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Liveness detection is a critical component in biometric security systems, aiming to 

distinguish between live and spoofed biometric samples to ensure system authentication. 

Image technology advancements are one of the factors that lead to attacks on liveness 

detection. The use of camera and mask, have made it less difficult to generate attacks that 

target the liveness detection system, including deep fake, replay, and print attacks. A 

reliable approach is required to more accurately identify these attacks. Recent advances 

in deep learning have shown significant promise in addressing these challenges by 

learning robust and adaptive features directly from raw biometric data. This paper 

provides an experimental research of deep learning approaches for liveness detection, 

focusing on Convolutional Neural Networks (CNNs) including EfficientNetV2S, 

EfficientNetV2M, EfficientNetV2L, and comparing with MobileViT for facial 

recognition in liveness detection. The datasets employed are NUAA, Synthetic, and iBeta 

1. This paper examines the strengths and limitations of each method, and evaluation

metrics used in the field, and highlight the latest breakthroughs in improving detection

accuracy and robustness against diverse replay and print attacks. Experimental results

show that EfficientNetV2S outperforms other algorithms, both in terms of accuracy and

false detection rate.
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1. INTRODUCTION

Liveness detection is a security mechanism in biometric 

systems intended to distinguish between authentic, live 

biometric characteristics (e.g., a living fingerprint, face, or iris) 

and artificial versions such as images, masks, or prosthetics. 

This ensures that biometric authentication systems are not 

effortlessly deceived by spoofing attacks, in which an 

impostor use counterfeit artifacts to act like an authentic user. 

Liveness detection is necessary for improving the reliability 

and security of biometrics, particularly in sensitive 

applications such as financial transactions, border control, and 

secure access, where precise identity verification is vital to 

avert fraud and illegal access. Integration enhances trust in 

biometric systems and protects against emerging threats. 

Latest developments in liveness detection through deep 

learning have greatly improved biometric security. A review 

[1] performed a systematic assessment of fingerprint liveness

detection techniques, emphasizing progress and persistent

obstacles in mitigating presentation attacks.

In 2021, Sabaghi et al. [2] conducted an extensive 

assessment on deep-feature-based face anti-spoofing 

techniques, classifying diverse methodologies and addressing 

unresolved research difficulties. 

Tapia et al. [3] presented a serial architecture with a 

modified MobileNetV2, designed to differentiate between 

authentic and presentation attack iris images, gaining 

significant success in the LivDet-Iris 2020 competition. 

Koshy and Mahmood [4] implemented real-time systems 

that combine anisotropic diffusion with deep convolutional 

neural networks for face liveness detection, achieving good 

accuracy on the Replay-Attack and Replay-Mobile datasets. 

Kuznetsov et al. [5] introduced AttackNet, a specialized 

convolutional neural network architecture aimed at improving 

biometric security via efficient liveness detection. This 

research highlights the crucial importance of deep learning in 

enhancing liveness detection across diverse biometric 

modalities. 

The study [6] contributes to the advancement of biometric 

authentication and liveness detection systems that utilize facial 

recognition techniques. It discusses a system that utilizes 

algorithms such as Haar cascades and TensorFlow models to 

detect specific facial movements, including eye blinks, smiling, 

and mouth openings, through the use of multiple modules. The 

implementation is deployed as an API for real-time processing 

and achieves high accuracy in detecting these expressions, 

underscoring the significance of liveness detection in the 

protection of facial recognition systems against deceptive 

attacks. 

The paper [7] focuses on developing robust methods for 

detecting spoofing attacks and ensuring liveness in face 

recognition systems. The paper highlights the growing 

concern of security breaches in biometric systems due to 

spoofing, where attackers use photos, videos, or 3D models to 

impersonate legitimate users. The author proposes the use of 

deep learning architecture, specifically CNNs, for detecting 
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such spoofing attempts and ensuring the liveness of the face 

being recognized. The study incorporates various datasets to 

train and evaluate these models, demonstrating their 

effectiveness in distinguishing between real and spoofed faces. 

The paper concludes that deep learning-based approaches can 

significantly enhance the reliability and security of face 

recognition systems, making them more resilient against 

sophisticated spoofing methods. 

The paper [8] presents a novel approach to enhancing the 

security of face liveness detection systems on mobile devices. 

It addresses the vulnerability of current face recognition 

systems to spoofing attacks, particularly those that use static 

images or videos. The author introduces a method based on 

analyzing lip motion patterns, which are unique to live 

individuals and difficult to forge with conventional spoofing 

techniques. By leveraging motion analysis, the proposed 

system improves the detection of liveness while minimizing 

false positives and negatives. The paper demonstrates the 

effectiveness of this approach through experiments, showing 

that lip motion patterns are a reliable biometric cue that 

strengthens face liveness detection on mobile platforms. The 

study suggests that incorporating this technique can 

significantly enhance the security of mobile face recognition 

systems against spoofing attacks. 

