subsequently generated 

based on the empirical distribution to simulate variations in 

prediction errors of earthquake parameters. These samples 

were specifically designed to replicate the potential 

uncertainties inherent in earthquake prediction. The proposed 

method was trained on historical data, ensuring that the 

simulations accurately captured the relationships present in the 

observed data. This approach was implemented to ensure the 

robustness and relevance of the Monte Carlo simulations for 

earthquake prediction, grounding the methodology in 

empirical data and realistic patterns to enhance its reliability. 

The first step in the proposed method involved creating a 

probability distribution of prediction errors. At this stage, the 

prediction error (e) was obtained at this stage by measuring the 

difference between the output training data (Y train) and the 

predicted value using a prediction model with the input 

training data (X train). This probability distribution is then 

formed into a probability mass function (f(e)) expressed in Eq. 

(2). 
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P is the probability of a prediction error occurring, and i is 

an index with values ranging from 1 to m. The probability 

mass function was then used to create random prediction 

errors. The probability mass function is then used to form the 

cumulative probability function (F(e)), which is written as: 
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The random number U (Uniform(0,1)) determines the 

prediction error value. If the random number value is  𝑃1 ≤
𝑈 ≤ 𝑃1 + 𝑃2 , then the prediction error value is e2. The 

resulting prediction error was then added to the output training 

data (Y train). The prediction model is then created using the 

Y train, which has added errors. The prediction model can then 

predict the Y-test with the input X-test. 

Given that an earthquake is a random event with significant 

uncertainty in its prediction, the Monte Carlo approach was 

implemented to enhance prediction accuracy. Prediction 

errors, which were generated randomly through n iterations, 

produced n prediction models, allowing the prediction output 

to be approximated as the average of the predicted outputs 

from each model. By simulating all possible outcomes based 

on the probability distribution, the predictive capability was 

expected to improve. Based on this approach, the Monte Carlo 

Aggregating (MCA) method for earthquake prediction was 

developed. The Monte Carlo aggregation method is drawn in 

Figure 4. 

 
 

Figure 4. Monte Carlo Aggregating method 

 

3.2 Data collection 

 

The monitoring station was located in the Special Region of 

the Yogyakarta Province (lat. -7.7531627 S, long. 

110.4215244 E), Indonesia. This area is located in the central 

part of Java. Java Island is adjacent to the subduction zone at 

the bottom of the Indian Ocean along the southern coast of 

Java. Therefore, the island is prone to earthquakes and 

tsunamis. The sensor used is the ion chamber RD200 sensor, 

and radon data can be accessed at 

http://dataalamdiy.com/dataview/, whereas earthquake data 

can be accessed from 

https://earthquake.usgs.gov/earthquakes/map/. The data used 

were earthquake and radon gas data from December 11, 2022, 

to August 8, 2023. The data were collected based on the radius 

of the earthquake event at the radon monitoring station. The 

earthquake profile used in this study is summarized in Table 

1. 

 

Table 1. Earthquake profile 

 

 
Radius (km) 

200 300 400 

Magnitude (M) 

Min 4 4 4 

Max 5.9 7 7 

mean 4.72 4.62 4.59 

Distance of earthquake 

event from monitoring 

station (km) 

Min 92.87 92.87 92.87 

Max 197.21 285.85 393.19 

mean 155.12 218.88 256.47 

Earthquake occurrence 

time after Anomaly (hr) 

Min 3 2 3 

Max 164 168 168 

mean 72.33 87.06 88.282 

Number of Earthquake Events 12 32 46 

 

The earthquake data used in this study are presented in 

Table 1. This table provides a summary of seismic events 

based on three radial distances from the monitoring station: 

200, 300, and 400 km. The table shows that the minimum 

earthquake magnitude recorded was 4, with the maximum 

magnitude being 5.9 at a radius of 200 km and 7 at radii of 300 

km and 400 km. The distance of the closest earthquake event 

to the monitoring station was 92.87 km, while the maximum 

distance was 197.21 km at a radius of 200 km, 285.85 at a 

radius of 300 km and 393.19 km at a radius of 400 km. The 

time of occurrence of earthquakes after the anomaly with 

minimum time was recorded between 2 h and a maximum time 

of 168 h. Meanwhile, the number of earthquake events 

recorded was 12 at 200 km, 32 at 300 km, and 46 at 400 km.
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3.3 Evaluation and validation 

