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 Nonequilibrium thermodynamic systems represent a class of complex systems widely 

observed in both natural phenomena and industrial applications. Their phase transitions 

constitute a critical research topic in physics, chemistry, and materials science due to their 

intricate dynamic behaviors and the influence of multiple factors. Conventional 

thermodynamic theories and numerical simulation methods encounter significant 

challenges in predicting phase transitions within nonequilibrium systems, including 

excessive computational demands, inefficiencies, and strong dependencies on initial and 

boundary conditions. Recently, the integration of deep learning techniques, particularly the 

Dynamic Graph Neural Network (DGNN), has provided new avenues for addressing these 

challenges. In this study, the phase transition problem in nonequilibrium thermodynamic 

systems was systematically examined, and key influencing factors were analyzed. A 

predictive approach based on DGNN was proposed, leveraging both temporal and 

structural features of the system to achieve efficient and accurate phase transition 

forecasting. By innovatively applying DGNN, the accuracy and efficiency of phase 

transition prediction were significantly enhanced, offering novel tools and methodologies 

for studying complex systems.  
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1. INTRODUCTION 

 

With continuous advancements in science and technology, 

research on thermodynamic systems has progressively 

expanded from conventional equilibrium systems to 

nonequilibrium thermodynamic systems [1-4]. These systems 

are widely present in both natural phenomena and industrial 

applications, where their complex dynamic behaviors and 

phase transition phenomena constitute significant research 

topics in physics, chemistry, and materials science [5, 6]. 

Compared with equilibrium systems, nonequilibrium 

thermodynamic systems exhibit greater complexity, as their 

phase transition processes are not only influenced by internal 

energy exchange but are also closely associated with external 

perturbations and the historical evolution of the system. 

Therefore, the accurate prediction of phase transition 

behaviors in nonequilibrium thermodynamic systems holds 

considerable theoretical significance and practical value [7-

11]. 

Given these challenges, conventional thermodynamic 

theories and numerical simulation methods have encountered 

difficulties in handling the complexity and high 

dimensionality of nonequilibrium thermodynamic systems 

[12-15]. In particular, for large-scale systems, traditional 

phase transition prediction approaches often rely on stepwise 

simulations of system states or empirical formula derivations, 

which are computationally intensive, inefficient, and highly 

dependent on initial and boundary conditions [16-22]. 

Consequently, the efficient and accurate prediction of phase 

transitions in nonequilibrium thermodynamic systems has 

become a critical research challenge. 

At present, research based on machine learning, particularly 

deep learning methods, has emerged as an innovative solution. 

Through the automated learning of large-scale data, deep 

learning techniques enable the capture of underlying nonlinear 

relationships in complex systems, thereby facilitating effective 

predictions of system behavior [23-26]. However, existing 

deep learning models exhibit certain limitations when applied 

to phase transition problems in nonequilibrium 

thermodynamic systems. For instance, conventional deep 

learning models primarily process static data, making them 

inadequate for handling the temporal dependencies inherent in 

dynamically evolving systems. Additionally, most existing 

approaches overlook the graphical characteristics of system 

structures, failing to fully extract both local and global 

information from phase transition processes. 

This study comprises two key components. First, an in-

depth analysis of the phase transition problem in 

nonequilibrium thermodynamic systems was conducted, 

focusing on their dynamic evolution characteristics and the 

critical factors influencing phase transitions. Second, a 

DGNN-based approach was proposed, integrating both 

temporal and structural features of nonequilibrium 

thermodynamic systems for phase transition prediction. By 

constructing a Graph Neural Network (GNN) model that 

adapts to dynamic changes, the limitations of traditional 
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methods were addressed, leading to improvements in both 

accuracy and efficiency of phase transition prediction. The 

novelty and potential impact of this research lie in the 

application of DGNN to phase transition prediction in 

nonequilibrium thermodynamic systems for the first time, 

thereby not only enriching the predictive methodologies for 

thermodynamic phase transitions but also offering new 

perspectives and tools for studying other complex systems. 