The utilization of deep learning in the liveness detection is 

highly prospective, as evidenced by the numerous studies that 

have been previously discussed. Nevertheless, the various 

datasets used in the study require better detection of accuracy. 

This study investigates several data sets to improve the 

detection accuracy of various attacks in liveness detection. 

This paper is organized into multiple sections: the 

Introduction is provided in the first section, followed by 

Materials and Methods used in the experiment are described 

in the second section. The experiment's Results and 

Discussion are discussed in the third section, and the research 

summary are concluded in the conclusion. 

 

 

2. MATERIAL AND METHOD  

 

Several researchers have undertaken numerous experiments 

looking at video injection attacks using deep learning. Taeb 

and Chi [9] presented a deepfake detection framework that 

uses two deep learning models, Xception and MobileNet, to 

classify fake films from the FaceForensics++ dataset. The 

models, trained on modified films created by four mainstream 

approaches (Deepfakes, Face2Face, FaceSwap, and 

NeuralTextures), achieved accuracies above 90% for the 

majority of datasets, however performance dipped for 

NeuralTextures (e.g., MobileNet: 88% accuracy). A voting 

method that aggregates forecasts from all models increases 

resilience. The work emphasizes model sensitivity to certain 

manipulation approaches and the necessity for larger datasets 

and additional variables, such as inter-frame correlations, for 

better detection. 

Elsaeidy et al. [10] presented a CNN-based system for 

identifying replay attacks in smart cities based on multivariate 

time-series data from synthetic datasets sourced from 

Queanbeyan, Australia. The model was tested on soil 

management and environmental monitoring datasets (89,566 

and 178,211 instances, respectively) and achieved 99.18% 

accuracy (precision: 99.31%, specificity: 99.26%, sensitivity: 

99.11%) on the soil dataset and 98.47% accuracy (precision: 

98.56%, specificity: 98.62%, sensitivity: 98.31%) on the 

environmental dataset. Compared to five cutting-edge 

approaches, including DRN and ESNC, the suggested model 

outscored competition across all measures. The work 

underlines the necessity of modeling the time dimension in 

attack detection and provides a smart city benchmark dataset 

for future research. 

Zhang et al. [11] examined defense strategies for adversarial 

perturbations in deep neural networks (DNNs), classifying 

them as perturbation detection, input modification, stochastic 

defense, adversarial training, and certified robustness. 

Adversarial training showed remarkable robustness on 

datasets such as CIFAR10, but it needed large processing 

resources. JPEG compression and denoising autoencoders like 

MagNet obtained great detection rates. Perturbation detection 

approaches, such as Mahalanobis-based confidence scoring, 

demonstrated up to 96% accuracy against attacks such as CW 

and PGD, whereas stochastic defenses based on random noise 

or activation pruning increased robustness while reducing 

accuracy loss. The paper emphasizes the trade-offs between 

robustness and efficiency, recommending for the use of 

complementary strategies to achieve optimal defense. 

Kelly et al. [12] proposed using morphed photos in the 

training phase to make face recognition systems (FRSs) more 

resilient against morphing attacks. They detecting 

discrepancies in identification attributes suggestive of 

morphing by training on real and augmented photos (morphs 

and authentic augmented pairings) using a VGG16-based 

architecture and triplet loss. By reducing the Morph Accept 

Rate at Equal Error Rate (MAREER) from 30.20% to 20.54% 

and improving the Differential Equal Error Rate (D-EER) 

from 6.70% to 5.61% on the FRGC test set, the experiments 

demonstrated increased resilience. On the ASML validation 

set, D-EER increased from 5.86% to 4.97%, whereas 

MAREER decreased from 24.94% to 16.48%. Nevertheless, 

difficulties with generalization on pose-variation datasets, as 

PUT, brought to light the necessity of realistic and varied 

morphing datasets to improve training. 

Meena and Tyagi [13] present a deep learning-based 

approach to picture splicing detection that combines an SVM 

classifier, ResNet-50 as a feature extractor, and Noiseprint 

preprocessing to extract noise residuals. The technique 

outperforms current methods with an average detection 

accuracy of 97.24%, according to experiments conducted on 

the CUISDE dataset. The algorithm demonstrated its 

resilience in detecting spliced photos using camera-specific 

noise and deep feature extraction by properly classifying 178 

out of 180 fabricated images and 175 out of 183 real images. 

Future research proposes expanding this technique to locate 

spliced areas in photos and identify splicing in films. 

Arora et al. [14] proposed a robust deep learning framework 

for detecting face spoofing attacks, such as replay attacks, 3D 

mask attacks, and photo attacks, that employs convolutional 

autoencoders for dimensionality reduction and feature 

extraction, followed by classification using pre-trained 

encoder weights and a softmax classifier. When tested on three 

benchmark datasets (CASIA-FASD, Replay-Attack, and 

3DMAD), the framework obtained high accuracy: 99.17% for 

CASIA-FASD, 99.03% for Replay-Attack, and 100% for 

3DMAD, with a Half Total Error Rate (HTER) of 0%. Cross-

database testing yielded good results, proving the framework's 

robustness and generalizability for detecting spoof faces in 

biometric systems. 

