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 With the rapid development of materials science and engineering, the measurement and 

prediction of thermal properties have become a key research focus. Traditional methods 

for thermal property testing, while providing accurate experimental data, often require 

complex experimental conditions and lengthy testing periods, limiting their widespread 

application in real-time detection and efficient usage. Raman scattering, as a non-

destructive and highly sensitive analytical technique, can effectively capture molecular 

structure and thermal property information of samples, making it increasingly popular in 

the field of thermal property measurement. However, Raman scattering signals are 

susceptible to interference from factors such as environmental temperature and laser 

power, leading to experimental errors that affect the accuracy of thermal property 

predictions. Currently, methods for predicting thermal properties based on Raman 

scattering signals primarily employ machine learning and deep learning techniques, but 

there remains significant room for improvement in accuracy, particularly when dealing 

with complex samples and highly nonlinear signals. Furthermore, existing error correction 

methods lack real-time adaptability, limiting their application in dynamic environments. 

To address these issues, this paper proposes a neural network-based model for Raman 

scattering measurement error correction and thermal property prediction. By constructing 

a thermal property prediction model and error correction model based on Random Forest 

(RF)-temporal convolutional network (TCN)-self-attention (SA), this study effectively 

improves prediction accuracy and the reliability of experimental data, providing theoretical 

support and technical assurance for the precise application of Raman scattering technology. 
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1. INTRODUCTION 

 

With the continuous development of technology, the 

thermal property characteristics of materials play a crucial role 

in many fields such as materials science, energy engineering, 

environmental monitoring, etc. [1-5]. Traditional thermal 

property testing methods, such as steady-state and transient-

state methods, while providing relatively accurate 

measurement data, often require complex experimental 

equipment and long experimental processes, which limits their 

application in certain high-efficiency and real-time monitoring 

scenarios [6-9]. Raman scattering technology, as a high-

sensitivity and non-destructive testing method, has gradually 

become an important tool for studying thermal properties 

because it can provide information on molecular structure, 

composition, and thermal properties [10, 11]. With the 

advancement of sensor technology and the improvement of 

data processing capabilities, thermal property measurement 

based on Raman scattering technology has become one of the 

current research hotspots. 

However, Raman scattering measurement technology faces 

some challenges during application, especially in terms of 

measurement errors and thermal property prediction accuracy. 

Since Raman scattering signals are easily affected by factors 

such as environmental temperature, laser power, and sample 

morphology, the actual measurement results often deviate [12, 

13]. Additionally, due to the complex nonlinear relationship 

between Raman scattering signals and the thermal properties 

of the sample, extracting accurate thermal property 

information from Raman spectra has become a difficult 

research issue [14, 15]. Therefore, studying how to accurately 

predict thermal properties and correct measurement errors 

based on Raman scattering signals is of significant importance 

for enhancing the application value of Raman scattering 

technology. 

Currently, many scholars have proposed various thermal 

property prediction models based on Raman scattering signals, 

and the introduction of machine learning and deep learning 

methods has brought new developments to this field. 

However, most existing methods still have considerable errors 

when facing complex samples, especially in modeling the 

nonlinear mapping relationship between Raman scattering 

signals and thermal properties, and still lack effective and 

accurate correction methods [16-18]. For example, traditional 

regression analysis methods often overlook signal noise and 

the interaction between multiple variables, resulting in poor 

generalization ability of the prediction models. Moreover, the 

real-time performance and adaptability of existing error 
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correction methods in dynamic monitoring are poor, making it 

difficult to meet the practical application needs in complex 

environments [19-21]. Therefore, improving the processing 

accuracy of Raman scattering signals and the prediction 

accuracy of thermal properties has become an urgent issue to 

address. 

