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Neurodegenerative disorders like Parkinson's and Alzheimer's represent a notable menace 

to the welfare of humanity. They primarily result from the progressive deterioration of the 

peripheral and central nervous systems, significantly affecting an individual's daily life. To 

diagnose these disorders, ongoing clinical assessments are necessary. Modern medical 

diagnosis often employs deep learning techniques. One challenge with the deep learning 

approach is handling diverse datasets of multiple modalities. Earlier research relied on just 

one modality, making it an inadequate diagnostic aid. In this work, we combined the benefits 

of various modalities to create a hybrid technology designed for practice in the timely 

identification of Parkinson's disease. This work employs an MRI image dataset and a DaT 

scan dataset connected to Parkinson's disease. This study develops four alternative models. 

The general framework of the several recommended techniques is as follows: first, we use 

picture augmentation by methods such as blurring and sharpening. Subsequently, we either 

engage in early image fusion, transferring the fused images for feature extraction and 

subsequent classification, or independently extract features from both modalities and later 

fuse these independently extracted features before conducting the classification process. 

Finally, we performed a comparative analysis between the state-of-the-art model chosen as 

the baseline and the several models that were put forth. Among these, Model 2 exhibited 

superior performance, achieving a test accuracy of 93.96%. 

Keywords: 

machine learning, deep learning, multi-

modality, image fusion, Convolutional 

Neural Network (CNN), feature extraction, 

hybrid deep learning 

1. INTRODUCTION

Neurodegenerative disorders [1] encompass a group of 

illnesses that predominantly impact the neurons in the brain 

and spinal cord, progressively diminishing cognitive and 

physical functions over time. Notable examples of these 

disorders are Alzheimer's disease, PD (Parkinson's Disease), 

Huntington's disease, and Amyotrophic Lateral Sclerosis 

(ALS). They have the potential to reduce a person's quality of 

life significantly and, in several instances, result in death. 

Many neurodegenerative diseases have unclear origins, 

although complicated combinations of genetic, environmental, 

and lifestyle variables are frequently the reason. Although 

there isn't a solution for the majority of these illnesses, 

research is still being conducted to realize the underlying 

causes of these illnesses better and provide treatments that will 

at least lessen symptoms, reduce the progression of the disease, 

and enhance the lives of those affected. The management of 

neurodegenerative disorders requires early diagnosis and 

action. Different treatment modalities, such as medication, 

treatments, and supportive care, are available to address the 

unique symptoms associated with each disorder. With ongoing 

research, there is promise for future developments in 

preventing and treating neurodegenerative illnesses. 

Research and treatment for neurodegenerative disorders 

seem to benefit significantly from applying deep learning, a 

subfield of machine learning [2]. We can use deep learning 

techniques to diagnose these disorders early, predict the future 

course of the patient's illness based on clinical and genetic 

information, identify features from biomarkers, etc. By 

utilizing deep learning models, cognitive evaluation tools that 

track alterations in cognitive performance over time can be 

created.  

Alzheimer’s and Parkinson’s are the major disorders that 

come under this group and were drastically affecting entire 

humanity. Early detection is crucial in all these cases. Usually, 

people identify these types of disorders only after showing 

severe symptoms. A continuous, thorough clinical assessment 

is needed and time-consuming for diagnosing. We possess 

several biomarkers [3], such as MRI (Magnetic Resonance 

Imaging) [4], DaT (Dopamine Transporter), PET (Positron 

Emission Tomography), etc., which aid clinicians in detecting 

or identifying distinct phases of a condition or evaluating the 

likelihood of future occurrences. Fortunately, we can apply 

different deep-learning models to these biomarkers and 

quickly diagnose these disorders.  

This paper mainly focuses on PD [5]. Both DaT and MRI 

are helpful research and diagnostic technologies that support 

the assessment of PD and its differential diagnosis. MRI is 

frequently utilized to evaluate the structural state of the brain 

in PD [6, 7]. It offers finely detailed images of the brain's 

anatomy, which can help rule out other disorders like tumors 
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or vascular anomalies that may exhibit similar symptoms. An 

essential nuclear medicine imaging tool for PD, DaT imaging 

evaluates the brain's dopamine system integrity [8]. A 

radiotracer that binds to dopamine transporters in the brain is 

injected into the bloodstream during the procedure. Combined 

with clinical evaluation and other diagnostic instruments, 

these imaging modalities aid in a more precise diagnosis and 

understanding of the illness. 