The previous paper [15] proposes a method to enhance the 

security of liveness detection by extracting human 
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physiological components from computational ghost imaging 

(CGI) signals. The method achieves a 96.0% correct rate 

against picture and mask attacks and is resolution-independent, 

working even at 32×32 pixels. 

Meanwhile, authors [16] address the critical issue of 

securing facial recognition systems against spoofing attacks, 

which often involve the use of photos, videos, or masks to 

impersonate legitimate users. The author proposes robust and 

reliable liveness detection models designed to accurately 

distinguish between real faces and spoofed ones in various 

environmental conditions. The paper focuses on leveraging 

advanced techniques, including deep learning models and 

feature extraction methods, to enhance the performance of 

liveness detection. By incorporating dynamic facial cues, such 

as natural facial movements, and using multimodal approaches, 

the proposed models aim to improve the reliability of facial 

recognition systems. The study demonstrates the effectiveness 

of these models in real-world scenarios, achieving high 

detection accuracy and resilience to different spoofing 

techniques. The paper concludes that the proposed liveness 

detection models offer significant improvements in securing 

facial recognition systems, making them more resistant to 

sophisticated attack methods. 

According to the papers previously discussed, the most 

recent developments in liveness detection encompass a variety 

of biometric modalities, such as iris, fingerprint, and facial 

recognition. Methodologies used in previous researched 

including computational ghost imaging, convolutional neural 

networks, multispectral imaging, and local contrast phase 

descriptors. The objectives of these methods are to improve 

accuracy, prevent sophisticated spoofing assaults, and enhance 

security, thereby demonstrating substantial advancements in 

the field. Meanwhile, this research aims to investigate 

alternative deep learning techniques, specifically with regard 

to liveness detection for authentication. 

In contrast to machine learning, deep learning has its own 

mechanism [17-19]. Deep learning could perform 

classification without requiring feature extraction; hence, the 

approach illustrated in Figure 1 is utilized. The specifics of 

each step are explained in the subsequent subsections. 

 

2.1 Dataset and preprocessing 

 

This research used the video dataset available on Kaggle 

[20], PARNEC [21] and synthetic. The dataset was processed 

by changing the video into an image with extension (png). 

 

 
 

Figure 1. The flowchart of the process in detecting the fake 

faces using deep learning 

Pre-processing was done by involving decode to RGB 

channel the change of image, resize with the size of 224×224 

pixel and normalize. Figures 2-4 show samples of every 

dataset, Table 1 presents the amount of data for each dataset, 

meanwhile Table 2 defines the information for each dataset. 

 

      
 

Figure 2. Sample of images in dataset [20] 

 

      
 

Figure 3. Sample of images in dataset [21] 

 

      
 

Figure 4. Sample of images in synthetic dataset 

 

Table 1. Datasets faces counts 

 
Datasets Faces Counts 

iBeta 1 3549 

NUAA 9000 

Synthetic 15018 

 

2.2 Data splitting 

 

The dataset was divided into two segments: 80% for training 

and 20% for testing, applicable to both augmented and non-

augmented data. 

 

2.3 Classification 

 

In this study, a comparison among EfficientNetV2S, 

EfficientNetV2M, EfficientNetV2L, and MobileViT in the 

context of deep learning for image analysis was conducted for 

liveness detection. 

 

2.3.1 EfficientNetV2 

EfficientNetV2 [22] presented a new family of 

convolutional neural networks designed for improved training 

efficiency and parameter utilization. The models are 

developed through training-aware Neural Architecture Search 

(NAS), where optimizations are applied to accuracy, speed, 

and parameter efficiency. Techniques like progressive 

learning are introduced, allowing image size and 

regularization to be adaptively scaled during training, enabling 

faster convergence without sacrificing accuracy. 

EfficientNetV2 models are structured with Fused-MBConv 

layers to replace inefficient operations in early network stages, 

325



 

and a refined scaling strategy is employed to balance the 

network's complexity across layers. 

The models are classified as EfficientNetV2-S, M, L, and 

XL, with different capacities and processing demands. 

EfficientNetV2-S is designed for smaller jobs, whereas 

EfficientNetV2-XL is intended for larger datasets. These 

models are intended to deliver considerable increases in 

training speed (up to 11 times faster) and parameter efficiency 

(up to 6.8 times smaller), as demonstrated on datasets such as 

ImageNet, CIFAR, and Flowers. Pretraining on larger datasets, 

such as ImageNet21k, is used to improve performance and 

achieve competitive accuracy with fewer computational 

resources. Illustration of EfficientNetV2 depicted in Figure 5. 