This paper aims to propose a comprehensive method for 

Raman scattering measurement error correction and thermal 

property prediction based on neural networks. Specifically, 

this paper first establishes a thermal property prediction model 

based on RF-TCN-SA, and by introducing TCN and the SA 

mechanism, effectively captures the features related to thermal 

properties in the Raman spectra, thereby enhancing prediction 

accuracy. Secondly, this paper constructs an error correction 

model for Raman scattering measurement, which uses neural 

network methods to perform real-time correction of 

measurement deviations in experiments, ensuring the accuracy 

of thermal property prediction results. Through the 

combination of these two models, not only can more accurate 

thermal property prediction be achieved, but errors that may 

occur during the experimental process can also be effectively 

reduced, improving the reliability of Raman scattering 

technology in practical applications. This research provides a 

new solution for the precise application of Raman scattering 

technology, with significant theoretical and practical 

implications. 

 

 

2. ESTABLISHMENT OF THERMAL PROPERTY 

PREDICTION MODEL BASED ON RF-TCN-SA 

 

The neural network-based thermal property prediction 

model constructed in this paper requires accurate input data 

sources, which must include information after the Raman 

scattering measurement error correction. First, the Raman 

scattering measurement data itself is an important input 

source. Since Raman scattering signals are affected by noise, 

instrument bias, and various other factors, data that has not 

been error-corrected may affect the subsequent thermal 

property prediction. Therefore, error correction in the data 

preprocessing step is crucial. Specifically, in the input of the 

neural network model, the Raman scattering spectral data, 

after correction, should include the correct peak positions, 

peak intensities, and their correlation with the material's 

thermal properties. Additionally, experimental control 

parameters such as temperature, pressure, and other 

conditions, as well as the chemical composition and structural 

features of the sample, are also indispensable input data. These 

factors influence the Raman scattering performance, indirectly 

affecting the thermal property prediction. 

Specifically, this paper constructs a thermal property 

prediction model based on RF-TCN-SA. To improve the 

prediction efficiency and accuracy of the model, this paper 

uses feature selection methods to optimize the input data. 

Since Raman scattering spectral data contains a large number 

of potential features, some of these features may be redundant 

or irrelevant for thermal property prediction. Directly 

inputting all features into the model would greatly increase the 

computational load and may even affect the training efficiency 

and accuracy of the model. Therefore, this paper introduces 

traditional feature selection techniques such as the Pearson 

correlation coefficient method and gray relational analysis 

method. By analyzing the correlation between each feature and 

thermal property parameters, the features most closely related 

to thermal properties are selected. These methods can 

effectively remove weakly correlated or irrelevant features, 

retaining the key information that significantly impacts the 

prediction results, thus simplifying the input data, reducing 

computational load, and improving the training efficiency of 

the model. With the data after feature selection, this paper 

further uses the RF-TCN-SA model to provide a new solution 

for thermal property prediction. RF, as a powerful feature 

selection and evaluation tool, evaluates each feature's 

contribution to the prediction result, which helps further select 

the most important features, improving the model's robustness 

and prediction ability. The TCN, with its strong ability to 

model time-series data, can capture complex dynamic changes 

between different time or frequency points in the Raman 

spectrum. Finally, the addition of the SA mechanism helps the 

model focus on the most important features for thermal 

property prediction, automatically adjusting the weights of 

different input features, further enhancing the model's 

prediction accuracy. 

 

2.1 RF 

 

RF is an ensemble learning algorithm that enhances the 

model's generalization ability by combining the results of 

multiple decision trees. Its advantage lies in effectively 

addressing complex and nonlinear prediction problems, which 

makes it perform excellently in thermal property prediction. 

RF generates a large number of decision trees and integrates 

their prediction results, achieving better performance in 

prediction tasks compared to a single decision tree. In the 

thermal property prediction of this paper, the core role of RF 

is to help the model identify the features most closely related 

to thermal properties by performing feature selection, 

evaluation, and optimization on the Raman scattering spectral 

data. 

During the training process of RF, the Bootstrap resampling 

technique is first used to randomly sample the training set from 

the corrected Raman scattering dataset with replacement. 

