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Accurately diagnosing brain tumors at an early stage is critical for successful therapy and 

saves the lives of many people worldwide. Magnetic resonance imaging (MRI) scans are 

frequently employed for tumor detection because of their noninvasive nature, sparing 

patients with the discomfort of undergoing a biopsy. The process of identifying tumors is 

arduous and time-consuming because of the extensive array of three-dimensional (3D) 

images generated by an MRI scan of a patient's brain from various angles. Moreover, the 

diverse sizes, positions, and shapes of brain tumors pose challenges for their identification 

and classification. Consequently, computer-aided diagnostic (CAD) systems have been 

suggested as solutions for detecting brain tumors. This paper presents a new unified deep 

learning (DL) model called enhanced AlexNet for brain tumor detection and classification. 

Initially, a fast nonlocal means (FNLM) filter was used for preprocessing. The tumor nodule 

was segmented from the MR images using Masi-entropy-based multilevel thresholding with 

the sunflower optimization algorithm (MasiEMT-SFO). BMC-19 was used to extract 

various features in the feature extraction process. The extracted features were then classified 

using a hybrid classifier called the enhanced AlexNet classifier algorithm with the 

Anopheles search algorithm (ASA). The proposed hybrid classifier accurately detected brain 

tumors. The proposed model was implemented in MATLAB using two Kaggle datasets. The 

experimental results show that the proposed enhanced AlexNet algorithm outperforms the 

existing methods, providing compelling evidence for its application in other diseases. The 

proposed model outperformed existing methods in distinguishing abnormal and healthy 

brain tissue from MRI images, with an F1-score of 97.21%, specificity of 98.76%, precision 

of 97.61%, sensitivity of 96.73%, and accuracy of 99.76%. These findings confirm the 

efficacy of the proposed approach. 
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1. INTRODUCTION

Brain tumors arise from excessive cell mutations or 

proliferation, leading to abnormal cell clusters that interfere 

with brain function and damage healthy cells [1]. Common 

symptoms of brain tumors include memory issues, fatigue, 

personality shifts, nausea, speech difficulties, and vision 

problems [2, 3]. Radiologists used to detect and classify 

malignancies in brain images [4]. Magnetic resonance imaging 

(MRI) and computed tomography (CT) are commonly used to 

obtain data on various regions of the human body [5, 6]. 

Physicians use MRI of the brain to perform two types of 

tasks: (i) determining whether an MRI image is healthy or 

tumorous [7-9] and (ii) classifying an MRI image into distinct 

types [10-12]. Moreover, manual identification is time-

consuming, inefficient, and unreliable when dealing with a 

vast amount. An inaccurate diagnosis can have serious 

consequences, possibly leading to patient death. Furthermore, 

classifying brain tumors into multiclass classifications 

presents more challenges than binary classifications. There is 

an urgent need for a reliable CAD system for tumor 

categorization to assist [13]. 

Although medical examinations such as MRI, CT, positron 

emission tomography (PET), and magnetic resonance 

spectroscopy (MRS) assist healthcare professionals in 

detecting brain tumors and are regarded as essential tools, 

these techniques have some limitations, such as failure to 

diagnose infected tumors, particularly in the early stages, 

which can result in false negative results. Some medical 

examinations, such as biopsies and intrusive imaging, can be 

invasive and unpredictable. Furthermore, these techniques are 

extremely expensive, and radiation exposure during CT and 

MRI scan procedures can gradually increase the possibility of 

developing a brain tumor. Other medical treatments, including 

angiography, can cause pain. As a result, all the implemented 

approaches are entirely dependent on the analysis of experts 

who perform these evaluations according to their expertise. 

However, the algorithms suggested by various researchers 

have produced excellent outcomes and made significant 

contributions to the medical profession by assisting 

researchers in disease identification and classification; 

however, the possibility of obtaining more accurate, efficient, 
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and improved results when recognizing brain tumors. 

Furthermore, the majority of existing models face difficulties, 

such as underfitting, poor generalization, an imbalanced 

dataset, overfitting, the need for expensive computational 

resources, and complexity.  

Recent developments greatly improved the ability to 

identify and classify patterns in medical images, with a focus 

on MRI data for tumor detection. Although prior studies have 

demonstrated the potential of ML and DL algorithms in this 

area, they often have significant drawbacks, including high 

computational demands. Moreover, biases in training data and 

the complex, often opaque nature of DL model decision-

making can further hinder their effectiveness [14]. To 

overcome these issues, it is essential to use robust DL models 

trained on diverse datasets and apply methods like cross-

validation to ensure the model generalizes well. The approach 

proposed here by delivering precise and prompt evaluations, 

utilizing a straightforward, end-to-end DL algorithm that is 

practical for real-time use. 

