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 Effective heat management in batch reactors (BR) ensures accurate temperature control, 

enabling optimal reaction conditions, product quality, and process safety. Challenges in 

real-time temperature tracking involve balancing computational time with accuracy. 

Efficient Algorithms, as well as a simplified problem formulation, are essential in reducing 

computational complexity. This study exploits polymerization systems' differential 

flatness property (DFP) to simplify the temperature trajectory tracking problem. 

Expressing states and inputs as a function of flat outputs and their derivatives allows a 

lower-dimensional flat space, reducing computational complexity. A flatness-based model 

predictive control (FMPC) is proposed for efficient trajectory generation, enabling the 

handling of constraints while effectively producing feasible flat trajectories. This control 

architecture couples feedback from (MPC) with flatness feedforward linearization. It offers 

the computational advantage of requiring the solution of a convex quadratic programming 

(QP) instead of a nonlinear program. Meanwhile, a neural network-based model-free 

control (NN-MFC) has been designed to enhance the feedback loop of the FMPC and 

obtain improved trajectory tracking performance. In this paper, a nonlinear optimal 

tracking control problem for a nonlinear batch reactor is formulated and investigated. 

Moreover, a nonlinear model predictive control (NMPC) has been compared to the 

proposed control algorithm in crucial aspects such as tracking efficiency and computational 

complexity. The result of the proposed scheme has the advantages of excellent tracking 

and significantly reduced complexity compared to NMPC. 
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1. INTRODUCTION 

 

In the industrial processes, the rapid progression led to 

increasing demands for automation and precision in complex 

systems. Accurate temperature control in batch reactors 

ensures dependable reaction kinetics, product quality, and 

process safety. Even minor temperature deviations can lead to 

undesired by-products, reduced yield, or even hazardous 

conditions. Given batch reactor dynamics' strong 

nonlinearities and time-varying nature, achieving precise 

temperature tracking remains a key challenge in industrial 

applications. Batch reactors are widely used in 

pharmaceuticals, polymer manufacturing, and specialty 

chemicals, where reaction conditions must be precisely 

controlled to ensure product quality and safety.  

For example, in pharmaceutical synthesis, small 

temperature deviations can change reaction pathways, leading 

to the formation of undesired impurities that compromise drug 

efficacy. Similarly, maintaining an optimal temperature 

profile in polymerization processes is essential to control 

molecular weight distribution and polymer properties, directly 

impacting material performance. Beyond quality, temperature 

fluctuations can also pose significant safety risks, particularly 

in exothermic reactions, where an uncontrolled temperature 

rise may trigger runaway reactions or even thermal 

decomposition of reactants. This is a major concern in fine and 

petrochemical industries, where heat buildup can lead to 

reactor damage or hazardous conditions. Therefore, achieving 

precise and reliable temperature control is not just an academic 

challenge but a crucial requirement for industrial-scale batch 

processes. 

Computationally efficient and accurate tracking of 

nonlinear systems is crucial due to the current advancement 

and sophisticated technologies that industries are adopting [1]. 

Traditional control methods are inadequate for real-time 

performances in the face of highly nonlinear systems [2]. An 

accurate and reliable system model is required to capture the 

inherent nonlinearities and enhance the control algorithms' 

effectiveness to optimize production in modern-day industries 

[3]. While using model-based control in linear setup offers 

simplicity and reasonable computational requirements, the 

latter falls short in handling highly nonlinear industrial 

systems. Meanwhile, leveraging accurate nonlinear models 

enables more advanced control strategies to ensure the design 

objectives [4]. Using a nonlinear model in an optimal control 

problem presents notable challenges and downfalls, such as 

computational and model complexity [5]. Consequently, 

various control strategies have been developed to address 

challenges related to computational complexity and the 

structural properties of the system.  
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Controlling chemical reactors primarily focuses on 

regulating process variables such as temperature, 

concentration, and pressure to ensure the quality of the product 

and operation safety [6]. The nonlinear, time-varying 

dynamics with complex reaction pathways of the reactors 

demand advanced trajectory tracking and optimization control 

strategies. In the literature, advanced control methods have 

been applied to deal with the issues of operating chemical 

reactors. Abdullah and Christofides [7] suggested integrating 

MPC and sparse identification of nonlinear dynamics SINDy, 

a recent identification technique to control and model 

nonlinear chemical process systems. In the study of Yadav et 

al. [8], data-driven modeling of a pilot plant BR was 

conducted, and the article used NMPC to track the 

temperature. Meanwhile, Obando et al. [9] used a dual-mode 

based sliding mode control SMC for temperature control for 

nonlinear chemical processes. The structural properties of 

chemical reactors were investigated by Nguyen et al. [10], a 

structural method based on the thermodynamics extended 

model that resulted in a control strategy to stabilize the 

dynamics of the reaction system. Linear algebra was used to 

design a controller based on the integral of desired closed-loop 

behavior in the study of Sardella et al. [11], with an application 

to regulation and trajectory tracking in a chemical process. 

Emphasizing the current state of advanced chemical and 

materials process control, Dubljevic [12] called for closing the 

large gap between developed novel process control theories 

and their industrial applications. 