Suppose the original corrected dataset is L, and by randomly 

sampling L(u) samples, multiple different subsample sets are 

formed. These subsample sets do not need to completely cover 

the original dataset, but through repeated sampling, the 

diversity of the training data is ensured. This method of sample 

generation ensures that each decision tree is trained on 

different subsets of data, avoiding the overfitting problem 

caused by a single dataset. During the training process of each 

decision tree, the RF algorithm does not use all the features, 

but randomly selects other appropriate subsets of features from 

the total feature set L as candidate features. This strategy 

reduces the correlation between features, avoids the model 

from overly relying on certain features, and enhances the 

diversity of each tree. In thermal property prediction, Raman 

scattering data may contain multiple redundant features, and 

by randomly selecting features, irrelevant or noisy features can 

be effectively removed, thereby improving the model's 

robustness and prediction ability. 

During the training process of each decision tree, RF uses 

the Gini impurity minimization principle to select the best 

feature for node splitting. For each candidate feature subset, 

the algorithm calculates the Gini impurity that each feature 

may cause after splitting and selects the feature with the 

minimum Gini value for node division. In thermal property 

prediction, there is a complex nonlinear relationship between 

different features of the Raman scattering data and thermal 
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properties. By minimizing Gini impurity, the model can 

accurately capture the correlation between features and 

thermal properties, thereby improving prediction accuracy. 

During the training process of RF, each decision tree grows to 

its maximum extent until all samples are classified or a certain 

termination condition is met, without pruning. This strategy 

ensures that each tree can fully learn the information in the 

data. Especially in thermal property prediction, Raman 

scattering data may have complex patterns that are difficult to 

capture by simplified rules. Therefore, by avoiding pruning, 

the model can retain the predictive ability of each tree to the 

maximum extent. This is particularly helpful when dealing 

with complex and high-dimensional data, providing more 

information sources to aid the final prediction result. 

After all decision trees are trained, RF aggregates the 

prediction results of the multiple decision trees according to 

the ensemble learning principle to obtain the final thermal 

property prediction value. In regression tasks, the aggregation 

method usually involves averaging, while in classification 

tasks, a voting mechanism is used. In the specific application 

of thermal property prediction, aggregating the prediction 

results of multiple trees can effectively reduce the errors or 

biases that may arise from a single tree. Especially when there 

is a lot of data noise, the aggregated result significantly 

improves the stability and accuracy of the prediction. Figure 1 

shows the RF flowchart. 

 

 
 

Figure 1. RF flowchart 

 

2.2 Feature selection 

 

In the model, feature selection is a crucial step, especially 

when processing the corrected Raman scattering spectral data. 

Feature selection not only improves the model's prediction 

accuracy but also reduces the data dimensionality, improves 

computational efficiency, and prevents overfitting. Below, we 

describe the three basic steps of feature selection for thermal 

property influencing factors data: 

Step 1: Calculate Out-of-Bag (OOB) error rate 

During the training process of RF, the Bootstrap resampling 

technique is used to generate multiple training sample sets, 

while keeping the samples that were not selected as OOB data. 

In the training process of each decision tree, the OOB data 

does not participate in training, so it can be used to evaluate 

the performance of the decision tree. Specifically, for a 

decision tree sl in the RF, the misclassification rate is 

calculated using its OOB data. This misclassification rate 

reflects the model's prediction error on unseen data and is an 

important basis for feature selection. In the corrected Raman 

scattering spectral data, the OOB error rate can effectively 

assess the correlation between features and thermal properties 

and their impact on the model's prediction. Assuming there are 

v decision trees in total, the number of prediction errors is 

represented by lER (au), and the total number of predictions is 

represented by lAR(au), then for a specific feature au randomly 

selected by a certain tree sl in the RF, the following formula 

gives the misclassification rate of the decision tree tmsl: 

 

( )
( )
( )

100%
ER u

l u

AL u

l a
P a

l a
=   (1) 

Step 2: Calculate feature accuracy decrease 

When evaluating feature importance, keeping other features 

unchanged, a feature au is randomly selected and noise is 

added to it, i.e., the feature is randomly assigned a value, and 

the misclassification rate of decision tree sl is calculated again. 