 

The prediction evaluation was performed using the RMSE 

metric [29]. RMSE is the square root of the mean of the 

squares of the prediction errors, which provides a measure of 

the error in native units. RMSE is expressed by: 

( )
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n

i i

i

Y Y
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N

=

−

=


 
(4) 

 

�̂�𝑖  is the predicted value, 𝑌𝑖  is the recorded earthquake 

parameter value and 𝑁 denotes the number of data points to be 

evaluated. Model validation was performed using a 5-fold 

cross-validation technique. The average RMSE is used to 

evaluate the performance of the proposed method. 

 

3.4 Baseline method 

 

One of the challenges in earthquake prediction using radon 

gas as a precursor is the lack of a representative radon 

precursor dataset and appropriate baseline methods that could 

help researchers compare their approaches and results [28]. To 

compare our study, we selected a baseline regression method 

from previous research based on performance results and data 

characteristics, enabling our approach to be applied to other 

studies. Random Forest has been previously used for 

earthquake prediction and produced good results [30]. In 

earlier studies, XGBoost [31] and linear regression [32] were 

also developed to predict earthquake events. 

 

 

4. SIMULATION RESULT AND DISCUSSION 

  

The proposed method has been implemented on a test 

dataset. The proposed method is then compared with the 

baseline method. This study compares several prediction 

methods' root mean square error (RMSE) values for three 

different parameters. The prediction parameters used are 

Magnitude (Mag), Distance (Dis), and Time for three different 

prediction radii: 200 km, 300 km, and 400 km. The methods 

compared are Linear Regression (LR), Random Forest (RF), 

XG-Boost (XGB), and MCA. The performance of the 

proposed methods is summarized in Table 2. 
 

Table 2. Earthquake prediction performance 
 

 
RMSE Prediction 

Linear Regression Random Forest XGBoost Monte Carlo Aggregating 

200 km Radius 

Mag (M) 0.61 0.49 0.66 0.59 

Dis (km) 28.86 13.25 26.85 28.16 

Time (Hour) 45.62 57.29 63.90 41.98 

300 km Radius  

Mag (M) 0.48 0.55 0.57 0.48 

Dis (km) 62.88 68.39 81.29 60.60 

Time (Hour) 60.06 65.20 72.60 57.85 

400 km Radius 

Mag (M) 0.63 0.67 0.78 0.61 

Dis (km) 77.84 100.13 107.97 76.29 

Time (Hour) 47.18 57.60 63.75 46.69 

 

  
(a) (b) 

 

Figure 5. Frequency distribution of earthquake magnitudes for 200 km radius (a) and 400 km radius (b) 
 

  
(a) (b) 

 

Figure 6. Frequency distribution of earthquake distance for 200 km radius (a) and 400 km radius (b) 
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(a) (b) 

 

Figure 7. Frequency distribution of earthquake time occurrence for 200 km radius (a) and 400 km radius (b) 

 

Table 2 presents the average RMSE value from the 5-fold 

cross-validation results for each algorithm in predicting the 

magnitude, distance, and time of an earthquake. At a 

prediction radius of 200 km, Monte Carlo Aggregating shows 

the lowest RMSE for distance prediction (41.98 km), 

outperforming Linear Regression (45.62 km), Random Forest 

(57.29 km), and XGBoost (63.90 km). From the magnitude 

prediction performance, the Random Forest method has the 

best performance with the lowest RMSE (0.49), while Monte 

Carlo Aggregating has an RMSE of 0.59. For event-time 

prediction, Monte Carlo Aggregating and linear regression 

show the best performance with an RMSE of 0.48. This 

proposed method is better than Random Forest (0.55) and 

XGBoost (0.57) in predicting the time of an earthquake. 