 

 
 

Figure 5. Illustration of the architecture of EfficientNetV2 

 

Table 2. Datasets information 

 
Datasets Characteristics Acquisition Preprocessing 

NUAA 

The NUAA Imposter dataset is a publicly 

accessible dataset for face anti-spoofing 

research. 
The dataset was compiled by the Pattern 

Recognition and Intelligent System 

Laboratory at Nanjing University of 

Aeronautics and Astronautics (NUAA). 

Adjusting photos to a uniform 

resolution for model training. 

It comprises authentic and synthetic facial 

photographs utilized for the assessment of 

biometric security systems. 

Normalized pixel values for better 

model generalization. 

The photos were obtained via a camera in a 

regulated indoor setting. The fabricated images were generated 

from printed photographs of actual 

persons, rendering them valuable for 

studies in facial spoofing detection. 

Dividing the dataset into training, 

and validation subsets. 
The collection comprises authentic facial 

images and counterfeit ones created by 

printing photographs of real faces and 

displaying them to the camera. 

Data enrichment techniques, 

including rotation, flipping, and 

brightness modifications, enhance 

model generalization. 

iBeta1 

The iBeta dataset is a commonly utilized 

dataset for face anti-spoofing research. Original facial photographs captured 

using iPhone and Android cameras under 

diverse settings. 

Standardized picture resolutions. 

It comprises authentic and fabricated facial 

photographs, gathered under regulated 

conditions. 

Implemented color normalization 

to provide uniformity across 

varying lighting conditions. 
The counterfeit faces were generated 

utilizing printed photographs and digital 

display assaults (e.g., projecting a facial 

picture on a screen). 

Counterfeit samples were produced 

utilizing printed images, digital displays, 

and several prevalent spoofing 

techniques. 

Data augmented by changes such 

as brightness modification and 

random cropping. 

The dataset is utilized for assessing the 

resilience of face recognition and anti-

spoofing methods. 

Divide into training, and validation 

subsets to assess model 

performance equitably. 

Synthetic 

The dataset comprises authentic and 

fabricated facial photos. 

Authentic photographs were obtained 

directly from living subjects in various 

environments (e.g., workplace, 

residence). 

All photos were scaled to a 

standardized resolution for model 

compatibility. 

Counterfeit images are produced by 

positioning printed photographs or computer 

screen displays in front of a camera. 

Counterfeit photographs were produced 

via two primary techniques: Printed 

Attack: A printed image of an individual's 

face is positioned in front of a camera. 

Replay Attack: A digital image or video 

of an individual's face is exhibited on a 

mobile device or other digital display and 

shown to the camera. 

Faces were identified and cropped 

utilizing a face identification 

technique to emphasize pertinent 

features. 

The collection comprises several locations, 

backdrops, and lighting situations. 

Implemented transformations such 

as flipping, brightness 

modifications, and rotation to 

improve model generalization. 
Certain counterfeit samples may display 

aberrations including glare, pixelation, and 

perspective distortions resulting from printed 

or screen-based presentation attacks. 

The dataset was acquired using standard 

cameras under diverse lighting and 

environmental conditions to replicate 

real-world situations. 

Images were partitioned into 

training, and validation sets to 

guarantee a balanced and impartial 

assessment. 

 

2.4.2 MobileViT 

MobileViT [23], a lightweight vision transformer designed 

for mobile devices, combines CNNs and transformers. 

MobileViT blocks combine global transformer processing 

with local convolutional representation learning, allowing for 

efficient visual interpretation while preserving spatial and 

patch-level order. The network uses fewer parameters and 

easier training procedures, making it ideal for mobile 

applications such as object detection and semantic 

segmentation. Three model variants are presented: 

MobileViT-XXS, XS, and S, with varying size and complexity. 

These models outperform classic lightweight CNNs and ViT-

based approaches on benchmarks such as ImageNet-1K while 

being low latency and efficient on mobile devices. Illustration 

of the MobileViT architecture is presented in Figure 6. 
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Figure 6. Illustration of the architecture of MobileViT 

 

2.5 System performance measurement 

 

The performance of the deep learning model was evaluated 

using the confusion matrix presented in Table 3. The 

confusion matrix comprised several metrics, including 

accuracy, precision, recall, F1-score, False Negative Rate 

(FNR), False Positive Rate (FPR), and Half Total Error Rate 

(HTER), as described in Eqs. (1)-(7). Four components were 

utilized to create the matrices: True Positives (TP), False 

Positives (FP), True Negatives (TN), and False Negatives 

(FN). The matrices might benefit in predicting both the real 

and the fake images [24, 25]. 