Suppose the misclassification rate before adding noise is 

OBBBF, and the misclassification rate after adding noise is 

OBBAF, then the accuracy decrease of the feature is 

ΔOOB=OBBAF-OBBBF. This accuracy decrease reflects the 

importance of feature au to the model prediction: if a feature is 

crucial to the model prediction, the misclassification rate will 

increase significantly after noise is added. In the corrected 

Raman scattering spectral data, this method can identify which 

features are most important for thermal property prediction. 

Suppose after randomly assigning values to feature au, the 

accuracy decrease of the decision tree is represented by Lu(a.), 

the OOB error rate of the original feature sample set is 

represented by Pl(au), and the OOB error rate after random 

assignment of feature au is represented by Pl'(au). The 

corresponding accuracy decrease of the feature can be 

calculated using the following formula: 

 

( ) ( ) ( )'

u u l u l uL a P a P a= −  (2) 

 

Step 3: Calculate average accuracy decrease and feature 

selection 

Repeat the above steps and calculate the accuracy decrease 

of feature au for each decision tree in the RF, then take the 

average as the importance score of the feature. These 

importance scores can be used to rank and select features, 

choosing the features with higher scores as the model's input 
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variables. In thermal property prediction, this process can 

effectively filter out the features most closely related to 

thermal properties, reducing data dimensionality and 

improving the model's computational efficiency and 

prediction accuracy. For Raman scattering spectral data, 

feature selection helps the model focus on the most 

informative features, such as the corrected peak positions and 

peak intensities, further enhancing the performance of thermal 

property prediction. Suppose the average accuracy decrease of 

feature au is represented by L(au), and the corresponding 

average accuracy decrease of the feature can be calculated 

using the following formula: 

 

( ) ( )
1

1 v

u u u

u

L a L a
v =

=   (3) 

 

2.3 SA mechanism 

 

The actual Raman scattering data typically include multiple 

spectral features, which have complex correlations and 

potential temporal dependencies with the thermal property 

parameters of the substance. Traditional TCN models, 

although capable of effectively extracting temporal features 

through convolution operations, may not fully capture the 

correlations between long-distance inputs when dealing with 

long-term dependencies. The SA mechanism can dynamically 

adjust the weight of each time step by calculating the similarity 

between the Query of each input and the Key of other inputs, 

enabling effective focus on long historical sequence 

information. Figure 2 shows an illustration of the attention 

mechanism calculation process. Through this mechanism, the 

model can focus more attention on the time steps and features 

most crucial for thermal property prediction, significantly 

improving prediction accuracy. Let A=[a1,a2,…,av] represent 

the model input data, and the calculation process of the SA 

mechanism is as follows: 

 
W

J

N

W Q A

J Q A

N Q A

 =


=


=

 (4) 

 

 
 

Figure 2. Illustration of the attention mechanism calculation 

process 

 

Suppose the weight vector is represented by βk, the 

adjustment parameter is represented by 1/(fj)1/2, and the 

dimension of the Key matrix is represented by fj. The 

calculation process of the SA mechanism's weight coefficient 

is as follows: 

 

( )softmax S l

k kJ w =   (5) 

 

Figure 3 shows the schematic diagram of the constructed 

TCN-SA model. 
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ATT W J N N
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 
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 (6) 

 

 
 

Figure 3. Schematic diagram of the TCN-SA model 

 

 

3. RAMAN SCATTERING MEASUREMENT ERROR 

CORRECTION MODEL 

 

The generation of Raman scattering measurement errors 

mainly results from the following three aspects, which not 

only affect the accuracy of Raman scattering data but also 

directly impact the precision of thermal property predictions. 

(1) Instrumental Noise and Environmental Interference: 

Raman scattering signals are inherently weak and susceptible 

to interference from instrumental noise and external 

environmental factors. Instrumental noise, particularly from 

components such as the optical system, detectors, and laser 

sources, can cause amplitude deviations or spectral distortion. 