 

 

2. DESCRIPTION OF PHASE TRANSITIONS IN 

NONEQUILIBRIUM THERMODYNAMIC SYSTEMS 

 

Phase transitions in nonequilibrium thermodynamic 

systems are often characterized by abrupt changes or shifts in 

system states, analogous to critical phenomena in classical 

thermodynamics. Unlike equilibrium systems, where 

thermodynamic potential functions exhibit monotonic 

variations, phase transitions in nonequilibrium systems can be 

influenced by both external perturbations, such as vibrations 

and energy input, and internal interactions among constituent 

particles. Under nonequilibrium conditions, the state space of 

the system frequently exhibits complex nonlinear dynamic 

characteristics, making conventional phase transition theories 

insufficient for accurately describing such processes. Physical 

quantities such as system temperature and particle distribution 

may undergo drastic changes under specific conditions, 

potentially leading to phenomena similar to critical points and 

phase separation observed in equilibrium systems. 

Consequently, the study of phase transitions in nonequilibrium 

thermodynamic systems necessitates the consideration of 

additional dynamic factors, including particle interactions, 

external driving forces, and the temporal evolution patterns of 

the system, rather than relying solely on static physical 

parameters. 

 

 
 

Figure 1. Experimental setup for particle vibration in 

nonequilibrium thermodynamic systems 

 

Figure 1 illustrates the experimental setup for particle 

vibration in a nonequilibrium thermodynamic system. In the 

experiment, the container is divided into two chambers, 

simulating two distinct units (URs), where the number of 

particles, kinetic energy, and temperature within each UR 

evolve over time. Initially, V1 particles are assumed to be in 

UR1 and V2 particles in UR2, satisfying the condition 

V1+V2=V. The average kinetic energy of the particles within a 

UR is defined as the temperature of that UR. The particle 

number density in a given UR is expressed as vu1,2= V1,2/V. The 

remaining energy after collisions is denoted by Δ, while the 

external energy input to a UR is represented by S0. Since the 

temperature of a UR decreases as the relative number of 

particles increases, the following relationship holds: 

 

( ) ( )2

1,2 0 1,2S v S v= +  (1) 

Additionally, the motion of particles in a UR is assumed to 

follow a Maxwell-Boltzmann distribution under the influence 

of a gravitational field. If the weight of a single particle is 

denoted by lh and the slit height by c, the following expression 

is obtained: 
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Taking the above 2-urn model as an example, the system 

undergoes continuous energy exchange and particle migration 

during its evolution, eventually approaching a steady state 

under specific conditions. By introducing the control 

parameters S0 and Δ, two completely distinct evolutionary 

outcomes of the system can emerge: (i) a symmetric state, in 

which the number of particles in both URs remains equal, and 

(ii) a symmetry-broken state, where one UR contains a 

significantly larger number of particles than the other. The 

competition between these two states arises from different 

combinations of S0 and Δ, which correspond to the impact of 

temperature variations on particle kinetic energy and the 

driving effect of external perturbations, respectively. As the 

system transitions toward a steady state over time, the final 

configuration is determined by the specific combination of 

these control parameters, which governs whether symmetry is 

preserved or broken. The influence of S0 and Δ extends beyond 

simple thermodynamic parameter variations, as they 

encapsulate the combined effects of multiple internal and 

external factors. These parameters dictate both the distribution 

of particles and the pathways of energy transfer. During the 

transition from a nonequilibrium to a steady state, interactions 

between particles and external driving forces dynamically 

influence particle motion and thermodynamic properties, 

ultimately giving rise to critical phenomena akin to phase 

transitions observed in equilibrium systems. 

