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The widespread use of cloud computing techniques in many applications renders cloud 

computing environments extremely vulnerable to malware infections and novel attacks. 

The flexibility, scalability, and elasticity cloud computing provide add to the difficulty of 

detecting malicious software in cloud computing environments. In this study, we analyze 

malware attacks that infect cloud computing environments. Moreover, we elaborate on 

different malicious software detection approaches in cloud computing environments. 

Furthermore, we evaluate these approaches by considering other perspectives (i.e., 

malware detection accuracy and deployed analytical techniques). More than 50% of the 

approaches of the malware detection papers (in this survey) used deep learning techniques 

in cloud computing environments. In addition, the majority of authors preferred to use 

dynamic malware analysis. Deep learning and dynamic analysis are powerful, 

complementary approaches in malware detection. Dynamic analysis observes the runtime 

behavior of programs, such as API calls, file operations, and network activity, to detect 

malicious patterns in controlled environments like sandboxes. When integrated with deep 

learning, this behavioral data can be analyzed more effectively using advanced models 

like RNNs or CNNs. Deep learning enhances dynamic analysis by identifying complex, 

hidden patterns in malware behavior and adapting to zero-day threats. This combination 

provides a robust defense mechanism, particularly in cloud computing, where large-scale 

and real-time detection capabilities are critical. The rates of detection are vacillated from 

79% to 99%.  
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1. INTRODUCTION

Cloud computing offers diverse resources and services such 

as tools, connectivity, servers, and data storage over the 

Internet. In addition, cloud computing environments provide 

the capability to remotely use applications and outsource data 

storage. Consequently, there is no need for a permanent site to 

gain access to cloud content. In addition, cloud computing can 

fully or partially offload remote user devices. If an application 

is fully executed inside the cloud on the remote server side, 

this is called full offloading. The entire work was moved to 

powerful remote computing clusters. Otherwise, if an 

application is executed partially inside the cloud, it is known 

as partial offloading. In this case, the remaining part runs on 

the user device. The COVID-19 pandemic (started in 2020) 

mandates businesses to accelerate the digital transformation 

process and use cloud capabilities to sustain their business 

continuity objective. However, with the lack of physical 

access to applications and data in cloud computing 

environments, security issues (i.e., data and applications) 

increase in addition to platform security.  

The cloud computing market continues to grow according 

to Grand View Research [1]. In 2023, the global market size 

of cloud computing was predictable at USD 602.31 billion. 

Additionally, the global cloud computing market size is 

predicted to rise at a CAGR (Compound Annual Growth Rate: 

the mean annual growth rate of an investment over a specified 

period longer than one year) of 21.2% from 2024 to 2030 [1]. 

Owing to various factors, the cloud-computing market is on a 

fast track.  

Digital conversion between industries (i.e., the increasing 

diffusion of mobile devices and the Internet worldwide and the 

growing use of big data) are the main factors affecting market 

growth. Despite the progress in cybersecurity over the last two 

decades, statistics have shown a significant increase in 

malicious software activity and sophisticated frequent attacks. 

According to a 2023 report [2] by Check Point Research, 

cloud-based attacks have increased by 45% year-over-year. 

Cloud misconfigurations, insecure APIs, and exploitation of 

cloud storage vulnerabilities are common attack vectors. 

Additionally, McAfee's 2023 Cloud Security Report [3] found 

that 77% of organizations reported experiencing a cloud 

security incident last year, with malware being a prominent 

part of these attacks. 

Cloud computing technology is a trending and growing 

technology in the Information and Communications 

Technology (ICT) industry. The primary goal of cloud 

computing is to appropriately deliver services to legitimate 
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users. In cloud-computing environments, services are 

established and presented only on the cloud, and users can use 

them according to their requirements. Cloud computing offers 

numerous services to users, such as pay-per-use, low costs, 

and flexibility. Cloud users can use these services without 

purchasing or storing them in their internal memories. 

Cloud computing comprises three basic models. These 

models are based on the type of service provided by the cloud 

to the users [4]. There are Platform as a Service (PaaS), 

Software as a Service (SaaS), and Infrastructure as a Service 

(IaaS), as illustrated in Figure 1. In SaaS, software or 

applications are hosted by a third-party provider for on-

demand access. The PaaS model provides a platform and an 

environment for users to develop applications or services. In 

the IaaS model, resources and a virtualized computing 

machine are provided to a user to minimize the cost of 

purchasing their server and data center [5]. 

The cloud computing architecture comprises of five 

components: infrastructure, servers, platforms, applications, 

and clients. The National Institute of Standards and 

Technology (NIST) [6] defines five important cloud-

computing characteristics: on-demand self-service, broad 

network access, resource pooling, measured service, and rapid 

elasticity. In addition, cloud computing is designated as a 

dynamic and easily extended platform that offers users 

transparent virtualized resources through the internet. 

Cloud computing has four deployment models [4]: private, 

public, hybrid, and community. Public clouds have a server 

provider that owns and manages physical infrastructure. 

Private clouds have a specific organization that owns and 

operates the infrastructure. Community clouds have a 

consortium of organizations that own and manage their 

physical infrastructure. Hybrid clouds consist of a mixture of 

three previous models. 