Additionally, fluctuations in environmental conditions, such 

as changes in temperature and humidity in the laboratory, can 

also affect the quality of the Raman scattering signal. 

(2) Errors from Sample Preparation and Handling: The 

preparation and handling of the sample during the Raman 

scattering measurement process also have a significant impact 

on the results. The surface condition, thickness, uniformity of 

the sample, and the contact method between the sample and 

the detection system can all introduce errors. Furthermore, the 

physical and chemical properties of the sample may interfere 

with the Raman signal, causing fluorescence or other stray 

light to mix with the Raman signal. 

(3) Complexity and High Dimensionality of Raman 

Scattering Spectral Data: Raman scattering spectral data itself 

has high complexity and dimensionality. Overlapping peaks, 

band width, and position shifts can lead to measurement errors. 

Raman scattering spectra from different substances often share 

similar peak characteristics, particularly in complex samples 

where peak interference is common. This complexity 

increases the difficulty of analyzing Raman scattering signals 

and can lead to incorrect signal interpretation. Additionally, 

due to the diversity of Raman scattering signals, the spectral 

data may contain redundant information and irrelevant 

features. If this redundant information is not effectively 

processed, it can introduce noise interference into the thermal 

property prediction model. 

In order to improve the accuracy of thermal property 

prediction, this paper first calculates the original Raman 

scattering measurement error sequence using known Raman 

scattering spectral data and the corresponding thermal 

property data. This error sequence refers to the difference 

106



 

between the preliminary predicted values and the true thermal 

properties, reflecting noise, bias, and sources of error in the 

Raman scattering spectral data. Through the analysis of this 

error sequence, the patterns and characteristics of the errors 

can be clarified, providing an important basis for subsequent 

error correction. Next, to carry out effective error correction, 

we use a neural network to construct a dynamic error 

correction model. This model can extract the inherent patterns 

of the time series from a large amount of historical Raman 

scattering data and use these patterns to correct future thermal 

property prediction values. The specific process is as follows: 

First, based on the given original Raman scattering spectral 

data sequence O=(a1,a2,...,av) and the model's preliminary 

thermal property prediction sequence O'=(a'1,a'2,...,a'v), the 

Raman scattering measurement error sequence is calculated. 

This error sequence reflects the difference between the 

preliminary predicted values and the true thermal properties, 

revealing the bias and noise in the Raman scattering spectral 

data. The formula for calculating the error sequence is: 

 
'r O O= −  (7) 

 

After obtaining the error sequence, this paper uses a neural 

network to construct the error correction model. Let the 

prediction time point be represented by s, and the prediction 

time scale by S. The error prediction value at time s is 

represented by r'(e), and the error correction model is 

established as follows: 

 

( ) ( ) ( ) ( )' , 2 ,...,r s d r s S r s S r s vS= − − −    (8) 

 

The corrected thermal property prediction value is 

represented by O'', and the final output of the corrected model 

is: 

'' ' 'O O r= +  (9) 

 

To improve the prediction accuracy of the error correction 

model, this paper uses the Savitzky-Golay (SG) smoothing 

method to preprocess the error sequence. The SG smoothing 

method is a moving window least squares polynomial 

smoothing technique. The core idea is to perform polynomial 

fitting within a time window and calculate the smoothed value 

at the center point. Specifically, the SG smoothing method first 

selects a time window containing v=2l+1 data points, and 

performs polynomial fitting of order j as shown in the 

following formula, calculating the weighted coefficients of the 

center point with respect to the surrounding points, and then 

obtaining the smoothed estimate of the center point. The 

window moves continuously, providing the smoothed result 

for the entire error sequence. The larger the time window v, 

the better the data smoothing effect; the higher the polynomial 

fitting order j, the more detail in the original data can be 

preserved. The fitting formula is as follows: 

 
2 1

0 1 2 1... j

jb x x a x a x a −

−= + + + +  (10) 

 

Let the data before smoothing be represented by au, the data 

after smoothing by au
*, and the moving window smoothing 

coefficient by gk, then: 

 

*

l

u k k

k l
u

a g

a
G

+

=−=


 
(11) 

 

Figure 4 shows the prediction flowchart of RF-TCN-SA 

thermal property prediction based on error correction. 