To describe the particle number distribution within the 

system, a parameter γ was introduced, which represents the 

particle number density deviation. The value of γ quantifies the 

degree of deviation from the symmetric state. When γ=0, the 

system remains in a symmetric state, whereas significant 

deviations of γ from zero indicate the presence of symmetry 

breaking. Under steady-state conditions, it is assumed that the 

probability of particles transitioning from UR1 to UR2 is equal 

to the probability of particles transitioning from UR2 to UR1, 

thereby satisfying detailed balance. Based on this assumption, 

the detailed balance equation governing the particle number 

transfer mechanism between different URs can be derived, as 

expressed in the following equation: 
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By defining the particle number probability o(L,s) during 

the time evolution, where L represents the number of particles 

in UR1 at time s, and s denotes time, the system's master 

equation governing its evolution can be derived. This equation 

accurately describes the progression of the system toward a 

steady state under given initial conditions, as well as its 

dynamic behavior across different time scales. The boundary 

conditions are defined as o(-1,s)=o(V+1,s)=0. 
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where, 

 

( ) ( )( )exp 1D v v S v= −  (5) 

 

The phase transition behavior of nonequilibrium 

thermodynamic systems is often influenced by the system's 

intrinsic nonlinear dynamics. The 2-urn model exhibits 

behavior analogous to the phase transition observed in 

paramagnetic-demagnetization systems, particularly in the 

evolution of thermodynamic quantities such as particle 

number distribution and temperature. To better understand this 

phenomenon, a “magnetization coefficient” was introduced to 

describe the “magnetization” degree, i.e., the degree of 

asymmetry in the distribution of particles between the two 

urns. Similar to the magnetization phenomenon in 

paramagnetic systems, nonequilibrium thermodynamic 

systems may also exhibit analogous phase transition behaviors 

under specific conditions. By adjusting control parameters 

such as temperature and external perturbations, a transition 

from a symmetric state to a symmetry-broken state may occur. 

Let o(u,∞) represent the distribution state of particles as the 

diffusion time s→∞. The “magnetization coefficient” of the 

vibrating particle system is defined as follows: 
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By solving the steady-state particle number distribution, an 

analytical solution can be obtained, further elucidating the 

phase transition characteristics of nonequilibrium 

thermodynamic systems. The probability distribution of 

particle numbers in the steady state is determined by the 

system's control parameters and transition rates. 

Mathematically, this distribution can be derived by solving the 

master equation governing the system's evolution. Under 

steady-state conditions, the particle number distribution 

stabilizes, allowing for the identification of phase transition 

behaviors under different control parameter settings. The 

results of this process not only provide statistical 

characteristics of nonequilibrium systems in the steady state 

but also reveal the critical points of phase transitions under 

varying temperature and perturbation intensities. The 

probability distribution of particles in the steady state can be 

expressed as follows: 
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where, 
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For a fixed V, ∫1/2
-1/2darVH(a) remains constant, implying that 

o(γ) is determined by H(γ). 

 

 

3. PHASE TRANSITION PREDICTION IN 

NONEQUILIBRIUM THERMODYNAMIC SYSTEMS 

 

In the study of nonequilibrium thermodynamic systems, 

conventional theoretical and numerical methods often 

encounter difficulties in efficiently handling the dynamic 

evolution of these systems. Particularly when complex particle 

interactions and external perturbations are involved, the 

evolution of system states is very complex. Phase transition in 

nonequilibrium systems usually exhibits strong temporal 

dependencies and nonlinear characteristics, posing significant 

challenges for traditional analytical approaches and numerical 

simulations. Deep learning-based methods, particularly 

DGNN, provide a novel approach to addressing this issue. 

DGNN effectively captures interactions among particles and 

the temporal evolution characteristics of the system, making 

them particularly well-suited for complex systems with 

dynamic topological structures and time-varying properties. 

Compared with conventional physical models, DGNN learns 

from large-scale experimental data or numerical simulations 

and can adaptively identify and predict phase transition 

behaviors, especially under nonequilibrium conditions. This 

capability enables deep learning models to overcome the 

complexity and uncertainties inherent in nonequilibrium 

thermodynamic systems, which are often intractable using 

traditional methods. 