Cloud computing offers many services [6] to its users, such 

as broad network access, on-demand self-service, resource 

pooling, scalability, agility, measured service, pay-per-use 

cost, location, device independence, easy maintenance, 

efficiency, reliability, application programming interface 

(API), and productivity. 

Productivity increases as many users work on the same data 

simultaneously instead of waiting for data to be saved and 

emailed. In addition, time will be saved because information 

does not need to be re-entered, and users will not need to install 

applications or software on their computers. 

Malware detection in cloud computing environments is of 

paramount importance because of the critical role that clouds 

play in storing, processing, and transmitting vast amounts of 

sensitive data to businesses and individuals worldwide. The 

shared and distributed nature of cloud resources makes them 

attractive targets for cybercriminals seeking to exploit 

vulnerabilities, steal data, disrupt operations, or launch further 

attacks. A single compromised cloud instance can potentially 

affect multiple tenants, leading to data breaches, financial 

losses, reputational damage, and compliance violations. Cloud 

environments also host mission-critical applications and 

services, which, if disrupted, can cause significant operational 

downtime for businesses. In addition, the scalability and 

dynamic nature of cloud platforms, with frequent uploads, 

downloads, and virtual machine migrations, increase the risk 

of malware spreading rapidly if undetected. Modern malware 

often employs sophisticated techniques, such as obfuscation, 

encryption, and polymorphism, making detection challenging 

without advanced methodologies. Effective malware detection 

solutions are vital for real-time threat analysis, the detection of 

zero-day attacks, and the prevention of the lateral spread of 

malicious entities across cloud networks. These solutions 

ensure not only the security and privacy of data, but also 

uphold trust in cloud services, enabling businesses to innovate 

and operate without fear of cyber threats. As cloud adoption 

continues to grow, robust malware detection mechanisms are 

becoming indispensable for maintaining the integrity, 

availability, and confidentiality of cloud-based systems.  

Although malware attacks are a crucial concern in cloud 

security, no previous study has discussed malware detection 

approaches in cloud computing environments or compared 

them to determine the most effective strategy. This study aims 

to improve current methods for malware detection in cloud 

computing environments. In this study, we discuss malware 

attacks in cloud computing environments. In addition, we 

provide a survey of different malware detection methods used 

in cloud computing environments. As a result, more than 50% 

of the authors of the malware detection papers (in this survey) 

use deep learning methods in cloud computing environments. 

In addition, dynamic malware analysis is favored by most 

authors because of its benefits, as mentioned in Section 3. The 

detection rate fluctuated between 79% and 99%. In the next 

section, we discuss cloud computing vulnerabilities and 

malware attacks. In Section 3, we describe different malware 

detection methods. Section 4 surveys malware detection 

approaches used in cloud computing environments. Finally, 

conclusions are presented in Section 5. 

 

 
 

Figure 1. Cloud computing models 
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2. MALWARE ATTACKS AGAINST CLOUD 

COMPUTING 

 

Cloud technology has introduced new concepts, such as 

centralized shared data and resource sharing. This creates new 

security challenges. In addition, direct access or indirect usage 

of cloud infrastructure increases cloud threats and 

vulnerabilities. Some of the new threats to cloud computing 

environments are as follows:  

Vulnerabilities of Exploited Systems: These vulnerabilities 

are not new; however, they have become a more significant 

concern, particularly after multi-tenancy in cloud computing. 

New attack surfaces are created because memory, databases, 

and other resources are shared among users close to each other. 

Even if traditional security mechanisms can mitigate these 

attacks, they can only partially solve them. 

Configuration vulnerabilities: Many VMs have the same 

configuration in a cloud environment; therefore, they have 

similar misconfigurations and vulnerabilities. This increases 

the ability of many VMs to become infected using malware 

and gives attackers a tremendous opportunity to target systems 

in cloud-computing environments. 

Threats by Insiders: This malware infection method. This 

could occur through multiple methods, such as previous or 

current employees. The objectives range from data theft to 

vengeance.  

Easily Compromised Credentials: This threat can occur in 

different ways, such as weak passwords, open passwords, or 

embedded passwords in source code.  

Malware can be considered a high-risk threat when 

performing cyberattacks. Malware refers to malicious 

software designed to intentionally harm or disrupt digital 

assets, stealing, or damaging them. Malware writers use 

evasive techniques to introduce malware files into a victim's 

system. There are various types of malware. They can be 

classified according to their intent and written code, such as 

viruses, worms, rootkits, backdoors, and ransomware. 

Cloud infrastructure [4-11] has become increasingly 

susceptible to malware and novel attacks. Cloud malware 

injection    [12  ]is a threat injected into a victim's Vi ritual 

Machine (VM) to manipulate it. Many VMs have the same 

configuration because of automatic provisioning in cloud 

computing. Thus, if an attacker injects malware into one VMs 

and compromises it, it is most likely to compromise other VMs 

with the same configuration. Additionally, botwareware can 

be injected to create a botnet that benefits from many available 

VMs. Another scenario of Cloud Malware Injection Attack) 

[11-13] is when an attacker injects a malicious virtual machine 

or malicious services into the cloud environment. In this attack, 

the attacker implements a malicious module, such as SaaS, 

PaaS, or VM, such as IaaS, and attempts to place it in the cloud 

system. Then, he/she pretends to be a valid service for cloud 

systems, and it looks like the deployment of new services, such 

as current services. If the attacker penetrates the system, the 

cloud routinely redirects the user request to the malicious 

service implementation, so that the injected code starts to 

execute. Attackers often use this method to target the cloud 

service layers. 