 

Table 3. Confusion matrix 

 

 
Actual 

(+) (-) 

Predicted 

(+) 
TP 

(True Positive) 

FP 

(False Positive) 

(-) 
FN 

(False Negative) 

TN 

(True Negative) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
  (1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
  (2) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
  (3) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
  (4) 

 

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
  (5) 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
  (6) 

 

𝐻𝑇𝐸𝑅 =
𝐹𝑁𝑅+𝐹𝑃𝑅

2
  (7) 

 

The model's accuracy and robustness in this paper are 

determined by analyzing the metrics of False Positive Rate 

(FPR), False Negative Rate (FNR), and Half Total Error Rate 

(HTER). 

 

 

 

2.6 Data augmentation and testing scenario 

 

Both the quantity and quality of training datasets are 

increased concurrently via data augmentation. This facilitates 

the improvement of deep learning models [26]. To enhance the 

diversity of data that utilize in model training, the data 

augmentation procedure employs ImageDataGenerator to 

apply a sequence of transformations to the dataset, which 

includes both real and fake images. This study generally 

entails data augmentation through several rules, including: 

a. Flip: Horizontal, Vertical 

b. Crop: 0% Minimum Zoom, 20% Maximum Zoom 

c. Rotation: Between -15° and +15° 

d. Hue: Between -15° and +15° 

e. Saturation: Between -25% and +25% 

f. Brightness: Between -15% and +15% 

g. Exposure: Between -10% and +10% 

h. Blur: Up to 2.5px 

i. Noise: Up to 0.1% of pixels 

 

 

3. RESULT AND DISCUSSION  

 

Hyperparameter setting and layer configurations used for 

EfficientNetV2, and MobileViT depicted in Table 4 and Table 

5. 

As demonstrated in Tables 6-8, the classification reports for 

the three datasets NUAA, Synthetic, and iBeta 1 reveal that 

outstanding performance was attained across all models 

assessed. Models such as EfficientNetV2S, EfficientNetV2M, 

EfficientNetV2L, and MobileViT were examined, and 

precision, recall, F1-score, and accuracy metrics were 

consistently 1.00 on both the NUAA and Synthetic datasets. 

This means that the models were able to distinguish between 

"Fake" and "Real" classes without error in these datasets. 

 

Table 4. Deep learning hyperparameters 

 
Model Parameter Value 

EfficientNetV2S 

optimizer Adam 

batch_size 32 

epoch 20 

learning_rate 0.001 

loss sparse_categorical_crossentropy 

metrics accuracy 

EfficientNetV2M 
optimizer Adam 

batch_size 32 
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epoch 20 

learning_rate 0.001 

loss sparse_categorical_crossentropy 

metrics accuracy 

EfficientNetV2L 

optimizer Adam 

batch_size 32 

epoch 20 

learning_rate 0.001 

loss sparse_categorical_crossentropy 

metrics accuracy 

MobileViT 

optimizer Adam 

batch_size 32 

epoch 20 

learning_rate 0.001 

loss sparse_categorical_crossentropy 

metrics accuracy 

 

Table 5. Layer configurations 

 
Layer Parameter Value 

GaussianNoise - 0.2 

Conv2D 

filters 16 

kernel_size (3,3) 

padding same 

activation relu 

kernel_regularizer 0.1 

Dropout - 0.2 

Conv2D 

filters 32 

(3,3) 

same 

relu 

0.1 

kernel_size 

padding 

activation 

kernel_regularizer 

Dropout - 0.2 

Dense 

filters 64 

activation relu 

kernel_regularizer 0.1 

Dropout - 0.2 

Conv2D 

filters 32 

activation relu 

kernel_regularizer 0.1 

Dropout - 0.2 

Dense 

filters 2 

activation softmax 

kernel_regularizer 0.1 

 

Table 6. Classification report on NUAA dataset 

 

Model Class Precision Recall 
F1-

Score 
Accuracy  

EfficientNetV2S 
Fake 1.00 1.00 1.00 

1.00 
 

Real 1.00 1.00 1.00  

EfficientNetV2M 
Fake 1.00 1.00 1.00 

1.00 
 

Real 1.00 1.00 1.00  

EfficientNetV2L 
Fake 1.00 1.00 1.00 

1.00 
 

Real 1.00 1.00 1.00  

MobileViT 
Fake 1.00 1.00 1.00 

1.00 
 

Real 1.00 1.00 1.00  

 

Table 7. Classification report on synthetic dataset 

 

Model Class Precision Recall 
F1-

Score 
Accuracy 

EfficientNetV2S 
Fake 1.00 1.00 1.00 

1.00 
Real 1.00 1.00 1.00 

EfficientNetV2M 
Fake 1.00 1.00 1.00 

1.00 
Real 1.00 1.00 1.00 

EfficientNetV2L 
Fake 1.00 1.00 1.00 

1.00 
Real 1.00 1.00 1.00 

MobileViT 
Fake 1.00 1.00 1.00 

1.00 
Real 1.00 1.00 1.00 

Table 8. Classification report on iBeta 1 dataset 

 