To address these issues, the proposed enhanced AlexNet 

classifier with the Anopheles Search Algorithm (ASA) was 

combined with a DL algorithm in the suggested research to 

achieve more accurate, efficient, and improved results in the 

medical field. The enhanced AlexNet classifier, with its deep 

convolutional layers, excels at extracting high-level features 

from MRI images that are critical for distinguishing between 

tumor and nontumor regions. It detects complex patterns and 

textures that are indicative of brain tumors. ASA integration 

allows the hybrid system to fine-tune the feature-

representation process. The ASA efficiently tunes the AlexNet 

architecture's hyperparameters, such as the learning rate, batch 

size, and regularization parameters. This optimization process 

ensures that the classifier is well suited to the unique features 

of brain tumor MRI datasets. The hybrid classifier aims to 

detect and classify brain tumors with high accuracy, sensitivity, 

and specificity by combining DL capabilities with 

optimization techniques. The hybrid approach, which takes 

advantage of both enhanced AlexNet's classifier capabilities 

and the ASA's optimization, has the potential to achieve 

cutting-edge results in brain tumor classification tasks. It seeks 

to outperform traditional methods by incorporating advanced 

techniques for classification and parameter optimization. 

The novelty of the proposed method is summarized as 

follows.  

·The enhanced AlexNet algorithm was optimized using 

the Anopheles Search Algorithm (ASA) for detecting brain 

tumors.  

·The proposed technique is flexible and can be adapted in 

variation of size and location of the tumors. 

· The proposed model compared to existing methods, 

extensive simulations were performed using publicly available 

datasets from Kaggle, such as the Brain Tumor Classification 

(BTC) and CE-MRI Figshare datasets. 

The paper is structures as follows. Section II discusses the 

deep analysis of existing model and techniques. Section III 

tailored the methodology. Section IV shows the experimental 

findings and Section V discusses conclusions and future 

implications. 
 

 

2. LITERATURE SURVEY 
 

Khan et al. [15] proposed work consists of two open 

accessible available datasets with 3064 and 152 MRI images, 

respectively, for detecting dual (benign and malignant) and 

multiclass (glioma, pituitary, and meningioma) brain tumors 

using two DL techniques. As there is a considerable amount of 

MRI for training objectives, initially, this work applied a 23-

layer convolutional neural network (CNN) to the first dataset 

to develop the framework. Overfitting is an issue in the 

suggested "23-layer CNN" framework. Transfer learning and 

reflections of the suggested "23-layer CNN" framework were 

employed to overcome this challenge. According to research 

results, the model's classification accuracy ranges from 97.8% 

to 100%. 

Ranjbarzadeh et al. [16] suggested that strategy reduces 

computing duration and resolves the overfitting problem in 

cascaded DL networks. Next, a simple yet effective cascaded 

CNN (C-CNN) is presented by analyzing MRI scans of minor 

areas within every portion. The proposed C-CNN method 

retrieves both global and local characteristics in distinct ways. 

Younis et al. [17] suggested that the approach is tested 

utilizing MR scans on a dataset of brain tumor diagnoses 

containing 253 MRI scans and 155 exhibiting tumors. The 

suggested approach can detect brain tumors in MRI scans. The 

approach surpasses existing traditional techniques for 

identifying brain tumors in test data (F1 score = 91.29%, 

91.78%, and 92.6%, and precision = 98.15%, 96%, and 

98.41%, respectively). Tummala et al. [18] proposed ensemble 

method outperforms earlier CNN models for MRI tumor 

diagnosis at 384 × 384 resolutions, with a total assessment 

accuracy of 98.7% and 99.4% specificity. Using an identical 

ensemble method, the scan correctly diagnosed the glioma. 

L/32 was the most accurate specific model, with a total 

assessment accuracy of 98.2% at 384 × 384 resolutions. At the 

exact resolution, each of the four ViT simulations obtained a 

total assessment of 98.7% accuracy, outperforming the 

abilities of a sole model with two resolutions and its 224 × 224 

resolution set. 

ZainEldin et al. [19] proposed a CNN-based brain tumor 

technique for classifying brain tumor types. The 

hyperparameters were configured before constructing the pre-

trained model with Inception-ResnetV2. To enhance brain 

tumor detection, the suggested approach employs a typically 

utilized pretrained model (Inception-ResnetV2), and its 

outcome is binary 0 (normal) or 1 (tumor). Because CNN-

optimized parametric variables boost CNN efficiency, 

research findings reveal that BCM-CNN obtains outstanding 

outcomes as a classifier. Polat and Güngen [20] suggested that 

the transfer learning method has an impressive level of 

efficacy compared to previous research, with the maximum 

performance in classification for ResNet50 using Adadelta 

being 99.02%. 