Attackers are continuously creating new malicious software 

such as: 

Hypercall Attacks: An attacker's virtual machine exploits 

the hypercall handler of the victim's Virtual Machine Manager 

(VMM). This may give the attacker the ability to run arbitrary 

code. 

Man in the Middle (MITM): An attacker overhears the 

changing messages between two communicators. 

Distributed Denial of Service (DDoS)attacks: A large 

number of queries to a service that can be performed using a 

botnet to shut down the service or to increase its latency. 

Hypervisor denial of service (DoS): An attacker exploits 

design flaws using numerous hypervisor resources.  

Hyperjacking: An attacker attempts to gain control over a 

VM hypervisor to access an entire machine. 

Co-location: An attacker wants to perform cross-side-

channel attacks by finding the location of the virtual machine 

host and the virtual machine alongside it.  

Live Migration Attack: As virtual machines can be migrated 

between cloud services, an attacker can abuse the service to 

generate several migrations, which may lead to DoS attacks. 

Thus, increasing the vulnerability surface can be an entry 

point for a considerable amount of malware, which can also be 

the initial step in performing more complicated attacks such as 

DDoS. Therefore, malware detection methods in the cloud 

have become essential. 

 

 

3. MALWARE DETECTION APPROACHES 

 

Malware is one of the main threats to information security. 

A malware is a type of malicious software. It is any software 

that executes malicious activities on a victim's machine, with 

or without the victim's knowledge. Different types of 

malwares exist, such as viruses, worms, trojans, ransomware, 

rootkits, and backdoors. 

Malware detection identifies malware in a system and then 

examines the malware file to understand its capabilities and 

the changes made in the system. Several approaches including 

traditional and new techniques have been proposed for 

malware detection. 

There are several types, behaviors, and levels of malware 

risk, and evasion techniques have rapidly changed to deceive 

detection systems. Therefore, modern detection methods and 

mechanisms must be employed. Having more than one 

security software to professionally deal with malware is 

unfeasible. 

 

3.1 Static analysis, dynamic analysis, and hybrid analysis 

 

The proposed malware detection methods use one of three 

techniques–static, dynamic, or hybrid analysis–to extract 

features used in different methods. Malware analysis is the 

process of examining malware files in order to understand 

their capabilities and system changes. 

 

3.1.1 Static analysis 

This involves analyzing samples without executing them 

[14, 15]. A sample was broken down in a static analysis using 

reverse engineering tools and techniques to reconstruct the 

source code. Static analysis can be performed using a program 

analyzer, debugger, and disassembler. 

There are two main approaches to the static analysis. In the 

first step, an analysis is performed on a binary file, such as 

extracting features by collecting parts from the binary file (n-

grams). In the second approach, the binary file is disassembled 

or reverse-engineered using disassemblers to acquire actual 

code. Malware detection occurs in real code using different 

techniques. Various machine learning methods can then be 

used. 
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Static analysis is inexpensive, fast, and very effective; 

however, it can be avoided using sophisticated malware, for 

example, by embedding syntactic code errors that could 

confuse disassemblers. Additionally, polymorphic malware 

can change and evolve while saving code semantics. Static 

analysis is complex when malware analysts deal with 

polymorphisms and encrypted, packed, or obfuscated samples. 

Many malware programs use obfuscation, where binary code 

is unreadable or challenging to understand. Packing can be 

used to avoid static analysis approaches or malware can be 

modified using a run-time encryption program. A dynamic 

analysis technique is necessary because of the difficulties 

associated with statically analyzing sophisticated malware. 

 

3.1.2 Dynamic analysis 

The dynamic analysis process involves executing 

instructions from a malicious sample file in a simulated 

environment and analyzing the behavior or actions of the 

application during execution [14, 15]. This can be achieved by 

monitoring function calls, analyzing function parameters, 

instruction tracing, and information flow tracking. A virtual 

machine or sandbox can be used for dynamic analysis. 

Unlike static inspection, dynamic analysis approaches are 

used to overcome static analysis drawbacks, because they 

depend on behavior monitoring. In dynamic analysis, malware 

activities are monitored for a few minutes after executing them 

in a closed environment such as a virtual machine, sandbox, or 

emulator. The activity was monitored for a few minutes. A 

clean environment was created for each sample to prevent 

infection. Although dynamic analysis is used to overcome 

static analysis challenges, it can also be avoided by other 

methods such as delayed execution. 

Malware uses a delayed execution technique when it does 

not display its malicious activities for an extended period, 

rendering the analysis process useless. Increasing the analysis 

time could be more effective and feasible, and malware may 

increase its waiting time. Additionally, malware may attempt 

to discover the presence of a sandbox or an emulator. Once 

identified, the malicious activity is stopped. In addition, if 

there is no Internet connection, some malware will stop 

malicious activities as it attempts to connect to its command 

and control. 