Most existing research focuses on using a single imaging 

modality, which is insufficient to capture the complex nature 

of these diseases; this paper addresses and tries to overcome 

this issue. The limitations of single-modality approaches have 

led to inaccuracies in diagnosis and disease progression 

tracking. Multimodal image fusion [9], combining MRI and 

DaT scans, can enhance diagnostic accuracy by leveraging the 

complementary information provided by different imaging 

techniques. Despite this assurance, there aren't enough reliable 

models to combine several modalities to solve problems like 

class imbalance and data scarcity in medical imaging. 

The primary objective of this study is to develop a hybrid 

deep learning model that combines MRI and DaT scans for 

detecting neurodegenerative disorder-PD using early and late 

image fusion techniques [10]. This is a binary classification 

technique. It classifies whether a particular individual is PD-

affected or not. The study aims to: 

1. Propose a multimodal image fusion framework for 

Parkinson's diagnosis. 

2. Use data augmentation methods (such as sharpening and 

blurring) to improve the dataset's quality and diversity. 

3. Address class imbalance issues beyond augmentation 

through class weighting methods. 

4. Evaluate the proposed models using appropriate 

performance metrics to assess their diagnostic accuracy. 

The study proposes four novel deep-learning models using 

hybrid image fusion techniques. These models overcome the 

limitations of single-modality reliance by utilizing both MRI 

and DaT scans. This study's main contributions include the 

development of robust multimodal fusion architectures and 

applying augmentation techniques, such as blurring, 

sharpening, and class weighting, to mitigate data scarcity and 

imbalance. 

Early image fusion involves merging the two types of 

images based on their subjects. Subsequently, the 

Convolutional Neural Network (CNN) and the Deep Neural 

Network (DNN) take these fused pictures. Subsequently, 

characteristics are extracted from both models, blended, and 

transformed into a one-dimensional vector. The last stage 

involves transmitting the feature vector to a neural network for 

classification. In the late approach to image fusion, we input 

MRI and DaT scans separately into neural network models to 

identify distinctive characteristics. Next, we convert those 

characteristics into a single-dimensional vector and input them 

into a specific deep neural network for categorization. 

 

 

2. RELATED WORKS 

 

In the rapidly evolving field of computer science, this 

literature review explores the recent advancements, 

methodologies, and emerging deep learning trends developed 

to handle the above-mentioned problem, which effectively 

classifies different neurodegenerative disorders.  

Zhang et al. [11] developed DNN utilizing 102 two-view 

MRI datasets, which included AXI and SAG data. They 

achieved a 76.46% accuracy rate using a novel approach to 

screening individuals with PD. They pre-processed this data 

using picture augmentation algorithms constructed on 

Wasserstein Generative Adversarial Networks (WGANs). 

Moreover, the data was input into two ResNet networks at the 

same time, and the outputs of the hidden layer were combined 

into a vector before being sent to a SoftMax classification 

layer.  

To enhance quality of life and treat the progressive 

degeneration of dopaminergic neurons associated with PD, 

early and rapid diagnosis is of paramount importance. A 3D 

CNN was used by Chakraborty et al. [12] in the Parkinson's 

Progression Markers Initiative database (PPMI), which 

included 3T T1-weighted MRI images, they used 203 scans of 

healthy individuals and 203 scans of PD patients. A 3D 

CNN architecture was trained to detect complex patterns after 

data pre-processing to diagnose PD from MRI scans. The 

results showed that the developed 3D CNN model 

outperformed the others in terms of overall accuracy (95.29%), 

average recall (0.943), average precision (0.927), average 

specificity (0.9430), f1-score (0.936), and Receiver Operating 

Characteristic—Area Under Curve (ROC-AUC) score (0.998) 

for both classes. 

Modi et al. [13] suggested a CNN system based on VGG16 

for diagnosing Parkinson's illness. Feature extraction is 

automatically applied to the collected PET scan pictures from 

the PPMI source. The recommended technique's success is 

tested in terms of specificity, accuracy, sensitivity, and 

precision; the resultant values are 97.5%, 84.6%, 71.6%, and 

96.7%, respectively.  