 

 
 

Figure 2. Structure of the phase transition prediction model 

 

In this study, the architectural design of the DGNN is 

formulated to account for the dynamic variations of particles 

and energy within the system, as well as their complex 

interrelations. Nonequilibrium systems are characterized by 

time-dependent state changes, where interactions among 

particles and external perturbations frequently induce changes 

in the system’s topological structure. Consequently, the 

DGNN architecture must be capable of simultaneously 

handling both the temporal properties and spatial topological 

structure of the system. To achieve this, a hybrid model 

integrating the Graph Attention Network (GAT) and Long 

Short-Term Memory (LSTM) network was developed. The 
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overall model architecture is illustrated in Figure 2, while a 

schematic representation of system dynamic spatial feature 

extraction is provided in Figure 3. 

 

 
 

Figure 3. Schematic of system dynamic spatial feature 

extraction 

 

In the proposed model, the GAT layer is utilized to extract 

the spatial topological features of the system. By employing 

an attention mechanism, GAT assigns different importance 

weights to nodes representing distinct particles or particle 

groups within the system. This mechanism enables the model 

to focus on significant nodes and edge connections, thereby 

capturing latent nonlinear interactions. When processing 

graph-structured data, GAT leverages multi-head attention, 

allowing the model to focus on different neighboring nodes 

and edge connections from multiple perspectives, thus 

improving feature extraction accuracy and robustness. 

Specifically, the input to this layer includes node features G 

and edge features R. The input node features are defined as 

G∈ɌB_S×N_N×I_S, where × denotes dimensional relations, B_S, 

N_N, and I_S represent the batch size, the number of nodes in 

the graph, and the feature dimension of each node, 

respectively. The input edge features are given as 

R∈Ɍ2×B_S×N_E, where N_E denotes the number of edges per 

sample. The multi-head attention weights are denoted as 

Q(1),Q(2),...,Q(J)∈E^(I_S×H_S/J), and the output node features 

are expressed as G∈ɌB_S×N_E×H_S. Let gu represent the feature 

representation of node u, and let βuk denote the attention weight 

vector between nodes u and k. The weight matrix for the j-th 

attention head is represented by Q(J), while the edge feature 

between nodes u and k is denoted as ruk. The hidden feature 

dimension of each edge is given by H_S. The corresponding 

computational expressions are formulated as follows: 
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However, the spatial features extracted solely by the GAT 

layer are insufficient for accurately predicting the phase 

transition behavior of nonequilibrium systems, as the 

evolution of such systems depends not only on spatial features 

but also on dynamic variations in the temporal dimension. To 

address this limitation, the output of the GAT layer was further 

connected to an LSTM layer in this study, which is specifically 

designed to process and model long- and short-term 

dependencies in time-series data. The detailed architecture is 

illustrated in Figure 4. In nonequilibrium thermodynamic 

systems, state transitions typically involve cumulative and 

complex alternating processes. LSTM enables the retention of 

past system states, allowing for the capture of potential 

temporal patterns within the system, thereby enhancing the 

accuracy of phase transition prediction. By passing the 

spatiotemporal features extracted by the GAT layer to the 

LSTM layer, the model is capable of capturing system 

evolution in both spatial and temporal dimensions. This 

enables an effective prediction of whether a phase transition 

will occur and the identification of critical transition points. To 

ensure that the input dimension of the LSTM layer matches the 

required input dimension of the GAT layer, a fully connected 

layer was introduced in this study. Let G represent the output 

of GAT, QLI denote the weight matrix, and yLI represent the 

bias vector. The adjusted output, denoted as GAD, is formulated 

as follows: 

 

AD LI LIG G Q y=  +  (12) 

 

 
 

Figure 4. Schematic of the LSTM layer for feature processing 

 