Asad et al. [21] presented a classification of brain tumors 

using a deep CNN with a Stochastic Gradient Descent SGD 

optimization technique. Kesav and Jibukumar [22] research 

aims to use low-computational cost framework to minimize 

the execution time of existing frameworks and to develop an 

approach for detecting brain cell tumors. A similar framework 

was then utilized as a feature extraction tool for region-based 

CNN (RCNN) to identify brain tumor locations in pre-stage 

categorized tumor MRI samples and define tumor regions 

using boxes as boundaries. Alsubai et al. [23] proposed an 

integrated CNN-long-term memory (CNN-LSTM) DL model. 

These studies used an MRI brain scan dataset. After 

successfully preprocessing the input, the CNN retrieves the 

essential components from the image. The suggested approach 

accurately predicted important brain tumor categorization with 
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99.1% accuracy and 98.9% recall. Khairandish et al. [24] 

proposed a research study in which MRI brain images got 

excellent results of CNNs in open-accessible data sets. 

Yoganathan et al. [25] demonstrated that the k-nearest 

neighbor (KNN) method effectively segments normal cells 

and tumors in brain MRI images, achieving a mean DSC value 

of 0.87 for tumor segmentation, surpassing previous methods 

in both efficiency and accuracy. Öksüz et al. [26] employed 

pre-trained models like ShuffleNet and ResNet-18 to extract 

features from tumor regions, leading to an 11.72% 

improvement in sensitivity through feature fusion and ROI 

expansion on publicly available datasets. Kokkalla et al. [27] 

introduced an approach that outperformed existing methods, 

achieving an average accuracy of 99.69% even in the presence 

of noisy data. Kadry et al. [28] used resized brain MRI images 

with various classifiers, obtaining significant classification 

accuracy with models like ResNet50, VGG16, and VGG19. 

Mandle et al. [29] developed a kernel-based SVM for brain 

tumor classification. 

Tiwari et al. [30] proposed that a deep CNN model has six 

learning layers and facilitates features from MRI brain images. 

Generated better evaluation results while learning faster than 

those of typical DL models. The results show that the approach 

is practical with 99.9% accuracy. Maqsood et al. [31] 

suggested an approach that includes five main steps: 1) linear 

contrast stretching, 2) a unique 17-layer deep neural network, 

3) an enhanced MobileNetV2 framework, 4) an entropy-based 

control approach, and 5) multiclass support vectors. The 

proposed tumor identification and categorization approach 

surpasses previous visual and quantitative approaches, with 

accuracies of 97.47% and 98.92%, respectively. Wang et al. 

[32] proposed an artificial intelligence (AI)-based screening 

tool for chest CT images. The proposed CNN employs 

multiple novel algorithms, including rank-based average 

clustering and multipass data segmentation. In contrast, graph 

convolutional networks (GCN) are used to learn the related 

representations. The proposed FGCNet model outperformed 

all current methods. Zhang et al. [33] proposed an effective 

multiple sclerosis classification model. The proposed work 

uses AlexNet as the base model and transfer learning to adapt 

AlexNet to classify multiple sclerosis brain images. The 

proposed model outperforms seven advanced MS 

classification methods [33, 34].  

Lamba et al. [35] presented a new integrated technique that 

employs advanced AI techniques such as DL and supervised 

learning algorithms. The newly proposed model outperformed 

the current methods on several metrics, including 98.87% 

accuracy, 99.09% precision, 98.73% recall, 99.02% specificity, 

and an F-measure of 98.91%. Appiah et al. [36] proposed a 

simplified model for analyzing 2D images from MRI scans for 

precise brain tumor detection that employs proper orthogonal 

decomposition (POD) and a CNN. Their study, which used 

Explainable AI with SHAP, found that MobileNetV2 had 

superior predictive capabilities in delineating tumor 

boundaries. Islam et al. [37] developed an approach that 

effectively distinguished between brain tumors and healthy 

data by integrating three different datasets. Agarwal et al. [38] 

proposed a solution for enhancing contrast in low-quality MRI 

images. Optimized Dual-Tree Wavelet Contrast Enhancement 

(ODTWCHE) improves image contrast. Yang et al. [39] form 

a hybrid Gated Recurrent Unit (GRU) network with the 

Enhanced Hybrid Dwarf Mongoose Optimization (EHDMO) 

algorithm, which is effective in handling sequential data, such 

as natural language and time series. Table 1 shows the existing 

tumor classifications. 