 
 

Figure 4. RF-TCN-SA thermal property prediction flowchart based on error correction 
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Table 1. Feature importance ranking of corrected Raman scattering spectral data (Sample set 1) 

 

Pearson Correlation Coefficient Method Grey Relational Degree The Proposed Method 

Peak Position 0.82 Peak Area 0.81 Peak Position 0.6125 

Peak Intensity 0.81 Peak Width 0.81 Peak Intensity 0.5415 

Peak Width 0.75 Peak Intensity 0.81 Frequency Shift 0.4289 

Peak Area 0.74 Peak Position 0.81 Peak Width 0.3895 

Signal-to-Noise Ratio after Baseline 

Correction 
0.076 Isotope Effect 0.76 Time-Resolved Feature 0.3215 

Relative Peak Intensity 0.073 Time-Resolved Feature 0.76 
Frequency Shift Polarization 

Effect 
0.2862 

Frequency Drift Dependency 0.072 Polarization Effect 0.73 Frequency Shift Dependency 0.1456 

Frequency Drift 0.057 
Signal-to-Noise Ratio after Baseline 

Correction 
0.71 Isotope Effect 0.1428 

Polarization Effect 0.019 Relative Peak Intensity 0.71 
SNR after Baseline 

Correction 
0.1326 

Time-Resolved Feature 0.0093 Time-Resolved Feature 0.71 Time-Resolved Feature 0.1158 

Isotope Effect 0.0054 Frequency Drift Dependency 0.72 Relative Peak Intensity 0.0985 

 

Table 2. Ranking of feature information importance for corrected Raman scattering spectral data (Sample set 2) 

 

Pearson Correlation Coefficient Method Grey Relational Degree The Proposed Method 

Peak Position 0.83 Peak Area 0.65 Peak Position 6.1256 

Peak Intensity 0.81 Peak Width 0.65 Peak Intensity 4.2368 

Peak Width 0.78 Peak Intensity 0.65 Peak Width 2.1524 

Peak Area 0.73 Peak Position 0.65 Peak Area 1.3258 

Frequency Shift Dependency -0.47 Time-Resolved Feature 0.65 Polarization Effect 0.8254 

Relative Peak Intensity -0.46 Frequency Shift 0.65 Time-Resolved Feature 0.7895 

SNR after Baseline Correction -0.44 Polarization Effect 0.61 Frequency Shift 0.6123 

Isotope Effect -0.43 Isotope Effect 0.57 Frequency Shift Dependency 0.1758 

Time-Resolved Feature -0.062 SNR after Baseline Correction 0.57 Relative Peak Intensity 0.1526 

Frequency Shift -0.017 Relative Peak Intensity 0.57 SNR after Baseline Correction 0.1236 

Polarization Effect -0.015 Frequency Shift Dependency 0.57 Isotope Effect 0.1258 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

According to the feature importance ranking obtained from 

the Pearson correlation coefficient method, grey relational 

degree, and the method proposed in this paper (as shown in 

Table 1), it can be observed that the contributions of different 

features to thermal property prediction differ. In the 

comparison of the three methods on Sample Set 1, peak 

position, peak area, and peak intensity consistently rank 

among the top, showing a significant impact on thermal 

property prediction. Specifically, the correlation of peak 

position is 0.82 in the Pearson correlation coefficient method, 

0.6125 in the grey relational degree method, and 0.81 in the 

proposed method, all of which demonstrate high predictive 

ability. Peak area and peak intensity also show strong 

correlations, both with values of 0.81, ranking as high-priority 

features. Notably, peak width and frequency drift exhibit 

relatively consistent correlations across different methods, 

ranging from 0.75 to 0.81, indicating that these features have 

some influence in reflecting the thermal properties of the 

material. Features such as the signal-to-noise ratio after 

baseline correction, relative peak intensity, and time-resolved 

features generally show low correlations in all three methods, 

indicating that they contribute less to thermal property 

prediction and may have lower weight in practical 

applications. 