Model Class Precision Recall 
F1-

Score 
Accuracy 

EfficientNetV2S 
Fake 1.00 1.00 1.00 

1.00 
Real 1.00 1.00 1.00 

EfficientNetV2M 
Fake 0.99 1.00 0.99 

1.00 
Real 1.00 0.99 0.99 

EfficientNetV2L 
Fake 1.00 1.00 1.00 

1.00 
Real 1.00 1.00 1.00 

MobileViT 
Fake 0.99 1.00 1.00 

1.00 
Real 1.00 0.99 1.00 

 

However, in the iBeta 1 dataset, there were minor 

differences in performance between EfficientNetV2M and 

MobileVit. While both models correctly classified the "Fake" 

class (accuracy and recall of 1.00), the recall for the "Real" 

class decreased to 0.99, resulting in an F1-score of 0.99 for this 

class. These fluctuations indicate that there were few 

misclassifications in the iBeta 1 dataset for the "Real" class, 

although overall accuracy for all models stayed at 1.00. The 

results show a modest change in model resilience based on 

dataset features. 

 

Table 9. Error metrics on NUAA dataset 

 
Model FPR FNR HTER 

EfficientNetV2S 0.0006 0 0.0003 

EfficientNetV2M 0.0027 0.0006 0.0017 

EfficientNetV2L 0.0013 0.0006 0.0010 

MobileViT 0.0027 0 0.0013 

 

Table 10. Error metrics on synthetic dataset 

 
Model FPR FNR HTER 

EfficientNetV2S 0 0 0 

EfficientNetV2M 0 0 0 

EfficientNetV2L 0.0022 0 0.0011 

MobileViT 0 0 0 

 

Table 11. Error metrics on iBeta 1 dataset 

 
Model FPR FNR HTER 

EfficientNetV2S 0 0 0 

EfficientNetV2M 0.0029 0.0081 0.0055 

EfficientNetV2L 0 0 0 

MobileViT 0.0029 0.0054 0.0042 

 

Table 12. Training duration for every dataset 

 

Dataset Model 
Training Duration 

(Seconds) 

NUAA 

EfficientNetV2S 1537.53 seconds 

EfficientNetV2M 2012.85 seconds 

EfficientNetV2L 6814.88 seconds 

MobileViT 158.48 seconds 

Synthetic Dataset 

EfficientNetV2S 771.93 seconds 

EfficientNetV2M 1664.67 seconds 

EfficientNetV2L 2899.20 seconds 

MobileViT 67.27 seconds 

iBeta1 

EfficientNetV2S 506.27 seconds 

EfficientNetV2M 749.57 seconds 

EfficientNetV2L 2456.14 seconds 

MobileViT 46.95 seconds 

 

Examples of detection results from each dataset depicted in 

Figure 7. 
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NUAA Dataset 

 
Target: fake              Target:real 

Output: fake            Output: fake 

 

Synthetic Dataset 

 

 

 
Target: print            Target: real              Target: replay 

Output: print           Output: real             Output: replay 

 

iBeta 1 

  

Target: fake                         Target: real 

Output: fake                        Output: real 

 

Figure 7. Output from every datasets 

 

Tables 9-12 depict the performance comparison of three 

EfficientNetV2 models (versions S, M, and L) towards 

MobileViT across three datasets: NUAA, Synthetic, and iBeta 

1.  

EfficientNetV2S consistently outperforms other models 

over all datasets. It achieves outstanding outcomes (zero FPR, 

FNR, and HTER) on the Synthetic and iBeta datasets, while 

having a minimal error rate on the NUAA dataset (HTER = 

0.0003). The "S" version demonstrates exceptional 

proficiency in differentiating between authentic and 

counterfeit samples in both synthetic and real-world contexts. 

EfficientNetV2S in this experiment has shown superiority 

as the optimal approach due to its lightweight structure, fast 

inference, and robust feature extraction capabilities. It is 

particularly beneficial for liveness detection, considered as a 

real-time application where efficiency and accuracy are 

essential. 

In contrast, EfficientNetV2M showed the highest error rate, 

particularly on the iBeta dataset, where its HTER is 0.0055, 

related to its high FNR of 0.0081. This indicates that 

EfficientNetV2M struggles with generalization relative to 

other models. 

MobileViT performs well, exhibiting low error rates on the 

iBeta and NUAA datasets and no mistakes on the Synthetic 

dataset. But compared to EfficientNetV2S and 

EfficientNetV2L, MobileViT is less reliable. The 

EfficientNetV2L variation demonstrates commendable 

performance, attaining an optimal score on the iBeta dataset 

and exhibiting a reduced HTER on NUAA compared to 

EfficientNetV2M; nevertheless, its efficacy on the Synthetic 

data is considerably hindered by its minimal FPR. 