 

Table 1. Existing brain tumor classification techniques [19] 

 
Reference Technique Used Accuracy Limitations 

[15] CNN-based DL Model 97.80% Requires a substantial amount of images 

[17] VGG-16 deep CNN 98.50% Small dataset 

[18] ImageNet-based ViT 98.70% The size and location need to consider 

[19] BCM-CNN 99.98% It took a while to process additional optimization steps 

[20] Transfer learning-based Classification 99.02% The accuracy of classification must be improved 

[21] SGD 99.50% Generation difficulties for new dataset 

[22] RCNN-based Model 98.21% Restricted detection is required 

[23] CNN-LSTM 99.10% Performance needs to be improved 

[24] Hybrid CNN-SVM 98.49% The shape and location tumor must be considered 

[26] k-NN and SVM Classifiers 97.25% Accuracy needs to be improved 

[27] IRNet v2 99.69% More number of parameters 

[28] Hybrid DL based 96.00% Accuracy is improved 

[29] Kernel-based SVM 97.00% The dataset is small. Accuracy is improved 

[30] Multi-classification model 99.00% Accuracy is improved 

[31] DL-based multimodal classification 97.80% Accuracy is improved 

 

2.1 Problem statement 

 

Existing studies on brain tumor identification and 

classification cannot obtain better results because many 

methods use unbalanced or limited datasets. Tumors vary in 

size and shape making it more challenging to recognize tumors 

and resulting in poor efficiency. Binary classification of 

tumors was a crucial problem in previous systems, creating 

more ambiguity for physicians. The lack of data limits 

physicians’ ability to obtain reliable results. Previous DL 

algorithms enhanced the tumor identification efficiency but 

required a vast dataset for analysis. However, brain tumor 

detection has a high computational cost and requires extensive 

training.  

In previous approaches, analyzing brain MRIs to segment 

and detect tumor regions has been difficult and time 

consuming. Previous methods for detecting tumors using 

genetic algorithms (GA) require less data, but it is difficult to 

remove the objective function. GAs are nondeterministic and 

time consuming. 

 

 

3. PROPOSED METHODOLOGY 

 

The proposed approach is divided into five stages, as 

illustrated in Figure 1. Brain tumor images were initially 
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collected from the Kaggle dataset. The image was converted 

to grayscale, and the noise was removed using a filter. An 

FNLM filtering approach was employed. In addition to this 

segmentation, MasiEMT-SFO was used. The image was 

segmented based on histogram values, which increased 

segmentation accuracy. Subsequently, the features were 

obtained using VGG-19. The Minimum Redundancy 

Maximum Relevance (mRMR) method was used to select the 

best features from the feature extraction process. Finally, the 

selected features were allocated to a hybrid classifier called the 

AlexNet classifier method, which was improved using the 

ASA for classification. This will also provide information 

regarding tumor malignancy. 

 

 
 

Figure 1. Proposed methodology block diagram 

 

3.1 Dataset 

 

3.1.1 BTC dataset 

The brain tumor classification (BTC) dataset [40] in this 

study finds appropriate DL classifiers by training and testing 

multiple learning-based algorithms on MRI datasets. The 

dataset contained two MRI brain images: test and training. 

This study only utilized MRIs for meningiomas, pituitary 

gland tumors, and gliomas. Table 2 presents a description of 

the BTC dataset. Figure 2 shows the sample images. 

 

Table 2. BTC dataset description 

 
Tumor 

Type 

Number of 

Slices 

Training Set 

(80%) 

Testing Set 

(20%) 

Pituitary 899 827 72 

Meningioma 937 822 115 

Glioma 926 826 100 

 

 
 

Figure 2. Sample MRI dataset 

 

3.1.2 CE-MRI Figshare dataset 

The publicly available CE-MRI Figshare dataset [41] was 

the second dataset used to classify tumors. The T1 modality 

highlights particular features of each multiclass brain tumor. 

The most recent version of this dataset contains 708 images of 

meningiomas, 1426 gliomas, and 930 images of pituitary 

tumors. We randomly divided the dataset by allocating 80% 

for training and 20% for testing. 

3.2 Preprocessing 

 

Preprocessing is a critical step in brain tumor detection, as 

it enhances detection accuracy by removing unnecessary 

elements from MRI scans, such as surrounding tissues or 

blood vessels. The images are first converted to grayscale to 

eliminate extraneous data, simplifying the processing and 

reducing data demands. Following this, noise is removed using 

the Fast Non-Local Means (FNLM) filter [42], which is 

particularly effective in preserving image structure while 

reducing noise. 

 

3.2.1 Grayscale conversion 

Converting to grayscale minimizes storage and processing 

requirements, making the subsequent analysis more efficient. 

 

3.2.2 Filtering 

Unlike conventional filters that may blur the entire image, 

the FNLM filter retains crucial edge information by weighting 

pixel values based on their Euclidean distance. This approach, 

now feasible due to advances in computing power, has proven 

effective in enhancing image clarity, as demonstrated by 

qualitative and quantitative analyses. 

 

NL [i] (M)=∑ 𝑊(𝑀, 𝑁)𝑁⋲𝑖 𝑖(𝑁) (1) 

 

where, W(M, N): weight of the pixels M&N, ranges between 

0≤W(M,N)≤1 and ∑ 𝑊(𝑀, 𝑁)𝑁⋲𝑖 =1.  