At a prediction radius of 300 km, the Proposed Method 

showed the lowest RMSE for earthquake occurrence time 

prediction (57.85 h), outperforming other prediction methods, 

namely Linear Regression (60.06 h), Random Forest (65.20 h), 

and XGBoost (72.60 h). This method also performs well for 

predicting earthquake occurrence distance with an RMSE of 

60.60 km. The Proposed Method can predict better than 

XGBoost (81.29 km), Random Forest (68.39 km), and linear 

regression (62.88 km). For magnitude prediction, the Proposed 

Method has an RMSE equal to Linear Regression (0.48) but 

still outperforms Random Forest (0.55) and XGBoost (0.57). 

For prediction at a 400 km radius, the Proposed Method 

outperforms all the comparative methods by achieving the 

lowest RMSE for prediction of time (46.69 h), magnitude 

(0.61), and distance (76.29 km). In earthquake magnitude 

prediction, the Proposed Method outperforms XGBoost 

(0.78), linear regression (0.63), and Random Forest (0.67) in 

terms of RMSE. In distance prediction, the Proposed Method 

outperformed XGBoost (107.97), linear regression (77.84), 

and Random Forest (100.13). 

In the 200 km prediction radius, the Random Forest method 

provides the best predictions for both magnitude and distance. 

Meanwhile, the proposed method achieved the most accurate 

predictions for the occurrence time. On the other hand, for the 

400 km radius, the proposed method demonstrates the best 

performance in predicting magnitude, distance, and 

occurrence time. Uncertainty is a key challenge in making 

predictions. To analyze the factors contributing to the 

uncertainty, the frequency distributions of the magnitude, 

predicted distance, and occurrence time are presented in 

Figures 5-7. 

Figure 5 shows the distribution of earthquake magnitudes 

for two different radii: 200 km and 400 km. From this 

perspective, the difference between these distributions reveals 

important insights into the predictability and variability of the 

earthquake magnitudes within each radius. For the 200 km 

radius, the magnitudes range in the ranges of 4.0-4.5, 5.0-5.5 

and 5.5-6.0. 

Figure 5(a) shows that most earthquakes occurred with 

magnitudes between 4.0-4.5. However, the 400 km radius 

shows a wider range of magnitudes, ranging from 4.0 to 7.0. 

However, the distribution shows that most earthquakes occur 

between 4.0 and 5.0. The bin occupancy of the histogram 

shows the distribution of the magnitudes that occur, so it can 

be seen that in Figure 5(b) has a wider range of earthquake 

magnitudes than the distribution of earthquake magnitudes in 

Figure 5(a). The uncertainty increases because the probability 

of the earthquake magnitude increases. Monte Carlo 

Aggregating in magnitude prediction at a radius of 400 km is 

better to several comparison methods indicating that the 

Monte Carlo Aggregating method can overcome the problem 

of uncertainty than the comparison methods. 

An analysis of the prediction distance distribution was also 

conducted to determine the effect of uncertainty on the 

prediction distance. Figure 6 shows the distribution of 

earthquake distances for radii of 400 km and 200 km from the 

monitoring station. The histogram uses a bin width of 25 km. 

In the distribution of the radius distance of 400 km in Figure 

6(b), the number of filled bins was greater than the number of 

bins in Figure 6(a). This condition indicates that the variability 

in Figure 6(b) is higher than that in Figure 6(a) with respect to 

the earthquake distance. Variability was also observed in the 

height of the bins in Figure 6(b). This condition increases the 

uncertainty in predicting the distance between earthquake 

events. In the distance prediction test, the Monte Carlo 

Aggregating method exhibited a better prediction performance 

than the comparison method. From this test, it can be observed 

that the Monte Carlo Aggregating method overcomes the 

problem of uncertainty in distance prediction. 

Figure 7 shows the distribution of earthquake occurrence 

times for radii of 200 km and 400 km. The distribution 

provides insight into the predictability of earthquake 

occurrence time for each radius. For the distribution, the 

histogram used a bin width of 24 h. Figure 7(b) shows that the 

bins are more occupied than those in Figure 7(a). Figure 7(b) 

also shows a relatively flat frequency of occurrence compared 

to that in Figure 7(a). Thus, the uncertainty in the prediction of 

the occurrence time for a radius of 400 km was higher than 

that for a radius of 200 km. The Monte Carlo Aggregating 

method shows that this method can overcome the uncertainty 
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in earthquake time prediction. 