Model predictive control (MPC) is a powerful strategy in 

process control applications, providing significant rewards 

over traditional control methods such as PID controllers [13]. 

It was observed by Samad et al. [14]  that MPC is more 

impactful than other control technologies, such as nonlinear 

and robust control, with a future impact of 85%. MPC utilizes 

an explicit process model to optimize control actions and 

predict future responses, enabling it to deal with constraints 

effectively. In the process industry, MPC aligns with process 

control initiatives, facilitating real-time implementation and 

monitoring, which maintain process integrity according to 

reference [15]. While MPC offers excellent performance with 

its linear replica, it faces several challenges, such as the need 

for precise system models, difficulty selecting its weight 

factors, and computational complexity [16]. NMPC differs 

from MPC in a fundamental concept, which is the uncalled-for 

step of model linearization. It utilizes a nonlinear model of the 

system and performs discretization, making predictions and 

controlling decisions based on this approach. Nonlinear 

solvers are employed to find the optimal control moves to 

satisfy an objective function, according to Li et al. [17]. 

Despite the advantages of NMPC over linear MPC, the former 

faces significant drawbacks that have limited its applications 

to a great extent. One of the most significant challenges 

practitioners encounter when implementing NMPC in real-

time is its high computational demand. Different approaches 

were used to aid NMPC in overcoming its computational 

complexity; a successive online linearization technique was 

suggested by Patne et al. [18]. Linear MPC is an available 

method for most process control problems. As an alternative 

method to NMPC, it requires linearization of the nonlinear 

model and, hence, solving a convex optimization problem. 

However, Linear MPC suffers from complications in its 

performance due to the linearization process.  

Researchers have advocated combining feedback 

linearization with MPC to address nonlinear system 

challenges. However, a major drawback of this approach lies 

in canceling nonlinear terms, which introduces significant 

robustness issues, even when an uncertainty model is 

incorporated into the control scheme. Additionally, the 

integration of MPC with feedback linearization (FBL) 

struggles to manage known input time delays effectively [19]. 

Despite these limitations, the method benefits from requiring 

the optimization problem to be solved via quadratic 

programming (QP), a computationally efficient process. 

To overcome the robustness challenges associated with 

FBL, Flatness-Based Feedforward Linearization (FFL) 

emerges as an alternative. This approach addresses parametric 

uncertainties that can cause pole-zero cancellation 

inaccuracies, offering improved control design robustness. In 

their latest publication [20], the authors stated that most 

oversimplified systems models are differentially flat. 

Moreover, the ability to track an open-loop trajectory was 

established using flatness. Flatness is a decisive property that 

can facilitate the design of a control law to derive a linear or 

nonlinear system to the required objectives. Recent 

publications have focused on using the flatness property in 

many fields of control applications, such as aerospace [21, 22], 

industrial, and processes [23, 24], robotics, and mechatronics 

[25, 26]. Flatness can be used to design a flatness-based 

control in successive loops for subsystems [27, 28], or with 

other control techniques depending on the objective of the 

required design. In differentially flat systems, all system 

variables can be expressed in terms of flat output and a finite 

number of its time derivatives. This parameterization leads to 

reforming the system structure to find a global linearization 

without solving nonlinear differential equations. Differentially 

flat systems are the ones whose states and inputs are 

parametrized by flat outputs and a finite number of their time 

derivatives. Differential flatness (DF) input-output 

representation can fully capture the system's dynamic behavior 

in reduced, decoupled behavior, simplifying the trajectory 

generation problem. The flatness-based approach separates the 

nonlinear model into linear dynamics in Brunovsky form and 

nonlinear transformation [29]. A system is differentially flat if 

the states and the input can be parametrized according to a flat 

output and a finite number of time derivatives. Using any 

differential equation, these derivatives must be independent 

and unrelated to each other [30]. This method transforms the 

nonlinear system into an equivalent linear representation 

within the flat space. As a result, the system's dynamics are 

reformulated, yielding a linearized system in the transformed 

domain. This linear system facilitates using linear MPC 

instead of NMPC and enjoys utilizing quadratic programs for 

optimal control and linear control theory. Accordingly, a 

computationally efficient technique for the numerical solution 

of the optimal control problem can be obtained. By merging 

tools from the nonlinear control theory, the dimension of the 

original control problem is lowered, and the computational 

time is significantly enhanced [31]. On the other hand, the 

nonlinear transformation resulting from flatness can be learned 

using machine learning to close the feedback loop of the 

control system successfully. Machine learning techniques 

provide enhanced trajectory tracking when facing 

unpredictable operational issues [32, 33]. Nevertheless, 

learning the entire system dynamics is computationally 

expensive, and researchers adopted these approaches in the 

absence of an accurate model of the systems. Moreover, when 

using a data-driven model of the systems, the neural network 

fully engages with the dynamic system, which increases the 
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execution time, as in the study of Shettigar et al. [34]. 