Here, i(N) and i(M) denote the luminance of pixels N and M, 

respectively, and Eq. (2) establishes weight W(M, N) regarding 

the similarity between pixels M and N. 

 

W(M, N)=
1

𝑍(𝑀)
𝑒

− 
||𝑃 (𝑋𝑀)− 𝑃 (𝑋𝑁)||

𝐷2  (2) 

 

where, XM and XN are pixel vectors for M and N. Z (M) is the 

normalization coefficient and determined as in Eq. (3). 

 

Z(M)=∑ 𝑒
−

[𝑃 (𝑋𝑀)− 𝑃 (𝑋𝑁)]2

𝐷2
𝑁  (3) 

 

The coefficient D in Eqs. (2) and (3) control how much 

noise is eliminated, and this value is typically a constant 

multiplied by the standard deviation. A larger D value 

improves the efficacy of noise elimination while increasing 

image smoothing. 

 

Algorithm 1: Preprocessing pseudocode 

Input: The authenticated input image and its size 

Output: Processed image 

Steps: 

1. The pixel values were estimated. 

2. The intensity differences between adjacent pixels are 

calculated by ||P(XM)–P(XN)|| 

3. Eq. (2) is used to obtain the weight value for each region. 

4. Eq. (1), was used to filter the images. 

 

3.3 Segmentation 
 

Segmenting images is an essential component of medical 

diagnosis. Segmentation based on images can be challenging. 

A later step is used to segment infected brain areas on MRI: 

The preprocessed MRI brain tumor image is initially turned 

into a binary image using an FNLM filter. The binary image is 
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then segmented into the next stage. The MasiEMT-SFO 

approach was employed in this study to segment MRI tumor 

images efficiently. 

 

3.3.1 MasiEMT-SFO 

A new multi-level threshold-based image segmentation 

approach was developed using Masi entropy as the objective 

function. While bi-level thresholding is effective for 

segmenting images with a single object against a background, 

it often falls short when dealing with complex images 

containing multiple objects. In such cases, multi-level 

thresholding provides better segmentation results. To optimize 

the threshold search process and reduce computational costs, 

metaheuristic algorithms are commonly used. This study 

proposes the combination of the Sailfish Optimization (SFO) 

algorithm with Masi entropy for multi-level threshold-based 

image segmentation, significantly lowering computational 

complexity. The SFO algorithm optimizes the search space to 

find ideal thresholds, making the segmentation process more 

efficient even as the number of thresholds increases. For the 

segmentation of an image, we assume an array of m thresholds 

{T1 ... TN}. These thresholds were applied for image 

segmentation in the N+1 class. Gray levels [0, T1], [T1+1, T2] ... 

[TN+1, L−1] are covered by pixels G0 and G1.... GN, in the 

range mentioned above. To perform multilayer thresholding, 

Masi entropy is expressed as follows: 

 

MR (I|{T1, ..., TN}) 

=MR (G0)+MR (G1) + ... + MR (GN) 
(4) 

 

where, 

 

MR(G0)=
(log( 1−(1−𝑅) ∑

𝐻𝑖
𝑊0

𝑇1
𝑖=1    log(

𝐻𝑖
𝑊0

)))

1−𝑅
 (5) 

 

MR(G1)=
(log( 1−(1−𝑅) ∑

𝐻𝑖
𝑊1

𝑇2
𝑖=𝑇1+1 log(

𝐻𝑖
𝑊0

)))

1−𝑅
 (6) 

 

MR (GN)=
(log( 1−(1−𝑅) ∑

𝐻𝑖
𝑊𝑁

𝐿−1
𝑖=𝑇𝑁+1 log(

𝐻𝑖
𝑊1

)))

1−𝑅
 (7) 

 

where, W0=∑ 𝐻i
𝑇1
𝑖=1    , W1=∑ 𝐻i

𝑇2
𝑖=𝑇1+1 , …, WN=∑ 𝐻i

𝐿−1
𝑖=𝑇𝑁+1 . 

The pollination process of the two nearest sunflower ports 

in the direction of the sun was simulated using the SFO 

algorithm. Sunflowers have a consistent life cycle: they 

emerge each day with the sun, much like the hands of the clock. 

At night, they faced in the reverse direction, patiently waiting 

for the sun to rise in the morning. The inverse square law of 

radiation is another important nature-based optimization 

method. In this context, the inverse square-law principle is a 

key component of natural optimization. The amount of 

radiation received varies directly with the plant's distance from 

the sun but remains relatively constant at closer distances. In 

contrast, longer distances resulted in less solar radiation 

absorption. Hence, similar considerations apply to this study: 

moving closer to solar sources maximizes the potential for 

global optimization as shown in Figure 3. The calorie Q 

consumed by each plant was calculated using Eq. (8): 

 

Q=
𝑃

4𝜋𝑑2 (8) 

 

where, Q is the quantity of heat obtained, P is the power of the 

sun, and c is the separation between the sun Y* (the best 

solution) and the sunflower Yi. 