The main problems in earthquake prediction are data 

limitations and uncertainties. To ensure that the Monte Carlo 

Aggregating method can solve the problem of data limitation, 

a comparison is made between the Monte Carlo Aggregating 

and Bootstrap Aggregating methods. The Bootstrap method is 

commonly used for anticipating uncertainty. The comparison 

is made using a benchmark function written as: 

 
2 1  y x noise= + +  (5) 

 

The data used as input (𝑥) were random numbers from a 

random seed. The 𝑛𝑜𝑖𝑠𝑒  was generated using random 

numbers from random seeds. The obtained input and output 

data were divided into 80% for training and 20% for testing. 

The quantity of data used varied to determine the performance 

of the method on varying amounts of data. The performance 

of the Monte Carlo aggregation method is shown in Figure 8. 

 

 
 

Figure 8. Comparison of Monte Carlo Aggregating and 

Bootstrap Aggregating (Bagging) 

 

Figure 8 illustrates a comparison of the performance of two 

prediction methods, Bagging and Monte Carlo Aggregating, 

based on their Mean Squared Error (MSE) across varying data 

volumes. Both methods display a general trend of decreasing 

MSE as the amount of data increases, indicating enhanced 

prediction accuracy with larger datasets. For very small 

datasets (5 and 10 data points), Monte Carlo Aggregating 

outperforms Bagging by achieving a significantly lower Mean 

Squared Error (MSE). This advantage results from its ability 

to utilize probabilistic distributions to handle uncertainty, 

whereas Bagging tends to over fit due to its Bootstrap 

sampling, resulting in less diverse models. For moderate 

datasets (15 and 20 data points), Bagging outperforms Monte 

Carlo Aggregating with a lower MSE, attributed to its 

ensemble modeling capability, which reduces prediction 

variability. However, Monte Carlo Aggregating may struggle 

to represent distributions accurately. For larger datasets (50 

and 100 data points), both methods perform well with low 

MSE, but Monte Carlo Aggregating consistently achieves 

slightly lower MSE than Bagging, despite the marginal 

difference. 

These results indicate that Monte Carlo Aggregating 

performs well with very small datasets due to its strength in 

managing uncertainty, while Bagging is more effective for 

moderate datasets. For larger datasets, both methods 

demonstrate reliability, although Monte Carlo Aggregating 

retains a slight advantage in prediction accuracy. The strong 

performance of the Monte Carlo Aggregating method suggests 

that it could serve as a viable alternative for developing 

earthquake early warning systems in scenarios with sparse or 

incomplete data. 

Based on the experimental results, it was found that the 

proposed method could predict earthquake parameters better 

than several other methods. The data limitations were 

successfully overcome using the proposed method. It has been 

proven that the Monte Carlo Aggregating method can predict 

data better than the Bootstrap Aggregating method on limited 

data. The success of the proposed method in predicting the 

uncertainty input shows that it can overcome the problem of 

uncertainty in making predictions. 

Based on these findings, this study is expected to 

significantly contribute to the development of early earthquake 

detection technology based on radon gas precursors. Further 

research should focus on developing more sophisticated 

learning methods for the proposed algorithm to improve the 

accuracy and reliability of the predictions. The current method 

cannot adapt to and learn when more data are available. The 

actual probability distribution may not be accurately 

represented when the data are limited. This leads to the 

potential use of an incorrect distribution, thereby reducing 

prediction accuracy. Adaptive learning methods that 

effectively utilize an increase in the amount of precursor data 

are crucial. With an increase in data over time, the algorithm 

is expected to learn more complex patterns and gradually 

improve predictions. Thus, in the future, early earthquake 

detection technology based on radon gas precursors could 

become a reliable tool for disaster mitigation. 

 

 

5. CONCLUSION 

 

From the research conducted, it is proven that the proposed 

Monte Carlo Aggregating algorithm for dataset limitation in 

earthquake parameter prediction performs better than several 

other methods. This algorithm can provide more accurate 

predictions, which is often the main obstacle to earthquake 

prediction. The findings demonstrate the performance of 

Monte Carlo Aggregating, particularly in managing 

uncertainty and achieving high accuracy with limited data. 