Our proposed methodology combines MPC with flatness 

feedforward linearization to improve the batch reactor's 

robustness property and tracking performance. The 

conventional dynamic model remains a realistic representation 

of the batch reactor; meanwhile, learning all the dynamics 

from the start would be inefficient. A more realistic scenario 

is to enhance the existing model and train the NN to learn the 

inverse dynamics. Integrating neural networks (NNs) with 

control strategies, such as adaptive and predictive control, is 

well-established to address system uncertainties and 

imperfections. Once trained, the NN plays a critical role in 

refining inputs to the control strategy, thereby enhancing 

overall system performance and robustness, as in the study of 

Li et al. [35]. Using a standard feedforward neural network 

(FNN) architecture, where layers are fully connected, ensures 

convergence to the desired values. 

In our approach, we propose an efficient controller for 

temperature control of the batch reactor and attain a reliable 

tracking performance. The contributions of the article can be 

listed as follows: 

•A novel control architecture where FMPC is used to couple 

flatness feedforward linearization with MPC in a closed form 

to establish a reliable tracking performance for the temperature 

profile of the batch reactor’s heating phase. 

•A feedforward neural network (FNN) is incorporated to 

enhance the performance of the proposed control strategy by 

learning the inverse dynamics introduced by flatness-based 

feedforward linearization. Consequently, the combined FNN 

with flatness-based feedforward linearization and FMPC 

enhances robustness and significantly improves tracking 

performance. 

The proposed strategy achieved efficient execution time, 

leveraging the DF property of the batch reactor. It enables a 

direct generation of optimal trajectories and significantly 

reduces the computational burdens typically associated with 

NMPC. 

This paper is organized as follows: Section 2 presents the 

dynamic model of the batch reactor. Background knowledge 

in Section 3. Section 4 presents the formulation of the 

proposed control strategy with the enhancement via a neural 

network. Section 5 displays the simulation results validating 

the proposed approach. 
 

 

2. SYSTEM DESCRIPTION  
 

A Batch Reactor (BR) is identified as a closed structure used 

primarily in processes that involve chemical and biochemical 

reactions. Unlike the continuous flow reaction, this reaction 

occurs in a contained batch for one time, where all the 

reactants are loaded at the start of the process. The controlled 

conditions for the reaction include temperature, pressure, and 

agitation. Once the response completes its operation cycles, 

the batch is unloaded, and the reactor is prepared for the next 

cycle after cleaning. The BR under consideration in this study 

is adopted from study [36], where the system dynamics 

involve the kinetics of the reaction and the energy balance for 

the reactor and the cooling jacket. The system schematics and 

description are shown in Figure 1.  

Polymerization is commonly conducted in a batch reactor to 

produce polymers during a controlled reaction between 

monomers, initiators, and other reactants. The reaction 

operates under controlled temperature conditions to maintain 

product quality and safety. The refraction mechanism consists 

of the decomposition of the initiator, usually thermal or 

chemical decomposition, to start the polymer chain reaction. 

Meanwhile, the monomers react to form growing polymer 

chains in which temperature and reaction concentrations are 

critical. Then, the polymerization terminates due to the 

disproportion of the growing chain. The polymerization 

reactions are usually exothermic and require exact temperature 

control to prevent thermal degradation or runaway reactions.  
 

 
 

Figure 1. Batch reactor schematics 

 

In this study, we consider a polymerization reaction with an 

initiator concentration. 𝑥1 and monomer concentration 𝑥2, and 

reactor temperature 𝑥3  and jacket temperature as 𝑥4  is 

considered. The BR system model is given by:  

 

𝑥̇ = 𝑓(𝑥(𝑡), 𝑢(𝑡)) 

=

[
 
 
 
 
 
 
 
 −𝐴𝑑𝑥1𝑒𝑥𝑝

(
−𝐸𝑑
𝑅𝑥3

)

−𝐴𝑝𝑥1𝑥2𝑒𝑥𝑝
(
−𝐸𝑝

𝑅𝑥3
)

𝐴𝑝𝑉(∆𝐻𝑝)𝑥1𝑥2𝑒𝑥𝑝
(
−𝐸𝑝

𝑅𝑥3
)
− 𝑈𝐴(𝑥3 − 𝑥4) +

𝑄

𝑚𝑟𝑐𝑝𝑟

𝑈𝐴(𝑥3 − 𝑥4) −
𝐹𝑐𝑐𝑝𝑐(𝑥4 − 𝑇𝑐)

𝑚𝑗𝑐𝑝𝑗 ]
 
 
 
 
 
 
 
 

 
(1) 

 
Table 1. Batch reactor parameters [36] 

 
Parameters Value 

𝐴𝑑 4.4*1016 s-1 

𝐴𝑝 2.833*109 L/mol s 

𝐸𝑑 140.06*103 J 

𝐸𝑝 7.0711*104 J 

𝑅 8.3145 J/mol K 

𝑉 0.5 L 

∆𝐻𝑝 -82.2*103 J/mol 

𝑇𝑐 27 

𝑚𝑟𝑐𝑝𝑟 5.9978*103 J/K 

𝑈𝐴 27.0283 W/℃ 

𝑄 6.50*102 J/min 

𝑚𝑗𝑐𝑝𝑗  1.929*102 

𝑥1(0) 1 mol/L 

𝑥2(0) 1 mol/L 

𝑥3(0) 45.30756℃ 

𝑥4(0) 45.30756℃ 

𝑐𝑝𝑐  4.184 J/g K 
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The polymerization batch reactor requires precise trajectory 

tracking for the temperature profile to ensure optimal 

performance. The system’s highly nonlinear nature with 

complex reaction kinetics, coupled with the significant 

influence of the temperature on the process, makes reactor 

control challenging. 