 

3.1.3 Hybrid analysis 

Both static and dynamic analyses have their advantages and 

disadvantages. Therefore, both were used in the hybrid 

analysis to obtain improved results. 

This technique uses a combination of static and dynamic 

analyses [15]. Firstly, the malware signature is checked to 

determine whether it exists in the inspected code, and then, the 

sample behavior is monitored. Therefore, this technique can 

benefit from the advantages of both the analytical methods. 

 

 

4. MALWARE-DETECTION IN CLOUD COMPUTING 

 

Various malware-detection approaches have been proposed. 

Traditional detection methods are signature-based techniques 

that function well and quickly with the known malware. This 

problem arises when dealing with unknown malware such as 

zero-day malware. This makes researchers use new and 

different methods such as behavior-based detection, heuristic-

based detection, and deep learning. 

 

4.1 Signature-based detection technique 

 

First, malware analysis methods extract features from 

malware samples to create signature databases. The signature 

was then generated and stored in a signature database. When a 

sample must be tested to mark it as malware or benign, the 

signature of the sample is collected using a technique similar 

to that of the signature database. This was then compared to 

the signatures in the database. Depending on the comparison 

results, it can be classified as sample file malware or benign 

file, as shown in Figure 2. 

 
 

Figure 2. Signature-based detection technique 

 

4.2 Behavior-based detection technique 

 

In this method, the behavior of a sample is observed after it 

is executed by monitoring the system calls, processes, registry, 

file changes, and network to detect whether the sample is 

malware or benign. Thus, there were no problems in detecting 

new malware using this method. By contrast, a problem arises 

in malware uses anti-dynamic analysis methods to detect 

whether it is running in a protected environment, such as 

virtual machines or sandboxes, to stop malicious behavior. 

Thus, malware that uses this anti-dynamic analysis method 

may be incorrectly marked as benign. 

Mishra et al. [16] proposed an introspection-based malware 

detection approach. The proposed out-VM monitoring 

approach is called vProVal. It is designed to operate in a 

Kernel VM (KVM)-based cloud environment to identify 

rootkits and hidden processes. The proposed approach detects 

malware outside a VM, thereby making it more reliable 

against attacks. Process logs were extracted from the system 

after sample execution. It is compared with the process log 

extracted from the memory from outside the VM to check for 

the existence of security-critical processes and to detect hidden 

processes. 

Gan et al. [17] discussed malware propagation through 

different virtual machines in a cloud computing architecture, 

particularly infrastructure as a service (IaaS). A dynamical 

propagation model was presented to determine the essential 

factors that affect malware spread, and the impact of installing 

antivirus software on VMs was studied. A theoretical analysis 

of this model is conducted using differential dynamics, from 

which it is possible to understand the dissemination behavior 

of malware in an infected cloud environment. In addition, a 

numerical simulation is performed to validate the applicability 

and effectiveness of the proposed model. 

Al-Khafaji et al. [18] proposed an overview of packet 

sniffing tools in the IoT and cloud-based environments. 

200



 

Mishra et al. [19] discussed making a cloud environment 

more resistant to malware threats. Cloud environments have 

become more vulnerable to cross-VM attacks because of the 

fingerprints and artifacts generated by the traditional 

virtualization software. Thus, current mainstream hardware-

assisted virtualization is attempting to enhance transparency. 

The authors proposed an attack scenario to demonstrate how 

an attacker can use the following three features to detect 

hardware-assisted virtualization: saving an extra layer of 

address translations in the Translation-Lookaside Buffer 

(TLB), the existence of one more layer of page-table entries in 

the LLC cache, and instability in the Level-1 Data (L1D) cache. 

They successfully performed attacks in three native 

environments: Amazon Elastic Compute Cloud, Google 

Compute Engine, and Microsoft Azure. 

 

4.3 Heuristic-based detection technique 

 

As shown in Figure 3, both static and dynamic extracted 

features can be used to benefit from the static and dynamic 

analysis methods of this technique [20]. Subsequently, the 

features were input into different machine learning algorithms 

for training. Machine learning algorithms can then classify the 

tested sample as malicious or benign. 

 

 
 

Figure 3. Heuristic-based detection technique 

 

Abdullayeva [21] proposed a malware detection approach 

based on image similarity. The authors used the Malimg 

dataset. It contains 9,339 malware-byteplot images from 25 

families. The samples were then converted into RGB image 

representations (red, green, and blue). The images were input 

into a Gaussian Mixture Model to detect file similarities. The 

accuracy was 79.21%. 

Bedi et al. [22] discussed different types of attacks on the 

cloud environment, such as breach of confidentiality, denial of 

service, cloud malware injection, side-channel, man-in-the-

middle cryptographic, and authentication attacks. 

Subsequently, they proposed a new model for overcoming 

these challenges. The proposed antivirus consisted of three 

components. The first component is the host agent, which 

transfers all the new files to the network service, and the 

second component is the network service. The network service 

analyzes all received files to classify them as safe or unsafe. 

The last component is the forensic service, which is 

responsible for keeping records for all analyzed files and 

creating an alert interface. 