Similarly, based on the ranking of feature information 

importance obtained through Pearson Correlation Coefficient, 

Grey Relational Degree, and the proposed method in Table 2, 

the importance of different features in thermal property 

prediction shows some differences. In Sample Set 2, the peak 

position consistently shows the highest importance across all 

three methods, with a Pearson correlation of 0.83, grey 

relational degree of 0.65, and a weight value of 6.1256 in the 

proposed method, highlighting its core role in thermal property 

prediction. The peak intensity and peak width also 

demonstrate high correlation in various methods, with Pearson 

correlation coefficients of 0.81 and 0.78, grey relational degree 

of 0.65, and weight values of 4.2368 and 2.1524 in the 

proposed method, respectively. These features' high 

correlation indicates their significant predictive ability for the 

thermal properties of the material. Conversely, features like 

frequency drift dependence, relative peak intensity, signal-to-

noise ratio after baseline correction, and isotope effect show 

negative correlation in Pearson correlation coefficient, 

indicating their limited contribution to thermal property 

prediction. In the grey relational degree and proposed method, 

these features also exhibit significantly lower importance 

compared to peak position and peak intensity, confirming their 

secondary position in practical applications. 

From the error sequence of the Raman scattering spectral 

data before and after smoothing in Sample Set 1 shown in 

Figure 5, it can be observed that smoothing significantly 

improves the stability and noise level of the signal. The data 

before smoothing exhibit large fluctuations and noise, with 

error fluctuations being wide at most sampling points. For 

instance, at sampling point 50, the error is 0.8, while at 

sampling point 200, the error is -4, indicating significant high-

frequency noise in the original data. In contrast, the data after 

smoothing show reduced fluctuation amplitude, with error 

fluctuations stabilizing. For example, the error at sampling 

point 50 remains at 0.8, but the error at sampling point 200 is 

now stable at -2, showing a smoother trend. 

Similarly, from the error sequence of the Raman scattering 
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spectral data before and after smoothing in Sample Set 2 

shown in Figure 6, smoothing effectively reduces the 

fluctuation amplitude in the data and stabilizes the error 

change trend. The original data before smoothing exhibit sharp 

fluctuations, especially at sampling points 150 and 250, where 

the errors change drastically to -120 and -65, respectively. 

These extreme values indicate significant noise and instability 

in the signal. In comparison, after smoothing, the error 

changes become much smoother; for instance, the error at 

sampling point 150 decreases from -120 to -65, and at 

sampling point 250, the error decreases from -65 to -15. 

Overall, the error changes in the smoothed data are much more 

stable, with large fluctuations and outliers being effectively 

suppressed. From the experimental results, it can be seen that 

after smoothing, the error variations align more closely with 

the true signal trend and are less affected by noise, providing 

more reliable input data for thermal property prediction. 

 

 
 

Figure 5. Error sequence of Raman scattering spectral data before and after smoothing (Sample set 1) 
 

 
 

Figure 6. Error sequence of Raman scattering spectral data before and after smoothing (Sample set 2) 

 

  
(a) Before error correction (b) After error correction 

 

Figure 7. Comparison of thermal property prediction results of Raman scattering measurement model before and after error 

correction 
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From the data in Figure 7, it can be seen that the error 

between the predicted thermal property results and the real 

values significantly decreases after error correction, and the 

prediction accuracy is notably improved. Taking "this model" 

as an example, the prediction values before error correction 

show large deviations at multiple sampling points. For 

example, at sampling point 0, the prediction value is 25, with 

a difference of +1, while at sampling point 200, the prediction 

value is 23, with a difference of +2. These deviations indicate 

that the original prediction contains certain measurement 

errors and does not fully reflect the real situation. However, 

after error correction, the prediction results improved. For 

example, the prediction value at sampling point 0 decreased 

from 25 to 23.5, reducing the error by 0.5; the prediction value 

at sampling point 200 decreased from 23 to 20.5, reducing the 

error by 2.5, significantly improving the prediction accuracy. 