The flow rate is the manipulated variable, and it is subjected 

to constraints on its upper and lower limit, where the lower is 

zero, and the upper limit is 0.75 LPM. In Table 1, all the 

parameters used in the simulation are listed. 

 

 

3. BACKGROUND KNOWLEDGE 

 

3.1 Flatness 

 

DF was introduced by M. Fliess and his colleagues and 

gained increasing attention in nonlinear control. Flatness is a 

natural idea associated with under-determined systems 

represented by differential equations. It signifies the 

possibility of representing the system’s variables in terms of a 

finite set of free variables. A single input nonlinear system is 

said to be differentially flat if there exists a differential 

function of the state and a finite number of its time derivatives, 

called the flat output. As a structural property of systems, 

flatness allows for establishing the features required for 

designing feedback controller techniques, such as 

backstepping, passivity, and feedback linearization. 

We consider a SISO system of the general form: 
 

𝑥̇ = 𝑓(𝑥, 𝑢), 𝑥 ∈ 𝑅𝑛 , 𝑢 ∈ 𝑅 (2) 
 

where, 𝑓 = (𝑓1, … , 𝑓𝑛) is a smooth function of 𝑥 and 𝑦 and the 

rank of the Jacobian matrix is maximal.  

A nonlinear system is considered differentially flat if there 

exist. 𝜁(𝑡) ∈ 𝑅𝑚 , with differential independent components, 

and the following conditions are satisfied according to Fliess 

et al. [30]:  

 

𝜁 = 𝛬(𝑥, 𝑢, … , 𝑢(𝛼)) (3) 

 

x = 𝛷(𝜁, 𝜁̇, … , 𝜁(𝜌−1)) (4) 

 

u = 𝛹−1(𝜁, 𝜁̇, … , 𝜁(𝜌)) (5) 

 

where, Λ,Φ and 𝛹−1 are smooth functions in their domains, 𝛼 

and 𝜌  are the maximum derivative order of the 𝜁  and the 

control input 𝑢  respectively. 𝜁 = [𝜁1, … , 𝜁𝑚]𝑇  is called flat 

output. 

Systems that are classified as differentially flat can 

mathematically be represented by Brunovsky form, the states 

of which are called flat states:  

 

z ∶= [𝜁1, 𝜁1̇, … , 𝜁1
(𝜌1−1)

, … , 𝜁𝑚 , … , 𝜁1
(𝜌𝑚−1)

] (6) 

 

where, 𝜌𝑖 is the highest-order derivative of the flat output 𝜁𝑖  as 

in Eq. (5). The state transformation between the flat state 𝑧 and 

the system state 𝑥, which can be obtained by differentiating 

Eq. (3) and utilizing Eq. (4). 

The nonlinear system can be put in the standard form: 
 

𝜁𝑖
(𝜌𝑖) = 𝛼𝑖(𝜁, 𝜁̇, … , 𝜁(𝜌−1), 𝑢, 𝑢̇, … , 𝑢(𝜎𝑖)) ∶= 𝜈𝑖  (7) 

 

where, 𝛼𝑖 , 𝑖 = 1, … ,𝑚 is a smooth function generated by the 

transformation. It’s worth noting that 𝜎𝑖  represents the 

highest-order derivative of the control input 𝑢  which yields 

after 𝜌𝑖 times differentiation of the flat output 𝜁𝑖  in Eq. (3). 

The flat input is referred to as v and can be defined as:  

 

v ∶= [𝑣1, 𝑣2, … , 𝑣𝑚]𝑇 (8) 

 

Refreezing Eq. (7) and applying (6) and (8), we get: 

 

𝑧̇ = 𝐴𝑧 + 𝐵𝑣 (9) 

 

𝑣 = 𝛹(𝑧, 𝑢, 𝑢̇, … , 𝑢(𝜎)) (10) 

 

where, 𝜎 = max 𝜎𝑖 and Eq. (9) is denoted as the linear flat 

model. The new definitions allow rephrasing Eq. (5) as 

follows:  

 

𝑢 = 𝛹−1(𝑧, 𝑣) (11) 

 

Up to this point, the fundamental difference between 

flatness feedforward linearization and feedback linearization 

can be explained by the following theorem:  

Theorem 1 [37]: Consider a desired path in the flat space 

for the flat output 𝜁𝑑, with the corresponding desired flat state 

𝒛𝑑  and desired flat input v𝑑 . Applying the nominal control 

𝒖 = Ψ−1(𝒛𝑑, v𝑑) to a differentially flat system, given 𝜁𝑑, and 

initial conditions as 𝒛(0) = 𝒛𝑑(0), leads to a linear system (9) 

based on a change of coordinates. Noting that the variables 𝒛𝑑, 

can be obtained from Eq. (6) by replacing the desired flat 

output and v𝑑 are obtained from (7) by replacing the desired 

flat output.  