Fui et al. [23] proposed a detection system based on a 

dynamic malware analysis and machine learning. They used 

three classifiers: Random Forest, J-48, and naive Bayes. The 

XEN cloud platform was used as the test cloud. The dataset 

comprised 9000 samples from the Kaggle database. The 

samples were executed on a virtual machine and their behavior 

was monitored using a cuckoo monitoring server to collect the 

feature vector. The accuracy was found to be 99%. 

Kumar et al. [24] proposed a malware-detection approach 

based on clustering techniques. The samples were tested in an 

isolated environment. Dynamic analysis was performed using 

a cuckoo sandbox and API calls from cuckoo sandbox reports 

to form a feature vector. Feature selection was performed 

using Principal Component Analysis (PCA), random forest, 

and chi-square tests. They used three classification algorithms: 

a Decision Tree, Random Forest, and Logistic Regression. 

Abawajy et al. [25] presented a malware detection approach 

called Hybrid Consensus Pruning (HCP). In this approach, 

several classifier classes were aggregated into a single scheme. 

To test the effectiveness of the HCP method, Abawajy et al. 

[25] conducted experiments to compare its performance with 

that of Ensemble Pruning via Individual Contribution (EPIC) 

ordering, Directed Hill-Climbing Ensemble Pruning (DHCEP), 

and K-Means Pruning approaches for pruning very large 

ensemble classifiers for malware detection. Byte sequences or 

n-grams were used in this study. Sequences of n bytes were 

extracted from executable files to be examined. N-grams yield 

compelling static features for malware detection. The 

experimental results show that the HCP achieves better results 

by producing better ensemble classifiers than those created by 

EPIC, DHCEP, and K-Means Pruning. 

Mishra et al. [19] proposed VMShield, an introspection-

based security approach for securing virtual machines and 

detecting malware in a cloud infrastructure. VMShield 

introduced virtual memory introspection from a hypervisor to 

gather runtime process behavior. The proposed approach uses 

the existing techniques to detect stealthy malware. Random 

forest was used to classify the samples after extracting the 

feature vector of the sample. 

Kubernetes were used in a previous study [26]. It is an open-

source system that automates cloud-application deployment, 

scaling, and management. The proposed crypto-miner 

detection system in a cloud environment was based on 

machine learning. We extracted a sequence of system calls. 

The feature vectors are input into different machine-learning 

algorithms, such as decision trees, ensemble learning, 

feedforward vanilla artificial neural networks, and feedback 

Recurrent Neural Networks (RNNs). 

 

4.4 Deep learning-based detection technique 

 

This new detection method is used in several malware 

detection approaches for cloud computing, as discussed in the 

next section. It is a subset of machine learning methods that 

uses neural networks with many layers to analyze data and 

learn from it, as shown in Figure 4. Recurrent Neural 

Networks (RNNs) and Convolutional Neural Networks 

(CNNs) are the most widely used deep learning architectures. 

These models are particularly effective for various types of 

data and tasks. 

RNNs are designed to handle sequential data in which the 

order of information is important. Unlike traditional neural 

networks, RNNs have connections that allow the persistence 

of information. This memory aspect enables them to make 

predictions based on both the current and previous inputs in a 

sequence. It is Effective for tasks that require understanding of 

the context or previous data points in a sequence. In addition, 
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it is useful in any application involving time-dependent data, 

such as audio or text. RNNs can suffer from the vanishing 

gradient problem, where they struggle to learn long-term 

dependencies in data. In addition, training can be 

computationally expensive and time consuming. 

CNNs are designed to automatically and efficiently detect 

patterns in visual data such as images or videos. They use 

convolutional layers that apply filters to the input data to detect 

local patterns, such as edges, textures, or specific shapes. 

CNNs then use pooling layers to reduce the spatial dimensions, 

allowing them to focus on more important features, which is 

highly effective for visual data because of its ability to detect 

hierarchical patterns (e.g., edges, shapes, and textures) at 

different scales. It automatically learns spatial hierarchies in 

images, thereby eliminating the need for manual feature 

engineering. On the other hand, a CNN requires a large 

amount of labeled data for effective training. Furthermore, it 

is computationally intensive, particularly for large datasets or 

deep architectures. 

Ergen et al. [27] proposed a malware detection approach 

based on deep learning using RNNs. They focused on two 

architectures: long short-term memory RNNs (LSTMs) and 

Bidirectional RNNs (BIDIs). They used 40,680 samples as 

datasets. They collected the behavior of each sample after 

execution in an open online cloud environment with no 

restrictions. The feature vector contains a sequence of running 

processes in the VM. The classification accuracy was 99%. 

Payne and Kundu [28] presented a hierarchical approach for 

the development of malware detection systems. They used 

attention language models to analyze system logs and shape 

their respective systems in a standardized manner for 

downstream processing. They used graph and hypergraph 

learning problems to detect malware in the cloud. They 

assumed a multi-cloud scenario, in which multiple untrusting 

clouds cooperate to learn the state of malware without 

divulging private or sensitive information. In addition, the 

authors discussed different open problems in cloud-computing 

environments that defend against malware attacks. 