This approach offers significant potential for enhancing 

earthquake early warning systems, especially in scenarios with 

sparse or incomplete data monitoring. Moreover, this method 

accelerates the development of earthquake early warning 

systems without requiring prolonged radon observation 

periods, particularly in the Java Island region. By providing a 

reliable method for modeling and predicting earthquake 

parameters, this study contributes to mitigating the impacts of 

earthquake disasters and improving preparedness through 

timely and accurate warnings. 

At a prediction radius of 200 km, the proposed method 

shows the best performance in time predictions, with RMSE 

values of 41.98 hours, respectively, compared to other 

methods. Meanwhile, the Random Forest has the lowest 

RMSE value (0.49) in the magnitude parameter and 13.5 km 

in distance prediction. For a prediction radius of 300 km, the 

proposed method also shows better performance in magnitude, 

distance, and time predictions with RMSE values of 0.48, 

60.60 km and 57.85 hours, respectively. At a prediction radius 

of 400 km, the proposed method remains better in magnitude, 

distance, and time prediction, with RMSE values of 0.61, 

76.29 km and 46.69 hours, respectively. 

365



 

However, additional research is necessary to enhance the 

performance of this algorithm further. The current method 

cannot adapt to and learn when more data are available. The 

actual probability distribution may not be accurately 

represented when the data are limited. This leads to the 

potential use of an incorrect distribution, thereby reducing 

prediction accuracy. Future research should focus on 

developing an adaptive process that enables the algorithm to 

improve its prediction accuracy when more data are collected. 

With this adaptive component, the algorithm is expected to be 

more responsive to changes in the data patterns, resulting in 

greater accuracy over time. This advancement will elevate 

Monte Carlo Aggregating-based earthquake prediction 

technology, significantly mitigating natural disaster risk. 

 

 

ACKNOWLEDGMENT 

 

This research is supported by Universitas Gadjah Mada 

through Program Rekognisi Tugas Akhir 2024 (Grant No.: 

5286/UNI.PI/PT.01.03/2024). 

 

 

REFERENCES 

 

[1] Xie, L.F., Zou, S.L., Li, X.Y., Hong, C.S., et al. (2018). 

Effect of ultrasonic treatment on radon exhalation from 

porous media: An experimental case study. 

Sustainability, 10(9): 3005. 

https://doi.org/10.3390/su10093005 

[2] D’Incecco, S., Petraki, E., Priniotakis, G., Papoutsidakis, 

M., Yannakopoulos, P., Nikolopoulos, D. (2021). CO2 

and radon emissions as precursors of seismic activity. 

Earth Systems and Environment, 5(3): 655-666. 

https://doi.org/10.1007/s41748-021-00229-2 

[3] Nikolopoulos, D., Cantzos, D., Alam, A., Dimopoulos, 

S., Petraki, E. (2024). Electromagnetic and radon 

earthquake precursors. Geosciences, 14(10): 271. 

https://doi.org/10.3390/geosciences14100271 

[4] Masruoğlu, G., Altun, C., Şentürk, M.Z., Içhedef, M., 

Taşköprü, C. (2023). Variation of soil gas 222Rn/220Rn 

concentration ratios along the Pınarbaşı segment of İzmir 

fault. Journal of Radioanalytical and Nuclear Chemistry, 

332(11): 4739-4743. https://doi.org/10.1007/s10967-

023-08910-8 

[5] Chowdhury, S., Guha Bose, A., Das, A., Deb, A. (2024). 

A study of some research work on soil radon 

concentration and ionospheric total electron content as 

earthquake precursors. Journal of Radioanalytical and 

Nuclear Chemistry, 333(4): 1633-1659. 

https://doi.org/10.1007/s10967-024-09409-6 

[6] Lee, J.K. (2022). Basic study on the observation of 

earthquake precursor manifestation using radon 

variability in groundwater. Crisisonomy, 18(6): 39-51. 

https://doi.org/10.14251/crisisonomy.2022.18.6.39 

[7] Zhou, Z., Tian, L., Zhao, J., Wang, H., Liu, J. (2020). 