Creating accurate indices to differentiate between different 

PDs is essential, particularly in developing treatment 

regimens. In light of this, the Parkinsonism Differential 

Diagnosis Network (PDD-Net), a 3D deep CNN, was created 

by Yu et al. [14] to automatically detect imaging-related 

signals that might support the differential analysis of 

Parkinson's diseases. Two sets of PET scans showing PD were 

analyzed using this DL technique: Approximately 2,100 

Chinese cases and 90 German patients both are part of the 

Huashan Parkinsonian PET Imaging (HPPI) database. The 

goal of developing a deep CNN in three dimensions was to 

provide metrics for deep metabolic imaging (DMI). After that, 

these markers were evaluated in two other groups: one that 

was independent and followed up with data from the HPPI 

database throughout time and another that included 90 

Parkinson patients from a separate German cohort that used 

different imaging techniques. The differential diagnosis has 

less wiggle space when using the suggested DMI indices. In 

the blind test group, the sensitivities for diagnosing PD, 

Multiple System Atrophy, and Progressive Supranuclear Palsy 

were 98.1%, 88.5%, and 84.5%, respectively. The specificities 

for these diagnoses were 90.0%, 99.2%, and 97.8%, 

respectively. They produced sensitivities of 94.1%, 82.4%, 

and 82.1% and specificities of 84.0%, 99.9%, and 94.1% in the 

German group, respectively. 

Long et al. [15] suggested a way to tell the difference 

between people who are normal controls (NCs) and people 

who have early-stage Parkinson's disease (PD) by using multi-

level assessments and multi-modal images. Structured and 

resting-state functional magnetic resonance imaging (rsfMRI) 

data on people were gathered for research. Researchers used 

rsfMRI pictures to measure low-frequency waves' strength, 

uniformity, and intensity in different brain areas. It was 

possible to make the anatomical pictures by getting 
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information about the volumes of the CSF, white matter, and 

gray matter. It used a two-sample t-test to pick the traits and 

then combined them to divide them into groups. Then, using 

support vector machine learning, a predictor was made to tell 

the difference between people with early-stage PD and healthy 

controls. This approach showed remarkable discriminative 

ability, with an accuracy of 86.96%. 

While previous research has extensively employed single-

modality techniques, such as CNNs applied to MRI images for 

Parkinson’s disease detection, these methods lack the 

comprehensive diagnostic capabilities that multimodal 

approaches provide. Our work improves upon these studies by 

introducing a hybrid fusion of MRI and DaT scans, addressing 

the gaps in feature extraction and disease progression 

modeling that single modalities fail to capture. 

 

 

3. METHODOLOGIES AND TECHNIQUES USED 
 

3.1 Outline of proposed work 
 

For detecting neurodegenerative disorders, lots of 

biomarkers are currently available. Some are MRI scans, DaT 

Scans, PET images, etc. It is possible to use multiple 

modalities to identify this type of disorder. Combining these 

modalities enables a more thorough evaluation of the anatomy 

and function of the brain [16]. Here, we implement two 

categories of works that use early and late image fusion [17] 

techniques for handling different modalities, like MRI and 

DaT scans, to identify whether a particular person has 

Parkinson’s. The proposed categories are as-Hybrid 

multimodal early image fusion deep learning technique and 

Hybrid multimodal late image fusion technique. Under these 

categories, this work has proposed four different Deep 

Learning Models. The work includes the following phases: 

data pre-processing, feature extraction, final classification by 

considering data imbalance, and performance evaluation.  

The general structure of the proposed work is that initially, 

we perform data pre-processing like image augmentation [18] 

by blurring and sharpening, then either perform early image 

fusion and transfer the fused images for feature extraction and 

classify the extracted features or extract the features from both 

modalities independently and fuse the extracted features (late 

fusion) and then perform classification.  
 

3.1.1 Data pre-processing-image augmentation  

Image augmentation [19] is an extensively used technique 

in deep learning. Its purpose is to artificially increase the size 

of a training dataset by applying a variety of modifications to 

the data that was initially collected. The core objective in 

employing data augmentation is to bolster the model's capacity 

for generalization and enhance its overall performance, which 

proved particularly advantageous when training data is scarce. 