Li et al. [29] discussed the significant problem of malware 

threats in cloud computing environments, as many hosts are 

connected with high-risk trust assumptions and security 

mechanisms that are not difficult to break. Detecting malware 

propagation is difficult because malware may remain in 

several components through software or hardware stack. In 

this case, it is more beneficial to contain malware in the 

smallest possible number of hosts, and it is also essential for 

the system administrator to fix the problem promptly. The 

authors defined the problem and presented their idea of 

decentralized malware containment as well as the challenges 

and issues related to this idea. They presented the basic 

implementation of this approach. 

Malvankar et al. [30] presented a malware detection system 

based on deep learning. In the training stage, CNN was used 

to build a model of malicious and benign software memory 

snapshots. This model was used in the testing stage to detect 

and classify the malware. Images from the virtual machine 

were extracted after executing malicious and benign software. 

They converted extracted memory images into grayscale 

images. Grayscale images were used to train CNN. It operates 

in the WMM layer to ensure that its system is secure and 

transparent, and incurs less overhead. More than 10000 

malwares were used in the prototype evaluation. The accuracy 

reached 90.5%. 

Additionally, Mishra et al. [31] proposed another malware 

detection system based on deep learning called VMAnalyzer. 

It uses machine learning algorithms to detect attacks on the 

VM layer in a cloud environment. The sequence of the system 

calls was extracted from suspicious programs, and two 

classification layers were performed. CNN is used in the first 

layer to select the relevant system call sequence. The output of 

layer 1 was used as the input for layer 2. Bidirectional long 

short-term memory (LSTM) is used in layer 2 to detect the 

behavior of a malicious sequence of system calls. The dataset 

used in this study is obtained from the University of New 

Mexico. 

Nahmias et al. [32] presented TrustSign, an automatic 

malware signature generation method based on high-level 

deep features conveyed by a VGG-19 neural-network model. 

The proposed system benefits from virtualization, which exists 

at the core of the cloud architecture. It uses malicious 

processes present in volatile images to produce signatures. 

Thus, these systems can detect fileless malware. The 

classification accuracy reached 99.5%. 

Another malware detection approach based on deep 

learning techniques was presented by Abdelsalam et al. [33]. 

Malicious files were executed on a virtual machine, and 

process behavior data were extracted. The extracted data were 

inputted into a 2D CNN. They improved classification 

accuracy using a 3D CNN. The classification accuracy was 

90%. 

Jeon et al. [34] proposed a dynamic analysis system called 

Dynamic Analysis for IoT Malware Detection (DAIMD). 

DAIMD dynamically analyzes malware in a nested virtual 

environment instead of in an IoT device to detect obfuscated 

and code-changeable files. It extracts memory, networks, 

processes, system calls, and virtual file systems to identify 

malicious behavior. The extracted data are then converted to 

images and applied to the CNN to classify the IoT malware. 

Chai et al. [35] proposed a joint framework for malware 

detection using local and global features. It is called LGMal. 

It uses a stacked CNN to collect API call sequence information, 

which helps in local semantic feature collection. In addition, it 

uses graph convolutional networks to gather API call semantic 

graph structure information, which helps in global semantic 

feature collection. They used Alibaba Cloud Security Malware 

Detection datasets. 

Kotian and Sonkusare [36] presented a malware-detection 

approach with a classification accuracy of 95%. The running 

information, such as the CPU, memory, and network 

parameters, was collected and fed into the CNN algorithm. 

The accuracy was improved by using a 2D CNN. 

Samuel et al. [37] presented Intelligent Behavior-Based 

Malware Detection (BBMD) as a new malware detection 

framework. It uses artificial neural networks (ANNs) and deep 

learning. The BBMD analyzes cloud resource behavior to 

detect abnormal behavior. It uses both system logs and 

network traffic to provide an overall view of system behavior, 

and to provide comprehensive solutions for cloud computing 

environments. BBMD has the ability to integrate with other 

existing security products such as intrusion detection systems 

and firewalls. 

Mustafa et al. [38] proposed a White Shark Optimization 

approach. Two datasets (NSL-KDD and Kyoto) were used for 

the training. A support vector machine was used for 

classification after the feature extraction. They achieved a 

detection rate of 99.8%. 
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Figure 4. Deep learning-based detection technique 

 

As previously mentioned, detection methods differ in terms 

of their technicality, such as detection speed, performance 

overhead, and use cases. Table 1 compares the features of 

different detection techniques. Signature-based detection is 

highly effective for known threats, but struggles with new or 

unknown malware. Behavior-based detection is excellent for 

detecting unknown threats through analysis of actions, but 

may have performance and false-positive issues. Deep 

Learning-Based Detection offers strong detection capabilities 

for both known and unknown malware; however, it requires 

significant resources and data to function effectively. 

Heuristic-Based Detection strikes a balance between detecting 

new threats and being resource efficient, although it may 

suffer from false positives. 

Malware poses a significant threat to cloud computing. If 

malware succeeds in compromising a virtual machine, it can 

steal the critical information or attack other cloud nodes. 

Several approaches have been proposed to analyze executable 

binaries to identify malware in the cloud, particularly zero-day 

malware. 