In deep learning-based phase transition prediction models 

for nonequilibrium thermodynamic systems, the source of data 

is critical, as the accuracy and robustness of the model heavily 

depend on the quality of training data. For nonequilibrium 

thermodynamic systems, data are primarily obtained from two 

sources: numerical simulations and experimental 

observations. For numerical simulations, system dynamics 

data generated using numerical approaches such as Monte 

Carlo simulations and molecular dynamics simulations were 

adopted in this study. These simulations provide a detailed 

characterization of the evolutionary processes in 

nonequilibrium thermodynamic systems, including particle 

interactions, energy transfer, and the effects of external 

perturbations on system states. Through these simulations, 

data on particle distributions, energy states, and interaction 

intensities under varying temperature, pressure, and external 

driving conditions can be obtained. In addition to numerical 

simulations, experimental data serve as another essential 
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source for model training. Experimental studies provide real-

world data on particle number distributions, temperature 

variations, and phase transition processes under controlled 

conditions. In particular, in specific physical experiments, the 

effects of externally controlled perturbations on system 

behavior may be investigated. Experimental data typically 

possess strong physical significance and practical reliability, 

making them valuable for validating and supplementing 

numerical simulations. 

Since phase transition processes in nonequilibrium 

thermodynamic systems typically involve complex 

spatiotemporal dependencies, the quality and structured 

processing of data have a significant impact on model 

performance. First, anomaly detection is a crucial step in 

preprocessing, particularly when dealing with large-scale 

simulation or experimental datasets, where outliers may 

significantly interfere with the model’s training process. In this 

study, the isolation forest algorithm was employed to identify 

and remove anomalies. By constructing multiple trees, this 

algorithm effectively detects outliers and isolated points 

within the data, ensuring the quality of the input data. The 

number of trees was set to 100, allowing the algorithm to 

achieve high precision in identifying 133 outliers. 

To ensure that the data are well-suited for deep learning 

models, mean-variance normalization was applied in this 

study. This normalization process scales the data to a uniform 

range, eliminating the effects of dimensional disparities 

among different features and preventing the model from being 

biased toward any particular feature dimension during 

training. The primary advantage of mean-variance 

normalization is that it preserves the original distribution of 

the data while standardizing each feature to have a mean of 0 

and a variance of 1. In nonequilibrium thermodynamic 

systems, the data typically include multiple physical quantities 

such as temperature, energy, and particle density. 

Normalization effectively mitigates the impact of differences 

in scale among these features, allowing the model to better 

capture interdependencies between them. The formula for 

mean-variance normalization is expressed as follows: 

 

SC

a
a

T

−
=  (13) 

 

Due to the complex interactions and temporal dependencies 

among particles in nonequilibrium thermodynamic systems, 

utilizing individual features alone is insufficient to accurately 

capture the system’s dynamic behavior. Therefore, in the data 

preprocessing stage, a graph structure was constructed in this 

study to represent relationships between features. First, a 

correlation matrix was formulated, with the Spearman 

correlation coefficient selected to measure the correlation 

between different features. The advantage of using the 

Spearman correlation coefficient lies in its ability to capture 

both nonlinear and temporal relationships between features. 

This is particularly crucial for phase transition prediction in 

nonequilibrium thermodynamic systems, as these systems 

often exhibit intricate nonlinear evolutionary patterns. By 

computing the correlation matrix, underlying associations 

among different features were identified in this study, 

facilitating the establishment of edge connections between 

each feature pair within the graph structure. This process 

provides an effective input representation for the subsequent 

DGNN model, ensuring that feature dependencies are 

preserved within the graph structure. Moreover, the model 

dynamically adjusts connection weights between nodes, 

thereby enhancing its capability to simulate and predict phase 

transition behavior in nonequilibrium thermodynamic 

systems. Specifically, let 0≤u, and k<v. In addition, let ϑ 

denote the correlation coefficient between two features, and Au 

and Ak represent the u-th and k-th features, respectively. The 

constructed correlation matrix COu,k is expressed as follows: 

 

( ), ,u k u kCO p A A=  (14) 

 

Let the ranks of a and b be denoted as E(a) and E(b), while 

their mean ranks are represented by E(a)- and E(y)-. The 

formula for computing the Spearman correlation coefficient is 

given as follows: 
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4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

To validate the effectiveness of the model, particle density 

and the entropy production rate index were selected as 

performance evaluation metrics, as they directly reflect the 

macroscopic behavior and phase transition characteristics of 

the system. Particle density serves as a crucial physical 

quantity in describing the distribution of particles within a 

nonequilibrium system, revealing the particle concentration 

and spatial distribution patterns under different states. The 

entropy production rate index, on the other hand, quantifies the 

irreversibility and dissipative characteristics of the system, 

providing insight into its dynamic evolution and the process of 

information loss. 