Different data image augmentation techniques include rotation, 

flipping, translation, blurring, sharpening, etc. We can also use 

Python-based image generator augmentation functions to 

generate new data. This work blurs and sharpens the original 

images. 3×3 and 5×5 dimensional convolution masks with 

intensities less than 50 were used to improve the sharpness of 

images. Additionally, the study investigates several methods 

of adding image blur. These techniques include stack blur with 

varied radii, radial blur with different diameters, motion blur 

with various degrees, and Gaussian blur with varying kernel 

sizes. This paper uses online tools and Python code to perform 

these operations. 

3.1.2 Feature extractor 

In deep learning, feature extraction automatically identifies 

and obtains pertinent features from unprocessed data to 

enhance a neural network's performance. Neural network 

layers, such as convolutional layers in CNNs or several kinds 

of hidden layers in deep-feed forward neural networks, are 

commonly used in deep learning to do this. Feature extraction 

is a crucial stage in deep learning to reduce computing 

demands, increase model performance and generalization, and 

allow the neural network to concentrate on the most significant 

parts of the data. The type of data being used and the task at 

hand will determine which feature extraction method is best. 

This paper uses a CNN and a traditional DNN as a feature 

extractor.  

CNNs automatically pick up hierarchical characteristics at 

various abstraction levels. Convolutional layers are often 

layered to identify progressively more complex information. 

The feature maps produced from convolutional layers are 

down-sampled by pooling layers. Standard methods include 

max pooling and average pooling, lower spatial dimensions 

while keeping crucial information. On feature maps, non-

linear activation functions—like ReLU (Rectified Linear 

Unit)— add non-linearity to the model. This makes it easier to 

discover complicated data links, improving the model's 

capacity to recognize relevant patterns. CNNs commonly 

conclude with one or more fully connected layers to facilitate 

prediction-making after extracting features through 

convolution and pooling. These layers establish connections 

between all the extracted features and the output layer, 

enabling the network to acquire intricate combinations of 

features essential for classification or regression tasks. 

 

3.1.3 Final classifier 

This paper uses customized Deep Neural Networks and 

LSTM (Long Short-Term Memory) as the final classifier 

module. A DNN can be a robust task classifier. In this study, 

a Customized Deep Neural Network was constructed, 

featuring ten dense layers with varied node counts. Given that 

our task involves binary classification, the final layer utilizes 

a sigmoid function as the activation. The chosen loss function 

is binary cross-entropy. The second approach used is the 

LSTM network. Classification LSTM architectures typically 

consist of input, LSTM layer (or layers), and output. The input 

layer's structure should correspond to the input sequences, and 

the output layer's unit count should match that of the classes. 

A dense model could also have a dropout or more layers to 

increase speed. This work uses LSTM as a classifier at the final 

stage. Our basic LSTM consists of two initial LSTM layers 

followed by a sequence of dense layers.  

This study implemented class weighting to address data 

imbalance between Parkinson’s and non-Parkinson’s cases. 

The class weights were calculated based on the inverse of the 

class frequencies, assigning a higher weight to the minority 

class (Parkinson’s images) and a lower weight to the majority 

class (healthy photos). During training, this ensured that errors 

made on minority class samples contributed more to the loss 

function, forcing the model to focus on correctly classifying 

the underrepresented class and mitigating bias toward the 

majority class.  
 

3.2 Proposed models 
 

The proposed work introduces four innovative deep-

learning models that leverage hybrid image fusion techniques 

[20]. These models combine MRI and DaT scans [21] to 
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address the limitations of single-modality approaches either 

early or late. The following part will discuss those models in 

detail. 

 

3.2.1 Hybrid multimodal late image fusion deep learning 

technique 

When using late fusion, individual neural networks are used 

to process the MRI and DaT pictures independently. The 

outputs of these networks are then combined at a later stage of 

the network. Concatenating the features on an element-by-

element basis can accomplish this. With this method, the 

network can pick out distinguishing characteristics from each 

modality and combine them to make the ultimate choice. 

Under this heading, we created models—Model 1 (Hybrid 

Multi-modal late image fusion technique with customized 

DNN as a final classifier) and Model 2 (Hybrid Multi-modal 

late image fusion technique with LSTM as a final classifier). 

Model 1 uses a modified DNN as the final classifier in a hybrid 

multi-modal late image fusion approach. The suggested Model 

1's basic structure is shown in Figure 1—Model 1 scans 

pictures from DaT and MRI scans. To solve the data imbalance 

problems like overfitting, it first blurs and sharpens all the 

images and then, for feature extraction, passes the original and 

augmented MRI scans to a CNN and DaT scans to a DNN 

model and finally fuse the extracted image and passes the 

fused single dimensional vector to a customized DNN for final 

classification.  