 

Table 1. Comparison between the different detection techniques features 

 

Heuristic-Based Detection Deep Learning-Based Detection 
Behavior-Based 

Detection 

Signature-Based 

Detection 
Feature 

Medium (based on characteristic 

patterns) 
High (trained on large datasets) 

Low (needs behavior to 

trigger) 

High (fast matching of 

signatures) 

Detection of Known 

Malware 

High (identifies anomalous 

behaviors) 
High (learns to detect new threats) 

High (detected by 

behavior) 

Low (can’t detect new 

threats) 

Detection of 

Unknown Malware 

High (sensitive to benign 

anomalies) 
Medium (depends on training data) 

Medium to High 

(depends on behavior) 

Low (if signatures are 

accurate) 
False Positives 

Medium (depending on the 

complexity of heuristics) 

High (needs computational resources 

for training and inference) 

High (requires constant 

monitoring) 

Low (fast with minimal 

overhead) 
Performance Impact 

Medium (depends on heuristics 

evolution) 

High (learns and adapts from new 

data) 

High (can adapt to new 

types of behavior) 

Low (only effective for 

known threats) 

Adaptability to New 

Threats 

Medium (requires constant 

refinement of heuristics) 

High (requires machine learning 

infrastructure) 

Medium (needs 

monitoring of behavior) 

Low (simple signature 

matching) 
Complexity 

Medium (depends on system 

implementation) 
High (computationally intensive) 

High (real-time 

monitoring) 

Low (signature 

database) 

Resource 

Consumption 

However, traditional malware-detection approaches are 

inappropriate for cloud computing. Static analysis-based 

approaches require malware binary files that may not be 

permanently retained in the file system of a virtual machine. 

Malware may hide or remove itself from virtual machine disks. 

Therefore, malware scanners may not be able to locate binary 

files. However, the runtime overhead introduced by dynamic-

analysis-based approaches cannot be accepted in natural cloud 

computing. In addition, analysis tools in VMs can be detected 

and exploited as malware runs inside VMs. Recently, several 

approaches have been proposed for malware detection using 

cloud computing. Most of the proposed approaches depend on 

dynamic analysis, as shown in Figure 5. Dynamic analysis 

detects runtime behaviors and activities such as system calls, 

network communications, and privilege escalation. It 

effectively detects packed or encrypted malware that hides its 

code during runtime. It can identify zero-day threats and 

advanced malware using behavioral indicators. However, 

complex malware may detect the analysis environment and 

alter its behavior to avoid detection. In addition, dynamic 

analysis may miss dormant functions that are not activated in 

the monitored environment. Compared to static analysis, it is 

resource-intensive. It requires execution in isolated 

environments, leading to higher computational and storage 

overheads. In addition, this method is time-consuming. The 

monitoring of runtime behaviors can be slower than that of the 

static analysis. In addition, the need for controlled execution 

environments can limit the scalability of large cloud 

ecosystems. 

 

 
 

Figure 5. Dynamic analysis vs. static analysis 

 

Most of the presented approaches use deep learning 

techniques, as shown in Figure 6. Unlike traditional methods, 

deep-learning models do not require extensive manual feature 

engineering. They learn features directly from raw data. In 

addition, it can analyze vast amounts of data to detect malware 

patterns and behaviors, even those previously unseen. 

22.22%

77.77%

Static Analysis

Dynamic
Analysis
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Figure 6. Deep learning-based technique vs. other techniques 

 

Deep learning is highly scalable. It is designed to handle 

large-scale heterogeneous datasets typical of cloud 

environments. Frameworks like TensorFlow and PyTorch 

allow seamless integration with cloud platforms for training 

and inference. However, traditional detection methods are 

resource-efficient. These methods are generally lightweight 

and require less computational resources, making them 

suitable for less complex environments. However, they 

struggle to handle the scale and diversity of data in cloud 

environments effectively. Therefore, they have limited 

scalability. 

Both deep-learning-based detection techniques and 

traditional detection methods are employed, each with its own 

strengths and limitations. Deep learning suffers from a 

computational overhead. Training deep learning models 

requires significant computational power, which can be 

resource intensive in a cloud environment. The effectiveness 

of deep-learning models depends heavily on the quality and 

diversity of the training data. Thus, deep learning is data-

dependent. Deep-learning models are often considered black 

boxes, making it difficult to interpret the detection results. 

However, the traditional methods are ineffective against 

advanced threats. They struggle with advanced persistent 

threats (APTs) and zero-day attacks. They are inflexible and 

require frequent updates to be effective against new malware 

strains. 

Accuracy was achieved using different malware detection 

approaches in a cloud-computing environment, as shown in 

Figure 7. 

 

 
 

Figure 7. Accuracy 

 

Deep learning approaches have improved detection rates. It 

can be generalized better to new and unseen malware, thereby 

reducing false negatives. In addition, they are resilient to 

evasion techniques. Deep learning models can detect subtle 

changes in malware behavior that traditional methods may 

overlook. However, traditional detection approaches have 

high precision for known malware. Signature-based methods 

excel at detecting known threats, but suffer from high false 

negatives for new or obfuscated malware. Rule-based systems 

may misclassify benign applications if rules are too stringent. 

A summary of the proposed malware detection approaches 

in cloud computing environments is presented in Table 2.