From the data presented in Figure 5, significant differences 

in prediction performance among the models can be observed, 

particularly during the low-density phase. The proposed model 

exhibits a relatively stable alignment with the observed values. 

Although minor deviations exist, its predictions are closer to 

the actual observations compared to other models. Notably, 

the proposed model maintains stability during fluctuations in 

the low-density phase. In contrast, the CMDSTG-Net model 

produces significantly higher predictions, especially in the 

early stages, and continues to overestimate values over time, 

indicating excessive sensitivity to system variations. The 

DSSTG-Net model follows a gradually increasing trend 

similar to the proposed model; however, discrepancies remain 

during the high-density phase, where it fails to fully align with 

real data. Traditional neural network models such as Multi-

Layer Perceptron (MLP), LSTM, and Gated Recurrent Unit 

(GRU) exhibit inferior performance compared to graph-based 

neural networks (e.g., the proposed model and DSSTG-Net) in 

the low-density phase. Their predictions fluctuate 

considerably, making it difficult to capture system stability. 

The Convolutional Neural Network (CNN)-LSTM model 

performs relatively well in this phase but still shows larger 

errors compared to the proposed model. 

During the high-density phase, performance discrepancies 

among models become even more pronounced. Overall, 

CMDSTG-Net and DSSTG-Net generate relatively stable 

predictions that follow the general trend of observed values. 
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However, in higher-density regions, their predictions appear 

overly conservative, failing to fully capture the sharp increase 

in particle density. This suggests potential limitations or lag in 

these models when handling scenarios with substantial density 

variations. In contrast, the proposed model demonstrates 

superior performance in the high-density phase, closely 

aligning with observed data, particularly over longer time 

intervals. This indicates its enhanced capability in capturing 

significant variations in particle density. Compared with 

traditional models such as MLP, LSTM, and GRU, these 

models exhibit considerable fluctuations and fail to accurately 

reflect the sustained growth of particle density in the high-

density phase. The results suggest that traditional models 

struggle to capture the nonlinear relationships governing the 

dynamic evolution of nonequilibrium thermodynamic 

systems. 

 

 
(a) Low density 

 
(b) High density 

 

Figure 5. Phase transition prediction trends of 

nonequilibrium thermodynamic systems using different 

models (particle density) 

 

The experimental results presented in Figure 6 indicate 

significant differences in the performance of various models 

in predicting phase transitions in nonequilibrium 

thermodynamic systems, as reflected by the comparison of 

Mean Absolute Error (MAE) and Root Mean Square Error 

(RMSE). For MAE, it is observed that most models exhibit an 

increasing trend in error over time. However, the proposed 

model maintains relatively low errors at all time moments. 

Notably, at time 20, the MAE value of the proposed model is 

22.42, demonstrating superior predictive accuracy. In contrast, 

the MAE of the MLP model is substantially higher, reaching 

24.7 at time 20, indicating a larger deviation from actual 

observations. The LSTM and GRU models also exhibit 

relatively high MAE values, both reaching 23.8 at time 20, 

suggesting lower predictive accuracy compared to the 

proposed model. Although DSSTG-Net and CMDSTG-Net 

show slightly lower MAE values than traditional models, the 

errors remain consistently higher than those of the proposed 

model, with relatively smooth variations, suggesting that these 

models adopt a more conservative approach to capturing phase 

transition dynamics. 