Overall, after error correction, the predicted results of all 

models are closer to the real values at each sampling point, and 

the error fluctuation tends to be smoother, showing higher 

prediction accuracy. 

 

 
(a) Before error correction 

 
(b) After error correction 

 

Figure 8. Prediction distribution map of thermal property 

prediction model based on RF-TCN-SA before and after 

Raman scattering measurement error correction 

 

Figure 8 shows the prediction distribution map of the 

thermal property prediction model based on RF-TCN-SA 

before and after Raman scattering measurement error 

correction. From the figure, it is clear that before error 

correction, the predicted values and real values are more 

dispersed, with the green predicted points widely distributed 

on both sides of the diagonal, indicating a large deviation 

between the predicted and real values and a higher degree of 

dispersion in the predictions. After error correction, the 

predicted points are clearly more concentrated around the 

diagonal, and the degree of dispersion is significantly reduced. 

This visually indicates that after the error correction based on 

the neural network, the difference between the predicted 

values and real values of the RF-TCN-SA-based thermal 

property prediction model has significantly decreased. 

The experimental results show that the error correction 

model constructed for Raman scattering measurement errors 

plays an effective role. By using a neural network to real-time 

correct experimental measurement deviations, the accuracy of 

the RF-TCN-SA-based thermal property prediction model is 

successfully improved. The change in the prediction 

distribution before and after error correction further confirms 

that combining the error correction model with the thermal 

property prediction model can effectively reduce errors 

occurring during the experiment, significantly improving the 

accuracy of thermal property prediction. This, in turn, 

enhances the reliability of Raman scattering technology in 

practical applications, providing more precise thermal 

property prediction results for research and applications in 

related fields. 

 

 

5. CONCLUSION 

 

This paper proposed a comprehensive method for Raman 

scattering measurement error correction and thermal property 

prediction based on neural networks, aiming to improve the 

accuracy and reliability of Raman scattering technology in 

thermal property prediction. First, the RF-TCN-SA-based 

thermal property prediction model was constructed, which 

effectively captures the complex features in Raman spectra by 

combining time convolution networks and SA mechanisms, 

thereby enhancing the prediction accuracy of thermal 

properties. Secondly, addressing common measurement errors 

in experiments, this paper proposed a neural network-based 

correction model that can real-time correct deviations in 

Raman scattering data, eliminating the interference of noise 

and outliers, thereby improving the accuracy of thermal 

property prediction. By combining these two models, this 

paper successfully achieved precise optimization of thermal 

property prediction while enhancing the reliability of Raman 

scattering technology, especially in dealing with experimental 

errors and data fluctuations, which has significant advantages. 

However, despite the good experimental results achieved by 

the comprehensive method proposed in this paper, some 

limitations remain. First, the model training process requires a 

large amount of high-quality experimental data, and the 

quality and quantity of data directly affect the model’s 

accuracy. Secondly, although neural network methods 

perform excellently in error correction and thermal property 

prediction, the training and adjustment process of the method 

requires considerable computational resources, and in specific 

cases, there may be issues with overfitting or excessive model 

complexity. Furthermore, the characteristics of Raman 

scattering data itself may be influenced by multiple factors, 

such as the uniformity of the sample and environmental 

conditions, which may limit the model’s generalization ability 

under different experimental conditions. Therefore, future 

research can focus on further optimizing the structure of the 

neural network model, exploring more efficient training 

methods, and enhancing the robustness of the model under 

complex experimental conditions. At the same time, adding 
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more samples and multi-dimensional feature information, 

especially feedback data in practical applications, will further 

improve the practicality and accuracy of the method in various 

thermal property prediction tasks. 
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