Theorem 1 can enable controllers or trajectory generators to 

deal only with the linear flat model and produce the 

appropriate flat state and input as the output. Then, these 

outputs are fed through the inverse term (11) to offset the 

nonlinear term (10).  

 

3.2 Model predictive control 

 

Linear model predictive control (LMPC) is conveniently 

used with a linearized system as a control strategy for 

modifying the behavior of systems with linear approximation. 

LMPC is an optimization-based, predictive framework that 

belongs to the family of MPC. The critical aspect of LMPC is 

the use of a linear model in the prediction of the future 

behavior of the system over a finite prediction horizon. The 

optimization problem is dealt with at each time step to 

minimize a quadratic cost function subject to constraints.  

Consider a discrete linear-time invariant system: 

 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 (12) 

 

where, 𝑘 is the discrete-time instant, xk ∈ 𝕏 ⊆ ℝ𝑛 is the state 

vector, uk ∈ 𝕌 ⊆ ℝ𝑚  is the control input vector, A, B  are 

appropriate size system matrices. 𝕏,𝕌 are the state and control 

input constraint set, which are usually represented as linear 

inequality:  

 

𝑋 = {𝑥 ∈ 𝑅𝑛: 𝐹𝑥 ≤ 𝑔𝑥} 
𝑈 = {𝑢 ∈ 𝑅𝑚: 𝐹𝑢 ≤ 𝑔𝑢} 

(13) 

 

The objective function is the balancing factor between 

tracking performance and the control input energy. It is 

responsible for minimizing the differences between the 
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trajectories of the desired reference and states of the systems. 

Meanwhile, it penalizes the excessive control input signal 

using a quadratic cost function: 

 

𝐽𝑘 = ∑ 𝑥𝑘
𝑇𝑄

𝑁𝑝

𝑘=0

𝑥𝑘 + ∑ 𝑢𝑘
𝑇𝑅

𝑁𝑐

𝑘=0

𝑢𝑘 (14) 

 

where, 𝑄  and 𝑅  are the weighting matrices, 𝑁𝑝, 𝑁𝑐  are the 

prediction and control horizon, respectively. 

Dealing with operational constraints is an essential feature 

of MPC, which can include limits on state variables and 

control inputs. The constraints can be incorporated directly 

into the formulation of the optimization problem to ensure the 

reliability of the operation under strict requirements. 

QP is used to solve the optimization problem in LMPC due 

to the linear model and quadratic cost formulation. This 

feature is considered the main advantage of using LMPC due 

to the moderate computational efforts and the ability to solve 

in real time using standard optimization algorithms. This 

algorithm starts by describing the predicted state, which is a 

function of the current state and the input sequence: 

 

𝑋𝑘 = 𝐴𝑘𝑥𝑘 + 𝐵𝑈𝑈𝑘  (15) 

 

The predicted state can be represented by the current state 

and control input. The cost function in Eq. (14) is subjected to 

the predictive state equation: 

 

𝐽𝑘 = 𝑋𝐾
𝑇𝑄𝑥𝑋𝑘 + 𝑈𝑘

𝑇𝑅𝑈𝑈𝑘 (16) 

 

Finally, by defining the appropriate-sized matrices to be 

incorporated into the prediction equations, the state constraints 

in Eq. (13) can be represented in terms of the current state and 

control input vectors as: 

 

𝐹𝑥𝑋𝑘 ≤ 𝑔𝑥𝐹𝑢𝑈𝑘 ≤ 𝑔𝑢 (17) 

 

A single decision vector that combines the state and control 

input vector can be formed to represent the new cost function: 

 

𝑚𝑖𝑛
𝒛

𝒛𝑇𝐻 𝒛 

S. to: 𝐹𝑧 ≤ 𝑔 

𝐹𝑒𝑞𝑧 = 𝑔𝑒𝑞  

(18) 

 

Standard numerical optimization algorithms such as 

Newton's or the steepest-descent method can be used to solve 

QP problems. The optimization problem is solved at each time 

instant 𝑘 and only the first element of the control vector is 

applied. 

 

 

4. METHODOLOGY 

 

This study's control method for the nonlinear batch reactor 

integrates flatness-based feedforward linearization with MPC, 

as illustrated in Figure 2. 

The proposed method uses a linear flat model obtained by 

feedforward linearization in a feedback MPC to generate the 

desired flat states and input. These flat variables are then sent 

to the inverse term and applied to the nonlinear system. 

Mapping between the actual system state and the flat state is 

conducted, and the flat states are sent as feedback to MPC. 