 

 
(a) MAE 

 
(b) RMSE 

 

Figure 6. Trends of MAE and RMSE in phase transition 

prediction of nonequilibrium thermodynamic systems using 

different models 

 

For RMSE, a similar overall trend to MAE is observed. The 

RMSE of the proposed model at time 20 is 27.8, which, 

although slightly higher than its MAE value, remains at a 

relatively low level, indicating stable and effective predictive 

performance throughout the phase transition process. In 

contrast, the RMSE of MLP reaches 29.7 at time 20, 

significantly exceeding that of the proposed model, 

highlighting its larger prediction deviations. The LSTM and 

GRU models yield RMSE values of 28.8 at time 20, further 

demonstrating their relatively poor predictive performance at 

certain time moments. Although CMDSTG-Net and DSSTG-

Net maintain lower error fluctuations, their RMSE values 

remain comparatively high and do not outperform the 
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Proposed model. The CNN-LSTM model achieves an RMSE 

of 28.4 at time 20, showing a slight improvement over some 

traditional models but still underperforming relative to the 

proposed model. 

 

Table 1. Ablation study results of the proposed model 
 

Model 
Training Set Validation Set 

R2 MAE RMSE R2 MAE RMSE 

Complete model 0.678 18.26 24.51 0.674 21.26 26.32 

Without the fully connected layer 0.642 18.59 25.36 0.652 22.36 27.15 

Without the multi-head attention mechanism 0.659 18.57 25.69 0.659 22.85 27.62 

Without the mean-variance normalization 0.642 18.95 25.98 0.642 22.87 28.56 

 

 
(a) Training set 

 
(b) Validation set 

 

Figure 7. Accuracy trends of the entropy production rate 

index in phase transition prediction of nonequilibrium 

thermodynamic systems using different models 

 

The results of the ablation study presented in Table 1 

demonstrate the significant impact of various components on 

the overall performance of the proposed model. The complete 

model exhibits superior performance on both the training and 

validation sets, achieving an R² of 0.678 and 0.674, an MAE 

of 18.26 and 21.26, and an RMSE of 24.51 and 26.32, 

respectively, indicating high prediction accuracy. After 

removing the fully connected layer, a decline in model 

performance is observed, with the R² values dropping to 0.642 

and 0.652 for the training and validation sets, respectively, 

while MAE and RMSE increase. This suggests that the fully 

connected layer plays a crucial role in aligning the input 

dimensions between the LSTM and GAT layers, and its 

absence negatively impacts model accuracy. When the multi-

head attention mechanism is removed, a slight reduction in 

performance is noted, with the R² values decreasing to 0.659 

for both the training and validation sets and an increase in 

MAE and RMSE. This indicates that the multi-head attention 

mechanism significantly enhances temporal feature extraction 

in the model. The absence of mean-variance normalization 

further degrades model performance, leading to a more 

pronounced decline in R² (dropping to 0.642 in both datasets) 

and a substantial increase in MAE and RMSE. These results 

highlight the critical role of data normalization in improving 

model stability and predictive accuracy. 

The prediction accuracy data for both the training and 

validation sets, as shown in Figure 7, demonstrate a significant 

advantage of the proposed model in phase transition prediction 

for nonequilibrium thermodynamic systems. In the training 

set, the accuracy of all models gradually decreases over time. 

However, the proposed model exhibits the smallest decline, 

decreasing from 0.952 at time 0 to 0.782 at time 20, 

maintaining stable and relatively precise performance. In 

contrast, the MLP model performs the worst in the training set. 

Although it initially achieves a high accuracy of 0.942 at time 

0, its performance deteriorates rapidly, dropping to 0.736 at 

time 20. This indicates its weaker adaptability to complex 

phase transition processes. Other deep learning models, such 

as LSTM and GRU, also display a similar downward trend, 

with accuracy consistently lower than that of the proposed 

model. At time 20, their accuracy remains below 0.75. A 

similar accuracy trend is observed in the validation set. The 

proposed model again exhibits the smallest decline, achieving 

a final accuracy of 0.755, which is significantly higher than 

that of the other models. The MLP and GRU models show the 

most pronounced accuracy decline in the validation set. 