Stress-related pre-seismic water radon concentration 

variations in the Panjin observation well, China (1994-

2020). Frontiers in Earth Science, 8: 596283. 

https://doi.org/10.3389/feart.2020.596283 

[8] Katsanou, Κ., Stratikopoulos, Κ., Zagana, Ε., Lambrakis, 

N. (2010). Radon changes along main faults in the 

broader Aigion region, NW Peloponnese. Bulletin of the 

Geological Society of Greece, 43(4): 1726-1736. 

https://doi.org/10.12681/bgsg.11358 

[9] Mehmood, T., Awais, M. (2021). Tukey control chart for 

radon monitoring in relation to the seismic activity. 

Mathematical Problems in Engineering, 2021(1): 

9999500. https://doi.org/10.1155/2021/9999500 

[10] Aich, A. (2022). Preliminary studies on soil radon 

activity at geothermal hotspot of Bakreswar-Tantloi. IOP 

SciNotes, 3(2): 025201. https://doi.org/10.1088/2633-

1357/ac78ac 

[11] Martha, A.A., Prayogo, A.S., Nugraha, J., Pakpahan, S., 

Riama, N.F. (2021). Network of radon gas concentration 

monitoring of research and development centre–BMKG 

for earthquake precursor research in Indonesia. IOP 

Conference Series: Earth and Environmental Science, 

873(1): 012006. https://doi.org/10.1088/1755-

1315/873/1/012006 

[12] Pratama, T.O., Sunarno, S., Hawibowo, S., Waruwu, 

M.M., Wijaya, R. (2021). Deterministic system for 

earthquake early warning system based on radon gas 

concentration anomaly at Yogyakarta Region-Indonesia. 

AIP Conference Proceedings, 2320(1): 040003. 

https://doi.org/10.1063/5.0037683 

[13] Crowley, H., Bommer, J.J. (2006). Modelling seismic 

hazard in earthquake loss models with spatially 

distributed exposure. Bulletin of Earthquake 

Engineering, 4: 249-273. 

https://doi.org/10.1007/s10518-006-9009-y 

[14] Goda, K., Song, J. (2016). Uncertainty modeling and 

visualization for tsunami hazard and risk mapping: A 

case study for the 2011 Tohoku earthquake. Stochastic 

Environmental Research and Risk Assessment, 30: 2271-

2285. https://doi.org/10.1007/s00477-015-1146-x 

[15] Mohammed, D.H.K., Külahcı, F., Muhammed, A. 

(2021). Determination of possible responses of Radon-

222, magnetic effects, and total electron content to 

earthquakes on the North Anatolian Fault Zone, Turkiye: 

An ARIMA and Monte Carlo Simulation. Natural 

Hazards, 108(3): 2493-2512. 

https://doi.org/10.1007/s11069-021-04785-8 

[16] Muto, J., Yasuoka, Y., Miura, N., Iwata, D., et al. (2021). 

Preseismic atmospheric radon anomaly associated with 

2018 Northern Osaka earthquake. Scientific Reports, 

11(1): 7451. https://doi.org/10.1038/s41598-021-86777-

z 

[17] Attanasio, A., Maravalle, M. (2016). Some 

considerations between radon and earthquakes in the 

crater of L’Aquila. Natural Hazards, 81: 1971-1979. 

https://doi.org/10.1007/s11069-016-2169-4 

[18] Feng, X., Zhong, J., Yan, R., Zhou, Z., Tian, L., Zhao, J., 

Yuan, Z. (2022). Groundwater radon precursor 

anomalies identification by EMD-LSTM model. Water, 

14(1): 69. https://doi.org/10.3390/w14010069 

[19] Qiao, Z., Wang, G., Fu, H., Hu, X. (2022). Identification 

of groundwater radon precursory anomalies by critical 

slowing down theory: A case study in Yunnan Region, 

Southwest China. Water, 14(4): 541. 

https://doi.org/10.3390/w14040541 

[20] Mir, A.A., Çelebi, F.V., Alsolai, H., Qureshi, S.A., et al. 