 

 
 

Figure 1. Model 1 architecture 

 

Model 2 is a Hybrid Multi-modal late image fusion 

technique with LSTM as a final classifier. The suggested 

Model 2's fundamental structure is seen in Figure 2. Model 2 

takes MRI and DaT scan images, then blurs and sharpens all 

the images for feature extraction. It passes the original and 

augmented MRI scans to a CNN. DaT scans to a DNN model, 

and finally, it fuses the extracted images and passes the fused 

single-dimensional vector to the LSTM network for final 

classification.  

 
 

Figure 2. Model 2 architecture 

 

3.2.2 Hybrid multimodal early image fusion deep learning 

technique 

Early fusion combines the MRI and DaT pictures at the 

network's start instead of late fusion. Under this category, we 

developed models -Model 3(Hybrid Multi-modal early image 

fusion technique with DNN as a final classifier) and Model 

4(Hybrid Multi-modal early image fusion technique with 

LSTM as a final classifier). Model 3 is a Hybrid Multi-modal 

early image fusion technique with customized DNN as the 

final classifier. Model 4 is a Hybrid Multi-modal early image 

fusion technique with LSTM as the final classifier. Model 3, 

shown in Figure 3, and Model 4, shown in Figure 4, suggest 

models with similar fundamental architectures. 

 

 
 

Figure 3. Model 3 architecture 

 

The subject-wise fusing of the MRI and DaT images is 

performed in both cases after augmentation. Then, we will use 

a hybrid learning approach to analyze these data. For that, the 
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fused dataset is passed to two different deep-learning models. 

One is a CNN, and the second deep learning technique used 

for feature extraction is a DNN. Finally, we combine features 

extracted from these two neural networks into a single-

dimensional vector. Model 3 passes those features to a 

customized DNN for final classification, while Model 4 passes 

those features to an LSTM network. This method can assist the 

network in learning joint characteristics from the beginning 

from both modalities. 

 

 
 

Figure 4. Model 4 architecture 

 

3.2.3 Datasets and system used  

In this proposed work, we used NTUA (National Technical 

University of Athens) Parkinson’s disease classification image 

datasets [22] of multiple modalities –one MRI and one DaT 

image scan dataset. So far, this dataset includes DaT scans and 

MRI exams from 78 participants, of which 23 are healthy 

control subjects, and 55 have Parkinson's disease. This binary 

classification dataset classifies an individual as PD or Non-PD. 

Together, over 42000 images are available. The problem is 

that we have limited DaT scan images of only 920. So, we first 

created a customized dataset, which means we grouped MRI 

and DaT scans subject-wise. Finally, a dataset consisting of 

920 MRI and 920 DaT scans were made. The problem with 

this dataset is that it is not balanced. To address this issue, we 

perform some data augmentation techniques. Our models run 

on a system with the following specifications: Windows 10 

operating system, NVIDIA Quadro GV100 graphics card, 

512GB SSD hard disc for operating system, 64GB RAM and 

6TB SATA hard disc for data storage. Intel Xeon Gold 6134 

CPU, 24.75M Cache, 3.20 GHz, 3.19 GHz (2 processors). The 

NVIDIA® Quadro® GV100 has redesigned the workstation 

to fulfill the needs of AI-enhanced design and visualization 

operations. The Keras library, built on TensorFlow as a 

backend, was used to implement the suggested models.  

 

3.2.4 Performance metrics 

To assess the effectiveness of the previously mentioned 

deep learning models, various performance metrics [23] were 

taken into account. Accuracy, precision, recall, and the F1-

score are the metrics used to evaluate these characteristics. In 

a deep learning project, the objectives and characteristics will 

dictate the metrics employed. Accuracy measures overall 

correctness but may not be sufficient for imbalanced datasets, 

as it can be misleading when one class dominates. Precision: 

It is essential when the cost of false positives is high, such as 

misdiagnosing healthy individuals. Recall (Sensitivity), Key 

in medical diagnoses, missing an optimistic case (false 

negatives) is costly, as it helps ensure that actual cases are 

detected. F1-Score combines precision and recall into a 

balanced metric, which is useful when the dataset is 

imbalanced. ROC-AUC: Measures the model's ability to 

distinguish between classes across all thresholds, providing 

insight into the model's performance regardless of class 

imbalance. 