 

 
 

Figure 8. Prediction performance of the proposed model on 

the entropy production rate index across different samples 
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Figure 8 shows that the proposed model maintains stable 

performance in predicting the entropy production rate index 

across different samples, with accuracy ranging from 76% to 

84%. The highest accuracy occurs in Sample 8 (84%) and the 

lowest in Sample 9 (76%). Underestimation rates remain low 

(6%-12%), while overestimation rates are slightly higher 

(10%-14%), peaking in Sample 9 (14%) and reaching their 

lowest in Sample 8 (6%). These variations likely stem from 

differences in sample characteristics. Despite a slight tendency 

toward overestimation, the model achieves high accuracy and 

maintains a balanced prediction distribution, demonstrating 

adaptability across different samples. 

Based on the model’s predictive performance, the following 

conclusions can be drawn: The DGNN-based approach 

exhibits strong generalization capabilities in phase transition 

prediction for nonequilibrium thermodynamic systems, 

effectively capturing the complex dynamic evolution of 

different samples. The high accuracy and low underestimation 

rate indicate that the model is capable of closely tracking 

actual system variations in most scenarios. However, although 

the overestimation rate fluctuates and is relatively high, this 

fluctuation can be partially attributed to the complexity and 

heterogeneity of sample data. For instance, certain samples 

may exhibit more pronounced nonlinear characteristics in their 

physical state or phase transition process, leading to deviations 

in model predictions. In summary, the model demonstrates 

strong stability and high accuracy, highlighting its potential for 

predicting phase transitions in nonequilibrium thermodynamic 

systems. Moreover, it provides reliable prediction results, 

especially when faced with diverse samples. Despite some 

overestimation, the overall prediction accuracy is still at a high 

level. 

 

 

5. CONCLUSION 

 

A DGNN-based phase transition prediction model for 

nonequilibrium thermodynamic systems was proposed in this 

study. By integrating both temporal and structural features of 

nonequilibrium systems, the model leverages deep learning 

techniques to overcome the limitations of conventional 

methods in predicting phase transitions in complex systems. 

Experimental results demonstrate that the proposed model 

achieves high prediction accuracy in most scenarios, 

particularly for long-term predictions, where phase transition 

accuracy remains relatively stable. Additionally, the model 

effectively captures the dynamic evolution characteristics of 

the system. Performance evaluations on the training and 

validation sets indicate that the DGNN model outperforms 

traditional approaches such as MLP, LSTM, and GRU, with a 

consistent accuracy range between 76% and 84% across 

different samples. The underestimation rate remains low. 

Although the overestimation rate is slightly higher, overall it 

can still provide high-quality phase transition predictions. 

These results suggest that the DGNN-based model has strong 

application value in predicting phase transitions in 

nonequilibrium thermodynamic systems. 

Despite the improvements in prediction accuracy achieved 

by the proposed method, certain limitations remain. First, 

fluctuations in the overestimation rate persist, particularly in 

complex samples where the model tends to overestimate 

system state variations. Additionally, the model relies on a 

large volume of training data, and the training process requires 

a long time, limiting its applicability for real-time predictions. 

Future research could focus on several key directions. One 

potential improvement involves the integration of additional 

physical domain knowledge into a hybrid model to enhance 

physical interpretability and generalization capabilities. 

Moreover, GNN architectures could be further optimized to 

improve their ability to predict extreme events in highly 

dynamic systems, particularly extreme phase transitions. 

Furthermore, reducing training time and computational cost 

while maintaining prediction accuracy remains a crucial 

challenge. Thus, future work should not only aim to enhance 

prediction accuracy but also prioritize model interpretability, 

real-time applicability, and computational efficiency. 

Addressing these challenges will contribute to the 

development of more precise and efficient solutions for real-

time monitoring and prediction of phase transitions in 

nonequilibrium thermodynamic systems. 
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