 
 

Figure 2. A schematic diagram of the proposed control 

system 

 

4.1 Flatness formulation  

 

The BR admits the flatness property; therefore, the 

nonlinear system (1) is flat by choosing the reactor 

temperature as the flat output and the input flow rate as the flat 

input. Thus, a flatness-based model predictive control (FMPC) 

structure is directly applied and achieves the desired 

temperature, which grants stability and optimality for the 

(BR). Define the flat output as: 
 

𝜁 = 𝑇𝑅  (19) 

 

The flat state and the flat input are defined as: 

 

𝑧 = [𝑇𝑅 , 𝑇̇𝑅]𝑇 (20) 

 

v = 𝑇̈𝑅 (21) 

 

We can express the mapping between the flat state (4) and 

the actual BR states as: 

 

𝑧 = 𝛷−1(𝑥(𝑡)) (22) 
 

The input 𝑢(𝑡) is mapped based on the flat state and the flat 

input as: 
 

u(𝑡) = 𝜓−1(𝑧,v) (23) 
 

Finally, introduce the following discrete linear flat system: 

 

𝑧𝑘+1 = 𝐴𝑑𝑧𝑘 + 𝐵𝑑𝑣𝑘 (24) 
 

which represents a discrete-time linear system composed of a 

flat state and flat input. 
 

4.2 Flatness-based model predictive control  

 

An MPC controller based on flatness representation, as 

presented in Eq. (20) and Eq. (21), must be designed to 

implement the proposed control strategy. The prediction of the 

future flat states as a function of the flat input must be 

performed to predict the future flat output values and their 

derivatives. In the following flat state prediction equation and 

by using the matrix form, the prediction of the flat output and 

its derivatives is performed along the prediction horizon 𝑁𝑝: 
 

𝑧𝑘,𝑝 = 𝛤𝑧𝑘 + 𝛱v𝑘 (25) 
 

where, 

𝒛𝑘,𝑝 = [

𝑧𝑘+1

𝑧𝑘+2

⋮
𝑧𝑘+𝑁𝑝

] , 𝜞 =

[
 
 
 
 
𝐴𝑑

𝐴𝑑
2

⋮

𝐴𝑑

𝑁𝑝
]
 
 
 
 

, 𝒗𝑘 = [

𝑣𝑘

𝑣𝑘+1

⋮
𝑣𝑘+𝑁𝑃−1

] 
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𝜫 =

[
 
 
 
 
 

𝐵𝑑

𝐴𝑑𝐵𝑑

𝐴𝑑
2𝐵𝑑

0𝑛𝑥.𝑛𝑢

0𝑛𝑥.𝑛𝑢

𝐴𝑑𝐵𝑑

…
…
…

0𝑛𝑥.𝑛𝑢

0𝑛𝑥.𝑛𝑢

0𝑛𝑥.𝑛𝑢

0𝑛𝑥.𝑛𝑢

0𝑛𝑥.𝑛𝑢

0𝑛𝑥.𝑛𝑢

⋮ ⋮ ⋱ ⋮ ⋮

𝐴𝑑

𝑁𝑝−1𝐵𝑑 𝐴𝑑

𝑁𝑝−2𝐵𝑑 ⋯ 𝐴𝑑𝐵𝑑 𝐵𝑑 ]
 
 
 
 
 

 

 

Up to this point, the prediction of the future flat states 𝑧𝑘,𝑝 

can be obtained since the future values of the flat output and 

its derivatives are available. Using state parametrization (22) 

and discretization, a conversion from the flat output and its 

derivatives to the original system states 𝑥𝑘 can be applied at 

each sampling time. 

The objective is to minimize the deviation between the 

actual system output and the reference trajectory, which can 

be incorporated into the new objective of the MPC controller.  

The cost function is defined as: 

 

𝑚𝑖𝑛
𝑣𝑘

1

2
∑(𝜁𝑘 − 𝜁𝑘,𝑟𝑒𝑓)

𝑇𝑄

𝑁𝑝

𝑘=1

(𝜁𝑘 − 𝜁𝑘,𝑟𝑒𝑓) 

+
1

2
∑ 𝑣𝑘

𝑇𝑅

𝑁𝑝−1

𝑘=0

𝑣𝑘 

S. to: 𝑧𝑘+1 = 𝐴𝑧𝑘 + 𝐵𝑣𝑘 

𝜁𝑘 = 𝐶𝑧𝑘 

(26) 

 

This optimization problem can be solved using QP:  

 

𝑚𝑖𝑛
𝜒

1

2
𝜒𝑇𝐻𝜒 − 𝐺𝑇𝜒 

S. to: 𝐴𝑥 = 𝑏 

(27) 

 

where, the decision vector is 𝜒 = [𝑣0, … , 𝑣𝑁𝑝−1
, 𝑧0, … , 𝑧𝑁𝑝

]𝑇 

solving the optimization problem will result in determining the 

optimal input by substituting the optimal flat state and input in 

Eq. (24): 

 

u𝑜𝑝 = 𝛹−1(𝑧𝑜𝑝, v𝑜𝑝) (28) 

 

The optimal control problem OCP in Eq. (26) is based on 

the utilization of a linear flat system obtained in Eq. (20) and 

Eq. (21). The appropriate choice of the flat output in (19), led 

to acquiring a linear system in the flat space that mimics the 

original nonlinear system in Eq. (1). The linear flat system is 

used in the OCP, MPC outputs 𝑧𝑜𝑝 and 𝑣𝑜𝑝 which are then fed 

through the inverse term (28). 

In the FMPC OCP, the cost function 𝐽  is subjected to a 

linear flat model, and a standard direct method strategy is 

considered. An open-loop OCP is solved at each sampling 

time by minimizing a quadratic cost function. This cost 

function is dependent on the sequence of predicted flat-state 

𝒛𝑘,𝑝 and flat input 𝒗𝑘 from (25). This procedure is subjected 

to a discretized linear flat model (24).  