So, it's best to combine these indicators to get a complete 

picture of the model's efficiency. One of the most basic and 

often used metrics is accuracy, which is the percentage of 

instances properly categorized relative to the total instances. 

However, its suitability might be limited in the case of 

imbalanced datasets. 

 

Accuracy value = (TP + TN) / (TP + TN + FP + FN) (1) 

 

The precision metric is the ratio of true positives to the total 

of both true and false positives. This statistic becomes useful 

when the price of false positives is high. 

 

Precision = TP / (TP + FP) (2) 

 

To get the recall, also called sensitivity, take the total 

number of positive and negative results and divide it by the 

number of genuine positives. This metric holds significance 

when the cost of false negatives is substantial. 

 

Recall = TP / (TP + FN) (3) 

 

When recall and accuracy are harmonically averaged, the 

result is the F1 Score. Serving as a balance between precision 

and recall, it proves especially beneficial when class 

distribution is imbalanced. 

 

F1-Score = 2 * (Precision * Recall) / (Precision + 

Recall) 
(4) 

 

Area Under the Receiver Operating Characteristic (ROC) 

Curve (AUC-ROC): This curve is useful for binary 

classification problems [24]. It represents the trade-off 

between sensitivity and specificity across different thresholds.   

 

 

4. TEST RESULTS AND ANALYSIS 

 

We compared our planned works to the state-of-the-art 

work produced by Sivaranjini and Sujatha [25] to ensure their 

efficacy. They built a deep-learning model for PD 

classification. They classified it using AlexNet, a CNN. They 

achieved an accuracy rate of 88.9 in their tests. Model 1, which 

we presented first, is called Multi-modal late image fusion 

using CNN and DNN as feature extractors and DNN as a 

classifier. It has several impressive numbers: 92.12 for training 

accuracy, 92.27 for test accuracy, 94 for precision, 90 for 

recall, 91 for F1 score, and.98 for ROC AUC score. The model 

accuracy and loss graph are depicted in Figure 5 and Figure 6. 

The ROC curve for Model 1 is shown in Figure 7.  
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Figure 5. Model 1-accuracy graph for train and test 

 

 
 

Figure 6. Model 1-loss graph for train and test 

 

 
 

Figure 7. Model 1-ROC curve 

 

The second proposed model is a late image fusion technique 

entitled Multi-modal late image fusion with CNN and DNN as 

feature extractors and LSTM as classifier. It shows a training 

accuracy of 92.54, Test accuracy of 93.96, precision of 95, 

recall of 92, F1 score of 93, and ROC AUC score of .98. The 

model accuracy and loss graph are depicted in Figure 8 and 

Figure 9. The ROC curve for Model 2 is shown in Figure 10.  

The third proposed model is Multimodal early image fusion 

with CNN and DNN as feature extractors and DNN as 

classifiers. It shows a training accuracy of 89.92, Test 

accuracy of 89.97, precision of 91, recall of 87, F1 score of 89, 

and ROC AUC score value of .976. The model accuracy and 

loss graph are depicted in Figures 11 and 12. The ROC curve 

for Model 3 is shown in Figure 13. 

 
 

Figure 8. Model 2-accuracy graph for training and test 

 

 
 

Figure 9. Model 2-loss graph for training and test 

 

 
 

Figure 10. Model 2-ROC curve 

 

 
 

Figure 11. Model 3-accuracy graph for training and test 
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Figure 12. Model 3-loss graph for training and test 

 

 
 

Figure 13. Model 3-ROC curve 

 

 
 

Figure 14. Model 4-accuracy graph for training and test 

 

 
 

Figure 15. Model 4-loss graph for training and test 

 
 

Figure 16. Model 4-ROC curve 

 

Table 1. Performance measures for different proposed 

models 

 

Models 
ROC-

AUC 

Accuracy Values 
Precision  Recall F1 Score 

Train  Test 

Model  

1 
0.98 92.12 92.27 94 90 91 

Model 

2 
0.98 92.54 93.96 95 92 93 

Model 

3 
0.976 89.92 89.97 91 87 89 

Model 

4 
0.982 90.21 92.21 91 92 92 

 

Our final proposed model is a multimodal early image 

fusion with CNN and DNN as feature extractors and LSTM as 

a classifier. It shows a training accuracy of 90.21, Test 

accuracy of 92.21, precision of 91, recall of 92, F1 score of 92, 

and ROC AUC score of 0.982. The model accuracy and loss 

graph are depicted in Figure 14 and Figure 15. The ROC curve 

for Model 4 is shown in Figure 16.  