 

 
 

Figure 3. Flowchart of the sunflower optimization algorithm 

 

The direction vector of sunflowers is defined as follows: 

 

𝑆 =
Y∗− Yi

||Y∗− Yi||
 i=1, 2, ……, m (9) 

 

where, Y* represents the global best solution, Yi represents the 

solution i, and m represents the population size. Eq. (10) shows 

the calculation of each sunflower Yi’s step size (D). 

 

𝐷 = µ × 𝑝𝑖(||Yi −  Yi−1||) ×  ||Yi − Yi−1|| (10) 

 

where, µ is a constant value indicating a plant's "inertial" 

displacement, and 𝑝𝑖(||Yi − Yi−1||)  is the probability of 

pollination. 

All sunflower steps were limited to the maximum step size 

of the DMAX to avoid skipping each solution boundary. Eq. 

(11) shows the computation of the maximum step size: 
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𝐷𝑀𝐴𝑋 =
||𝑌𝑀𝐴𝑋 − 𝑌𝑀𝐼𝑁||

2 ×  m
 (11) 

 

where, YMAX is the upper boundary and YMIN is the lower 

boundary. The most current planting method in the population 

is: 

 

𝑌⃗⃗𝑖+1 = 𝑌⃗⃗𝑖 + 𝐷 x 𝑆 (12) 

 

This approach begins with creating a uniform or random 

population of entities. Evaluating each individual helps to 

determine which one will evolve into the "Sun." Although 

future versions may manage multiple suns, the current study 

focused on a single individual. Subsequently, all new entities 

resembling sunflowers align themselves with the sun and 

migrate in a controlled random manner. The SFOA was used 

to identify high-quality solutions in problem-solving scenarios 

by reducing the fitness function. 

 

Algorithm 2: MasiEMT-SFO Pseudo code 

1) Initialize the population size m, pollination rate P, and 

maximum iteration number MaxI. 

2) Configure T=0. 

3) Create population Yi(t)⋲[L,U] randomly, where i=1, …, 

m. 

4) Assess the fitness value of the population's members 

(sunflowers) f(Yi(t)). 

5) Allocate the population’s optimal solution Y*.  

6) All individuals (sunflowers) were aligned to the answers 

presented in Eq. (9). 

7) The above steps were repeated. 

8) Determine the direction vector (fitness) of each 

individual. 

9) Eliminate the worst n% of individuals. 

10) Eq. (10) is used to calculate the individuals' steps 

towards the sun.  

11) The finest sunflowers were fertilized in the vicinity of 

the sun. 

12) The maximum step of the individuals was determined 

using Eq. (11). 

13) Refresh the individuals in (12). 

14) Assessment of new individuals. 

15) Utilize new individuals if their fitness levels are higher 

than the present ones. 

16) Configure T=T+1. 

17) The above steps were performed until (T>MaxI). 

 

An optimization algorithm that finds the most optimal 

solution by analogizing sunflower pollination is shown in 

Figure 3. This algorithm begins by initializing a population of 

random agents. A predetermined percentage of flowers that are 

the furthest from the sun is then eliminated by the algorithm as 

part of a selection procedure. By taking this step, resources can 

be directed towards the more promising applicants. Each 

bloom then goes through a procedural upgrade to improve its 

pollination behavior or position. The best-performing flowers 

are chosen to pollinate close to the sun, producing new 

individuals close to the optimal solution. By concentrating on 

regions with significant potential, this local exploration seeks 

to enhance the best solution. 

A new population is created once the new individuals have 

been created. If a better option is found, the algorithm updates 

the sun or the best solution. Otherwise, it checks to see if this 

population constitutes a global minimum. The procedure is 

repeated until an ideal solution is found or the maximum 

number of iterations (called days) is reached. At this stage, the 

algorithm comes to an end after repeatedly selecting, orienting, 

and pollinating the population to get the greatest potential 

result. 

 

3.4 Feature extraction 

 

Feature extraction is an essential component for 

classification. The significant elements of the images have an 

enormous impact on the classification performance. Object 

characteristics are classified as global or local, based on color, 

size, or structure. Texture and color are local characteristics; 

however, their structures are global. Deep and artisan features 

were acquired for image categorization in this study. Feature 

extraction techniques are critical for tumor detection. The 

VGG19 algorithm obtains various features from the 

segmented images. The process described above extracts 

specific features from an image for brain tumor imaging. 