Regarding datasets, the Synthetic dataset has little 

challenges for all models, as most of them attain 100% 

accuracy. Nonetheless, the iBeta and NUAA datasets 

demonstrate greater complexity, particularly for 

EfficientNetV2M and MobileViT, signifying heightened 

challenges in managing real-world data. The results are 

verified by the confusion matrix values obtained from all 

algorithms throughout the experiment. The confusion matrix 

values can be seen in the Appendix section. Also, the results 

underscore the substantial robustness of EfficientNetV2S and 

EfficientNetV2L, suggesting that forthcoming advancements 

in EfficientNetV2M and MobileViT could bridge the 

performance disparity. 

 

 

4. CONCLUSIONS 

 

This study investigates liveness detection through deep 

learning techniques. The employed deep learning algorithm is 

CNN, utilizing EfficientNetV2S, EfficientNetV2M, 

EfficientNetV2L, and MobileViT models, applied to the 

NUAA, Synthetic, and iBeta 1 datasets. The experimental 

results, as indicated by the parameters of the confusion matrix, 

error metric, and training duration, indicate that 

EfficientNetV2S is superior to other approaches among the 

three datasets. This is not surprising, considering that the 

advantages of the EfficientNetV2S algorithm are small model 

size, fast Inference Speed, and ease of Deployment Feasibility. 

New datasets with various attack classes could be added for 

future research enhancements, in contrast to those used in this 

study. This aims to boost the detection of precision of new 

attacks that remain undetectable by this research. 

 

 

ACKNOWLEDGMENT 

 

The research was supported by the Ministry of Education, 

Culture, Research and Technology of Indonesia (Grant No.: 

043/SP2H/ RT-MONO/LL4/2024). 

 

 

REFERENCES  

 

[1] Ametefe, D.S., Sarnin, S.S., Ali, D.M., Zaheer, M.Z. 

(2022). Fingerprint liveness detection schemes: A review 

on presentation attack. Computer Methods in 

Biomechanics and Biomedical Engineering: Imaging & 

Visualization, 10(2): 217-240. 

https://doi.org/10.1080/21681163.2021.2012826 

[2] Sabaghi, A., Oghbaie, M., Hashemifard, K., Akbari, M. 

(2021). Deep learning meets liveness detection: Recent 

advancements and challenges. arXiv preprint 

arXiv:2112.14796. http://arxiv.org/abs/2112.14796 

[3] Tapia, J.E., Gonzalez, S., Busch, C. (2021). Iris liveness 

detection using a cascade of dedicated deep learning 

networks. IEEE Transactions on Information Forensics 

and Security, 17: 42-52. 

https://doi.org/10.1109/TIFS.2021.3132582 

[4] Koshy, R., Mahmood, A. (2020). Enhanced deep 

learning architectures for face liveness detection for 

static and video sequences. Entropy, 22(10): 1186. 

https://doi.org/10.3390/e22101186 

[5] Kuznetsov, O., Zakharov, D., Frontoni, E., Maranesi, A. 

(2024). AttackNet: Enhancing biometric security via 

329



 

tailored convolutional neural network architectures for 

liveness detection. Computers & Security, 141: 103828. 

https://doi.org/10.1016/j.cose.2024.103828 

[6] Jie, O.Z., Ming, L.T., Wee, T.C. (2023). Biometric 

authentication based on liveness detection using face 

landmarks and deep learning model. JOIV: International 

Journal on Informatics Visualization, 7(3-2): 1057-1065. 

https://doi.org/10.30630/joiv.7.3-2.2330 

[7] Priyadarsini, M.J.P., Ramya, K., Parlakota, S., Tadi, 

N.K.R., Jabeena, A., Rajini, G. (2023). Face anti-

spoofing and liveness detection using deep learning 

architectures. Journal of Engineering Science and 

Technology, 18: 217-227. 

[8] Zhou, M., Wang, Q., Li, Q., Zhou, W., Yang, J., Shen, C. 

(2024). Securing face liveness detection on mobile 

devices using unforgeable lip motion patterns. IEEE 

Transactions on Mobile Computing, 23(10): 9772-9788. 

https://doi.org/10.1109/TMC.2024.3367781 

[9] Taeb, M., Chi, H. (2022). Comparison of deepfake 

detection techniques through deep learning. Journal of 

Cybersecurity and Privacy, 2(1): 89-106. 

https://doi.org/10.3390/jcp2010007 

[10] Elsaeidy, A.A., Jagannath, N., Sanchis, A.G., Jamalipour, 

A., Munasinghe, K.S. (2020). Replay attack detection in 

smart cities using deep learning. IEEE Access, 8: 

137825-137837. 

https://doi.org/10.1109/ACCESS.2020.3012411 

[11] Zhang, X., Zheng, X., Mao, W. (2021). Adversarial 

perturbation defense on deep neural networks. ACM 

Computing Surveys (CSUR), 54(8): 1-36. 

https://doi.org/10.1145/3465397 

[12] Kelly, U.M., Veldhuis, R.N., Spreeuwers, L. (2020). 