For this simulation, the prediction horizon N=10, and the 

control horizon=3. The weight matrix is Q=100, while R=0.01. 

Selecting the high value of Q is to ensure minimal deviation 

from the reference trajectory. Meanwhile, the value of R was 

adjusted to prevent aggressive actuator movements. 

 

4.3 Learning-driven tracking  

 

We propose using learning to enhance the accuracy of 

tracking a reference flat trajectory for FMPC. Using NNs to 

learn the inverse transformation of flatness feedforward 

linearization to compensate for any wrongful pole-zero 

cancelation. Inspired by the brain, NNs are computational 

models designed to identify patterns and relationships in data. 

They are formed by interconnected layers of neurons that 

process input data when entered through weighted 

connections, and with the help of activation functions, NNs 

can accurately approximate nonlinear mappings.  

In the case presented in this paper, feedforward NNs, and 

FNNs were selected to enhance the feedback loop of FMPC, 

which represents the most common artificial neural network 

architecture. The structure of the FNNs is composed of an 

input layer, a hidden layer, which can be one or more, and 

finally, an output layer. Neurons are located in the hidden layer 

and represent the central processing unit in NNs. They receive 

the input, apply weight and activation functions, and produce 

outputs.  

 

 
 

Figure 3. A schematic diagram of the proposed control 

system with neural network 

 

To explain the architecture of the proposed FMPC-FNN and 

its underlying reasoning, we refer to Figure 3, which 

demonstrates the utilization of the FNN. The network feeds 

with the mapping output as its input and generates a modified 

flat trajectory as an output. The mapping can be obtained by 

the inverse function of Eq. (22), and the outcome is the 

system's original state that can be fed to the FNN.   

The proposed scheme provides an accurate method to close 

the loop of the flatness feed-forward term with the MPC in the 

feedback loop. This method delivers an accurate trajectory that 

can be supplied to the FMPC to enhance the tracking 

performance for the proposed control structure.  

In the following, a detailed explanation is provided of how 

the feedforward neural network (FNN) enhances the tracking 

performance of FMPC: 

•FNN was used as a reference generator for the BR system. 

The network was trained to produce desired trajectories to be 

used as inputs to the FMPC scheme. 

•A time vector served as an input to ensure that the 

generated desired trajectory is time-dependent. The actual 

output trajectory of the controlled system serves as the other 

input to the FNN. 

•The output of the FNN generated a desired trajectory that 

was tailored as a reference path to guide the BR states. 

•The training data consists of time and reference trajectory, 

paired with the corresponding desired output. The data was 

preprocessed as required to improve the FNN performance.  

•The output of the FNN was utilized as the reference 

trajectory for FMPC. The role of FMPC is to minimize the 

deviation of the BR states from the FNN-generated reference 

trajectory while respecting system constraints. 
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5. SIMULATION RESULTS 

 

This section presents the results of implementing the 

flatness-based model predictive control FMPC control 

strategy for the nonlinear BR system. A nonlinear MPC 

control strategy was also implemented to compare the results 

and assess the performance of FMPC. The results are accessed 

based on system performance, trajectory tracking precision, 

constrained control effort, and computational efficiency.  

 

5.1 Temperature tracking response with FMPC 

 

The presented figures provide valuable insights into the 

dynamics of the nonlinear BR under FMPC, highlighting its 

effectiveness in managing nonlinearity, achieving real-time 

feasibility, and ensuring system stability.  

 

 
 

Figure 4. FMPC temperature tracking response 

 

 
 

Figure 5. FMPC execution time analysis 

 

Figure 4 illustrates the temperature tracking performance of 

the FMPC control strategy. The desired temperature trajectory 

is plotted together with the actual reactor temperature. 

Regarding tracking accuracy, FMPC demonstrates excellent 

tracking performance, which is evident by the close alignment 

between the actual and reference trajectories. Meanwhile, the 

controller ensured minimal overshoot and maintained 

stability. 

FMPC execution time is depicted in Figure 5, a crucial 

metric in assessing the real-time feasibility of the controller. 

The relative reliability of execution time across simulation 

steps clearly indicates computational efficiency. This 

consistency is credited to the use of the flatness property of the 

BR, which simplifies the generation of feasible trajectories and 

reduces the computational complexity. The response has 

occasional peaks of 0.065 seconds at the highest, attributed to 

specific points where rapid changes in system dynamics occur. 

The average execution time is still way beyond the sampling 

time of 0.05, which was selected for the simulation of the BR, 

demonstrating the practicality of FMPC in real-time control 

applications. 

 

5.2 Temperature tracking response with NMPC 

 

The following figure illustrates the tracking performance of 

the NMPC applied to the nonlinear BR. Plotting the desired 

temperature trajectory with the actual temperature achieved 

utilizing FMPC. 

 

 
 

Figure 6. NMPC temperature tracking response 

 

NMPC established high tracking accuracy when admitted to 

follow the nonlinear dynamics of BR, as shown in Figure 6. 