 

3.4.1 VGG-19 

VGG-19 enables it to capture distinct features in images, 

which is critical for tasks such as medical image analysis, in 

which subtle details can have a diagnostic impact. Medical 

imaging studies, including MRI analysis, have shown that 

VGG-19 excels in feature extraction tasks because of its ability 

to effectively capture low and high-level features [43]. This 

performance reliability is critical for accurate detection of 

tumors using MRI. VGG-19 achieves a balance between depth 

and computational feasibility as shown in Figure 4. 

 

 
 

Figure 4. VGG-19 Architecture model 
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The feature extraction capabilities of VGG-19 provide a 

rich set of features for the enhanced AlexNet brain tumor 

classifier for processing. These features are more abstract and 

representative than earlier layers, which improves the 

classifier's ability to detect complex tumor-related patterns. 

Using VGG-19 as the feature extractor, the enhanced AlexNet 

classifier can focus on refining these features through 

additional training. This fine-tuning process improves 

classification accuracy and robustness. 

 

3.5 Feature selection (FS) 

 

The FS is a critical task that reduces the number of features 

by removing redundant, irrelevant, and noisy data. In this 

study, the mRMR method is used to select the best features. 

mRMR-based feature selection is especially effective in 

detecting brain tumors from MRI images because of its ability 

to select highly relevant and non-redundant features, optimize 

subset sizes, robustly handle noise, ensure interpretability, and 

accommodate complex data structures. 
 

3.5.1 mRMR 

mRMR is a type of feature selection method that acts as a 

filter to identify the optimal feature set by maximizing the 

correlation with the target variables while minimizing 

redundancy among features. This classic approach effectively 

gathers relevant and nonredundant features. mRMR is 

efficient for selecting feature subsets by emphasizing relevant 

features and excluding irrelevant features. Mutual information 

plays a crucial role in assessing the similarities between 

features. Specifically, for features fi within set S, maximizing 

mutual information enhances the relevance between features 

and the target class c: 

 

max 𝐷 (𝑆, 𝑐), 𝐷 =
1

│𝑆│
∑ 𝐼𝑀(𝑓𝑖; 𝑐)

𝑓𝑖∈𝑆

 (13) 

 

where, IM represents the mutual information between feature fi 

and class c. 

 

min 𝑅(𝑠), 𝑅 =
1

│𝑆2│
∑ 𝐼𝑀(𝑓𝑖 , 𝑓𝑗)

𝑓𝑖,𝑓𝑗∈𝑆

 (14) 

 

Feature selection operates on the entire feature vector by 

using leave-one-out cross-validation with a voting scheme. In 

this process, each case selected the best features through cross-

validation. Each feature receives a vote if selected by case, and 

those with the highest accumulated votes are chosen as the 

final features. These selected features are subsequently 

utilized in the classification stage to categorize each super 

pixel as tumor or non-tumor. The mRMR-based feature 

selection is highly beneficial for enhancing the performance of 

an enhanced AlexNet classifier in brain tumor detection from 

MRI images. It optimizes feature selection by maximizing 

relevance and minimizing redundancy, thereby enhancing the 

classification accuracy and robustness in medical imaging. 

The integration of mRMR with enhanced AlexNet combines 

their strengths, providing a potent approach for precise and 

dependable brain tumor diagnosis using MRIs. 
 

 
 

Figure 5. Process flow of the proposed system 
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3.6 Classification 

 

After the FS, the selected features are fed into a hybrid 

AlexNet classifier with the ASA as an input. Conventional 

algorithms frequently require handwritten functions, which 

are time consuming and may not fully capture the complexities 

of medical imagery. DL models such as AlexNet can 

automatically discover important features and decrease the 

need for manual feature engineering. The enhanced AlexNet 

output layer uses a SoftMax classifier to detect brain tumors 

[44]. Ultimately, the proposed classifier efficiently detects 

brain tumors while improving the classification accuracy. 

Figure 5 shows a flowchart of the proposed method. 

AlexNet as shown in Figure 6 consists of five convolutional 

layers, three max-pooling layers, two normalization layers, 

two fully connected layers, and a softmax layer, with ReLU 

activation applied after each convolution. The input size is 

typically 224 × 224 × 3, but with padding, the actual output is 

227 × 227 × 3, and the model contains over 60 million 

parameters. 
 

3.6.1 Enhanced AlexNet 

The architecture includes five convolutional layers, three 

fully connected (FC) layers, and various pooling and 

normalization layers, processing input images of size 227 × 

227 × 3 [45]. The ReLU activation function is used throughout 

to address issues like gradient vanishing, allowing for faster 

convergence during training. Dropout is applied in the FC 

layers to prevent overfitting by training only a subset of 

neurons in each iteration, thus improving the network's 

generalization capability.  

The enhancements described in this study differ from the 

existing AlexNet classification framework in the following 

ways. 