Improving deep-learning-based face recognition to 

increase robustness against morphing attacks. In 9th 

International Conference on Signal, Image Processing 

and Pattern Recognition, SPPR 2020. Academy and 

Industry Research Collaboration Center (AIRCC), pp. 1-

12. https://doi.org/10.5121/csit.2020.101901 

[13] Meena, K.B., Tyagi, V. (2021). A deep learning based 

method for image splicing detection. Journal of Physics: 

Conference Series, 1714(1): 012038. 

https://doi.org/10.1088/1742-6596/1714/1/012038 

[14] Arora, S., Bhatia, M.P.S., Mittal, V. (2022). A robust 

framework for spoofing detection in faces using deep 

learning. The Visual Computer, 38(7): 2461-2472. 

https://doi.org/10.1007/s00371-021-02123-4 

[15] Guan, Q., Deng, H., Liang, W., Ni, M., Gao, X., Ma, M., 

Zhong, X., Gong, X. (2023). Resolution-independent 

liveness detection via computational ghost imaging. 

Applied Physics Letters, 123(2). 

https://doi.org/10.1063/5.0155365 

[16] Anjum, H., Arshad, U., Ali, R.H., Abideen, Z.U., Shah, 

M.H., Khan, T.A., Ijaz, A.Z., Siddique, A.B., Imad, M. 

(2023). Robust and reliable liveness detection models for 

facial recognition systems. In 2023 International 

Conference on Frontiers of Information Technology 

(FIT), pp. 292-297. 

https://doi.org/10.1109/FIT60620.2023.00060 

[17] Jondri, J., Rizal, A. (2020). Classification of premature 

ventricular contraction (PVC) based on ECG signal using 

convolutional neural network. Indonesian Journal of 

Electrical Engineering and Informatics (IJEEI), 8(3): 

494-499. https://doi.org/10.11591/ijeei.v8i3.1530 

[18] Ahmad, Z., Shahid Khan, A., Wai Shiang, C., Abdullah, 

J., Ahmad, F. (2021). Network intrusion detection system: 

A systematic study of machine learning and deep 

learning approaches. Transactions on Emerging 

Telecommunications Technologies, 32(1): e4150. 

https://doi.org/10.1002/ett.4150 

[19] Helm, J.M., Swiergosz, A.M., Haeberle, H.S., Karnuta, 

J.M., Schaffer, J.L., Krebs, V.E., Spitzer, A.I., 

Ramkumar, P.N. (2020). Machine learning and artificial 

intelligence: Definitions, applications, and future 

directions. Current Reviews in Musculoskeletal 

Medicine, 13: 69-76. https://doi.org/10.1007/s12178-

020-09600-8 

[20] Kaggle. (2023). iBeta Level 1 Liveness Detection 

Dataset-Part 1. 

https://www.kaggle.com/datasets/trainingdatapro/ibeta-

level-1-liveness-detection-dataset-part-1, accessed on 

Nov. 17, 2024. 

[21] Tan, X., Li, Y., Liu, J., Jiang, L. (2010). Face liveness 

detection from a single image with sparse low rank 

bilinear discriminative model. In Computer Vision–

ECCV 2010: 11th European Conference on Computer 

Vision, Heraklion, Crete, Greece, September 5-11, 2010, 

Proceedings, Part VI 11, pp. 504-517. 

https://doi.org/10.1007/978-3-642-15567-3_37 

[22] Tan, M., Le, Q. (2021). Efficientnetv2: Smaller models 

and faster training. In International Conference on 

Machine Learning, pp. 10096-10106. 

https://doi.org/10.48550/arXiv.2104.00298 

[23] Mehta, S., Rastegari, M. (2021). Mobilevit: Light-weight, 

general-purpose, and mobile-friendly vision transformer. 

arXiv preprint arXiv:2110.02178. 

https://doi.org/10.48550/arXiv.2110.02178 

[24] Hasnain, M., Pasha, M.F., Ghani, I., Imran, M., 

Alzahrani, M.Y., Budiarto, R. (2020). Evaluating trust 

prediction and confusion matrix measures for web 

services ranking. IEEE Access, 8: 90847-90861. 

https://doi.org/10.1109/ACCESS.2020.2994222 

[25] Luque, A., Carrasco, A., Martín, A., de Las Heras, A. 

(2019). The impact of class imbalance in classification 

performance metrics based on the binary confusion 

matrix. Pattern Recognition, 91: 216-231. 

https://doi.org/10.1016/j.patcog.2019.02.023 

[26] Shorten, C., Khoshgoftaar, T.M. (2019). A survey on 

image data augmentation for deep learning. Journal of 

Big Data, 6(1): 1-48. https://doi.org/10.1186/s40537-

019-0197-0  

330