(2022). Anomalies prediction in radon time series for 

earthquake likelihood using machine learning-based 

ensemble model. IEEE Access, 10: 37984-37999. 

https://doi.org/10.1109/access.2022.3163291 

[21] Zhu, R., Yang, F., Zhou, X., Tian, J., et al. (2024). 

Anomaly detection using machine learning in 

366



 

hydrochemical data from hot springs: Implications for 

earthquake prediction. Water Resources Research, 60(6): 

e2023WR034748. 

https://doi.org/10.1029/2023wr034748 

[22] Wang, X., Zhong, Z., Yao, Y., Li, Z., Zhou, S., Jiang, C., 

Jia, K. (2023). Small earthquakes can help predict large 

earthquakes: A machine learning perspective. Applied 

Sciences, 13(11): 6424. 

https://doi.org/10.3390/app13116424 

[23] Jarah, N.B., Alasadi, A.H.H., Hashim, K.M. (2023). 

Earthquake prediction technique: A comparative study. 

IAES International Journal of Artificial Intelligence, 

12(3): 1026-1032. 

https://doi.org/10.11591/ijai.v12.i3.pp1026-1032 

[24] Gitis, V.G., Derendyaev, A.B. (2019). Machine learning 

methods for seismic hazards forecast. Geosciences, 9(7): 

308. https://doi.org/10.3390/geosciences9070308 

[25] Deb, A., Gazi, M., Barman, C. (2016). Anomalous soil 

radon fluctuations–signal of earthquakes in Nepal and 

eastern India regions. Journal of Earth System Science, 

125: 1657-1665. https://doi.org/10.1007/s12040-016-

0757-z 

[26] Tehseen, R., Farooq, M.S., Abid, A. (2020). Earthquake 

prediction using expert systems: A systematic mapping 

study. Sustainability, 12(6): 2420. 

https://doi.org/10.3390/su12062420 

[27] Asim, K.M., Idris, A., Iqbal, T., Martínez-Álvarez, F. 

(2018). Earthquake prediction model using support 

vector regressor and hybrid neural networks. PloS ONE, 

13(7): e0199004. 

https://doi.org/10.1371/journal.pone.0199004 

[28] Al Banna, M.H., Taher, K.A., Kaiser, M.S., Mahmud, 

M., Rahman, M.S., Hosen, A.S., Cho, G.H. (2020). 

Application of artificial intelligence in predicting 

earthquakes: State-of-the-art and future challenges. IEEE 

Access, 8: 192880-192923. 

https://doi.org/10.1109/ACCESS.2020.3029859 

[29] Berhich, A., Belouadha, F.Z., Kabbaj, M.I. (2023). An 

attention-based LSTM network for large earthquake 

prediction. Soil Dynamics and Earthquake Engineering, 

165: 107663. 

https://doi.org:/10.1016/j.soildyn.2022.107663 

[30] Agarwal, N., Arora, I., Saini, H., Sharma, U. (2023). A 

novel approach for earthquake prediction using random 

forest and neural networks. EAI Endorsed Transactions 

on Energy Web. https://doi.org/10.4108/ew.4329 

[31] Jena, R., Pradhan, B., Al-Amri, A., Lee, C.W., Park, H.J. 

(2020). Earthquake probability assessment for the Indian 

subcontinent using deep learning. Sensors, 20(16): 4369. 

https://doi.org/10.3390/s20164369 

[32] Khan, T., Rabbani, M., Siddiquee, S.M.T., Majumder, A. 

(2019). An innovative data mining approach for 

determine earthquake probability based on linear 

regression algorithm. In 2019 IEEE International 

Conference on Electrical, Computer and Communication 

Technologies (ICECCT), Coimbatore, India, pp. 1-4. 

https://doi.org/10.1109/ICECCT.2019.8869286 

 
 

NOMENCLATURE 

 

Gs Gain of the monitoring station 

Rmax Maximum Radon value (Bq/m3) 

Rt-i Daily average Radon value (Bq/m3) 

e Prediction error 

f(e) Probability mass function 

P Probability 

i index  

F(e) Cumulative probability function 

U Random number Uniform 

n Number of itteration 

N Number of data 

�̂�𝑖  Predicted value 

𝑌𝑖  Recorded earthquake parameter value 
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