Table 1 shows performance measures for different proposed 

models. Out of four proposed models, Model 2—Hybrid 

Multi-modal late image fusion with CNN and DNN as feature 

extractors and LSTM as classifier—shows the highest 

accuracy value. For all the proposed models, testing accuracy 

is higher than training accuracy, which means all the proposed 

models learn more effectively than the existing model 

developed by Sivaranjini and Sujatha [25], which was used for 

the comparative study. 

Our experiments demonstrate that Model 2, utilizing a 

hybrid late fusion of MRI and DaT scans, achieves a superior 

test accuracy of 93.96%. This significant improvement over 

traditional single-modality models highlights the strength of 

multimodal fusion in diagnosing neurodegenerative diseases. 

Integrating blurring and sharpening in the augmentation 

process enhanced the model’s robustness, ensuring better 

performance under varying real-world imaging conditions. 

Clinically, the increased recall rate positions our approach as 

a reliable tool for early disease detection, vital for 

interventions in diseases like Parkinson’s and Alzheimer’s. 

Compared to Chakraborty et al. [12], who employed 3D 

CNNs on MRI data and achieved a 95.29% accuracy, our 

multimodal fusion provides richer diagnostic information by 

leveraging anatomical and functional imaging despite a slight 

drop in accuracy. Compared to Sivaranjini and Sujatha [25], 

who achieved 88.9% accuracy using AlexNet, our method 

presents a 5% improvement attributable to the addition of DaT 

scans, which capture functional details overlooked in single-
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modality approaches. Furthermore, VGG16-based CNN 

systems focused on PET data reported 84.6% precision, while 

our 95% precision showcases the efficacy of late fusion and 

hybrid deep learning architectures in diagnostic accuracy. 

Figure 17 depicts the accuracy value graph of the proposed 

models. The advantage of this model is it can take two types 

of image modalities to assess the chance of Parkinson’s. 

Neurologists usually check different biomarkers to accurately 

diagnose Parkinson's disease, so if we have an application that 

takes these different modalities as input and predicts or 

diagnoses Parkinson’s, which will be a significant 

development in this field. Using the proposed models, we can 

develop deep learning applications that can accept MRI and 

DaT scan images and predict whether the input image falls 

under the Parkinson’s category. 

 

 
 

Figure 17. Graphical plot of the proposed model’s accuracy 
 

 

5. CONCLUSION 
 

Neurodegenerative disorders primarily manifest through the 

loss of neurons. Prominent among these disorders are 

Alzheimer's disease and Parkinson's disease. Detecting these 

disorders involves a substantial amount of clinical assessment, 

which can be time-consuming. Fortunately, neuroimaging 

biomarkers such as MRI, DaT scan, and fMRI offer a solution, 

allowing us to identify the presence of these disorders. This 

paper harnessed the power of deep learning techniques and 

image fusion on multi-modal data to analyze different 

Biomarkers. This study introduced four innovative deep 

learning models utilizing hybrid multimodal image fusion 

techniques, combining MRI and DaT scans to diagnose 

Parkinson's disease. Augmentation methods like blurring and 

sharpening improved data diversity, and class weighting 

addressed dataset imbalance. The proposed models 

demonstrated superior performance, with Model 2 achieving 

the highest accuracy of 93.96%. 

Despite the success, certain limitations remain. Data 

imbalance may still introduce bias, especially with limited 

DaT scans. Moreover, the computational complexity of using 

LSTM in late fusion models increases processing time, making 

real-time applications in clinical environments more 

challenging.  

Future research could explore integrating additional 

modalities, such as PET or fMRI, to overcome these 

challenges and further enrich the diagnostic process. 

Additionally, incorporating transformer-based architectures or 

attention mechanisms could improve feature selection and 

reduce the computational cost. Model compression techniques 

should also be considered to facilitate real-time clinical 

deployment.  
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