The discrepancies during the transient time are minimal due to 

NMPC’s ability to manage changes in reference trajectory. 

The formulation of NMPC allows for explicitly handling BR 

system nonlinearity, reflected by the close alignment between 

actual and desired trajectories. 

The response, with a peak execution time of 0.14, is almost 

three times the sampling period used in the simulation, which 

was selected as 0.5 seconds. Solving an optimization problem 

at each step period, NMPC ensures optimal control actions 

tailored to the BR nonlinear dynamics.  

Although NMPC achieves excellent tracking, its 

computational demands can be significantly higher than 

FMPC. Figure 7 clearly demonstrates NMPC computational 

demands as its operation requires solving a nonlinear 

optimization problem. It is evident that the trade-off between 

tracking accuracy and computational efficiency is a critical 

consideration. 
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Figure 7. NMPC execution time analysis 

 

 
 

Figure 8. FMPC vs. NMPC constrained control signal 

comparison 

 

The comparison between FMPC and NMPC-constrained 

control is illustrated in Figure 8. The constraints are imposed 

to ensure the physical limitations of the BR system are 

respected. The key observation is that FMPC and NMPC 

effectively maintain the control signal within the required 

boundaries. The FMPC control signal shows smoother 

variation than the NMPC control signal. NMPC exhibits more 

oscillatory behavior as compared to FMPC during transient 

time, which reflects the reactive nature of solving optimization 

problems dynamically. NMPC tends to respond more 

aggressively as the BR requires fast corrective action. 

Meanwhile, FMPC’s smoother response prioritizes 

computational efficiency and stability. 

 

5.3 Temperature tracking with NN-FMPC 

 

The tracking performance after integrating the Feedforward 

Neural Network FNN is investigated in this section. Utilizing 

NN enhances FMPC by supplying an optimized or adaptive 

new reference trajectory as an input to FMPC. The key 

observation is the achievement of improved tracking accuracy 

compared to standard FMPC. The computational time has no 

significant impact as the NN is trained in advance and 

deployed efficiently. The execution time is still below the 

sampling period, which ensures real-time feasibility. Table 2 

compares the three controllers in terms of their mean and max 

deviation.   

 

Table 2. A comparison of control and temperature deviations 

 

Parameter 

Mean Control 

Deviation 

(LPM) 

Max Control 

Deviation 

(LPM) 

Max Temp. 

Deviation 

(℃) 

FMPC 0.0001 0.1859 2.2445 

NMPC 0.0003 0.3270 4.0371 

NN-FMPC 0.0002 0.2930 2.2539 

 

 
 

Figure 9. NN-FMPC vs. NMPC temperature tracking 

response 

 

As depicted in Figure 9, the integration of NN into FMPC 

significantly reduces the gap in the tracking performance 

between FMPC and NMPC. When real-time implementation 

and energy efficiency are prioritized, NN-FMPC emerges as a 

superior option. A quantitative comparison between the three 

control approaches is presented in Table 3. 

 

Table 3. A comparison between the three control approaches 

 
Parameter RMSE ISE IAE 

FMPC 0.6317 1439 1683 

NMPC 0.8133 2417 1035 

NN-FMPC 0.3171 724.2 626 

Parameter Ts (s) Tr (s) Mp% 

FMPC 236.5 822.1 0.8 

NMPC 507.5 877.24 0.4 

NN-FMPC 197.4 566.5 0.39 

 

 

6. CONCLUSIONS 

 

This study introduced a flatness-based model predictive 

control (FMPC) strategy for regulating the temperature of a 

polymerization batch reactor. The key innovation of FMPC 

lies in its ability to exploit the system’s differential flatness 

property, enabling efficient trajectory generation and 

predictive control. Compared to nonlinear model predictive 

control (NMPC), FMPC demonstrated superior computational 

efficiency and reliable trajectory tracking, making it a 

promising candidate for real-time applications. 
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To further enhance FMPC’s tracking precision and 

adaptability, this study proposed integrating a feedforward 

neural network (FNN) with FMPC. The FNN was trained to 

learn the inverse system dynamics, allowing it to refine the 

reference trajectory before being processed by FMPC. This 

NN-FMPC framework resulted in the lowest tracking errors 

(RMSE, ISE, and IAE), reduced settling time, and minimal 

overshoot, significantly outperforming both FMPC and 

NMPC. These findings highlight the advantage of combining 

data-driven learning with flatness-based control for improved 

robustness and efficiency. 

The comparative analysis confirmed that NN-FMPC 

achieves the best trade-off between accuracy and 

computational effort, demonstrating its feasibility for real-

time implementation. While FMPC alone provides fast 

computation and moderate tracking accuracy, NMPC exhibits 

higher computational costs and slower convergence. 

This framework can be extended for future research to 

handle time-delayed systems, reaction kinetics variations, and 

reactant properties disturbances. Further optimization of 

FMPC, such as adaptive tuning of prediction horizons, could 

enhance performance under dynamic operating conditions. 

Finally, exploring different neural network architectures (e.g., 

recurrent networks or reinforcement learning-based models) 

could improve tracking accuracy and reduce execution time, 

reinforcing the potential of AI-driven enhancements in 

nonlinear control. 
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