 

Table 2. Summary of proposed methods 

 
Ref. Proposed Method Classification Feature Used Dataset Accuracy Year 

[27] They use RNNs. 
Runtime processes system 

features 
40,680 samples 99%. 2018 

[21] The images are inputted into Gaussian Mixture Model. 
Features based on the 

similarity of images 
in Malimg dataset 79.21% 2019 

[28] 

They use inductive graphs and hypergraphs neural network 

models such as Graph Convolutional Networks, GraphSAGE, 

Graph Attention Networks, and Deep Hyperedges. 

System logs 
DARPA IDS 

evaluation dataset 
Not mentioned 2019 

[29] 
They use graph convolutional networks, graph attention 

networks. 
Using graph analysis Not mentioned Not mentioned 2019 

[30] 
They converted extracted memory images into grayscale 

images. grayscale photos used to train CNN. 
memory images 

More than 10000 

malware 
90.50% 2019 

[31] 
The sequence of system calls extracted from suspicious 

programs is then fed into two layers of classification. 

The sequence of system 

calls 

University of New 

Mexico dataset 
81.72%-96.67% 2019 

[32] 
The malicious processes extracted are converted into images 

and inputted for a deep neural network model. 

Malicious process in 

memory images 

The dataset contains 

samples from both 

web-based and 

desktop Monero 

mining applications 

99.5%. 2019 

[19] 

Processes are extracted from the system after executing the 

sample and compared with the process log, which is extracted 

from memory outside the VM, to check the existence of 

security-critical processes and detect hidden processes. 

Processes log 

The dataset collected 

from the University 

of California 

In the future, they will 

perform a more 

detailed analysis 

2019 

[33] 

The malicious files are executed on the virtual machine, and 

process behavior data are extracted. The extracted data are 

inputted to 2D CNN. 

Process behavior data 4500 samples 86%-90% 2018 

52.94%

47.05%

Deep Learning
Based
Technique

Different
Techniques
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[23] 
The samples are executed in the virtual machine, and the 

behavior is monitored using a Cuckoo monitoring server. 

Malware behavior such as 

Kernel Function Calls 

9000 samples from 

the Kaggle database 
99% 2020 

[34] 

They extracted malware behavior data, and then the extracted 

data were converted to images and applied to CNN to classify 

IoT malware. 

Malware behavior, such 

as memory, network, and 

system calls 

840 images in the 

training 

dataset using the 

ZFNet model.561 

files in the test 

dataset 

90.01-99.28% 2020 

[24] 

These samples are being compiled in an isolated environment. 

They performed dynamic analysis using the Cuckoo sandbox, 

and then API calls from the Cuckoo sandbox reports forming 

the feature vector. 

API calls 2780 sample files 97% 2020 

[25] 
A new multi-stage hybrid consensus pruning approach to 

combine several classifier classes into one scheme. 

Byte sequences, or 

n-grams 

Collected from 

the honeynet and VH 

Heavens 

the ensemble that 

achieved the best 

value of AUC in 

comparison to other 

ensembles, also 

performed best 

concerning other 

metrics. 

2020 

[35] 
They combine the stacked CNN and graph convolutional 

networks. 

API call sequence 

information 

Alibaba Cloud 

Security Malware 

Detection Datasets 

precision is 

87.76%, the recall is 

88.08%, and the F1 

measure is 87.79%. 

2020 

[36] Malware behavior is collected and fed to the CNN algorithm. 

Running information such 

as CPU, memory, and 

network parameters 

 95% 2021 

[16] 
Malware behavior data collected and inputted from random 

forests. 

the run-time processes 

behavior 
  2021 

[26] 

The sequence of system calls is inputted to different machine 

learning algorithms such as Decision Tree, Ensemble Learning, 

Feed-Forward Vanilla Artificial Neural Network, and 

Feedback Recurrent Neural Network. 

Syscall and CPU usage  99% 2021 

 

 

5. CONCLUSION 

 

The rapid growth of cloud computing has attracted various 

attack types, particularly malware. Additionally, the flexibility, 

elasticity, and other services provided by the cloud computing 

architecture render the cloud environment more vulnerable to 

novel attacks. In this study, we elaborate on malware attacks 

in cloud computing environments. In addition, we present 

some recent malware detection approaches that provide 

malware detection in a cloud computing environment. More 

approaches are needed to resist the extraordinary increase in 

malware attacks and countermeasure the sophistication of 

malware samples designed to deceive the current security 

systems. These approaches must consider the architecture of 

the cloud computing environment. The main limitation of our 

research is that some approaches should have explained their 

methodology in detail, and some authors should have 

mentioned the datasets used in their approach. In recent studies, 

the malware detection rate has reached 99%. Deep learning 

techniques have become powerful tools in malware detection, 

leveraging their ability to automatically learn complex patterns 

and features from large datasets. Deep learning models can 

analyze static code features, dynamic behavioral data, or 

network traffic to detect malicious activities with high 

accuracy using architectures such as CNNs, RNNs, and 

transformers. These models can be used to identify zero-day 

threats and polymorphic malware that can evade traditional 

detection methods. Their scalability and adaptability make 

them particularly suited for cloud-computing environments, 

where vast amounts of data and evolving threats require robust 

real-time analysis. In the future, we would like to develop a 

hybrid framework for malware detection, particularly in cloud 

environments. We want to benefit from previous approaches 

to achieve a higher detection rate with a lower false-positive 

rate, while considering the processing time.  
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