·Convolutional layers were added to the existing AlexNet 

architecture to maintain responsive local areas and employ 

max-average pooling methods to improve image classification. 

·A global average pooling layer that can significantly 

reduce overfitting while retaining the final features. The 

absence of many network variable computations does not 

affect the final result, which improves the network 

performance.  

·Finally, a local response normalization (LRN) layer was 

added to the convolutional layer to avoid specific additional 

numerical issues, thus eliminating neuron saturation. 

Following each convolution layer, the BN layer was included 

and directed to the next network layer as shown in the Figure 

7. 

The output from the convolutional layer is given as: 

 

𝑋𝑗
1 = 𝑓 (∑ 𝑊𝑗

𝐼−1

𝑁

𝑎=1

∗ 𝑌𝑎
𝐼−1 + 𝑏𝑗

𝑖) (15) 

 

where, Xj
1 s the j-th feature map on layer l, Ya

I-1 is the feature 

map on layer I–1, Wj
I-1 is the j-th kernel on layer I-1, N is the 

total number of features on layer I–1, bj
i is the bias for the j-th 

feature map on layer l, and (*) denotes convolution. Pooling 

layers reduce the feature map size, and the final layer utilizes 

the SoftMax function for classification: 

 

 
 

Figure 6. AlexNet architecture 

 

 
 

Figure 7. Architecture of the enhanced AlexNet model 
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ReLU(X)={
0,          𝑋 < 0
𝑋          𝑋 ≥ 0,

 (16) 

 

SoftMax (𝑋𝑖) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑦𝑚
𝑦=1

 (17) 

 

where, Xi and m are the input data and number of classes, 

respectively. To normalize features, AlexNet uses parameters 

to adjust the mean and variance. 

 

𝑃𝑖 = 𝜑𝑡̃𝑖 + 𝛽 (18) 

 

𝑡̃𝑖 =
𝑡𝑖 − 𝜇

√𝜎2 + 𝛾
 (19) 

 
where, 𝜇 and 𝜎 are the mean and variance, respectively. γ is a 

constant, and is the parameter for feature extraction. To 

optimize the parameters and reduce error rates during 

classification, AlexNet was tuned using the Adaptive 

Simulated Annealing (ASA) algorithm. This optimization 

adjusts 𝛽 to increase accuracy and 𝜙 to minimize error rates. 

 
Algorithm 3: Pseudocode of the Enhanced AlexNet [46] 

Initialize - AlexNet layers  

Pre-process input with MRI images (Gray-scale 

conversion, filtering)  

Partition datas 

Initialize and train the model  

Train_Model (Enhanced_AlexNet, Labeled_Data)  

Perform data augmentation and generate synthetic samples  

Synthetic_Data = Generate_Synthetic_Data 

(Labeled_Data)  

Fine-tune the model  

Model_Tuned = Fine_Tune_Model (Enhanced_AlexNet, 

Labeled_Data)  

Execute the main training loop 

for each iteration from 1 to the Total_Iterations: 

Perform Forward Propagation(Model_Tuned, 

Unlabeled_Data) 

Update the model based on predictions 

Calculate and assess accuracy 

accuracy = Calculate_Accuracy (Model_Tuned, 

Unlabeled_Data) 

 Evaluate the final model 

Final_Accuracy = Calculate_Accuracy. 

 
3.6.2 ASA 

Recent studies have uncovered the molecular mechanism of 

female Anopheles mosquitoes, which enables them to detect 

their prey several miles away. Human sweat contains a 

compound called methyl phenol 4, which is detected by insect 

olfactory receptors (Igor-1), helping it locate humans. It has 

been observed that Igor-1 cells are exclusively present in 

female mosquitoes. When malaria parasites are ready to move 

from one host to the next, they prompt the infected body to 

release odors that attract Anopheles mosquitoes. Furthermore, 

the search agents within the solution space act like mosquitoes. 

These agents evaluate the optimality of each point by 

randomly navigating through the solution space. As the 

iterations progress, more agents converge towards the optimal 

points. 

 

D=a log(C)+b (20) 

where, D denotes the odor density, b signifies the tracking 

constant, and C represents the Weber-Fechner chemical 

concentration coefficient. In Eq. (1), if a denotes the inverse 

distance between point Xi mosquito Ai. 

 

𝑂𝑑𝑜𝑟
𝐴𝑖𝑋𝑖=

1
𝐷𝑖𝑠𝑡(𝐴𝑖𝑋𝑖)

×𝑙𝑜𝑔(𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖))+𝑏,      0≤𝑏≤0.5
 (21) 

 

where, 𝐷𝑖𝑠𝑡(𝐴𝑖𝑋𝑖) = √∑ ((𝑥𝑗(𝐴𝑖) − 𝑥𝑗(𝑋𝑖))2)𝑛
𝑗=1 . 

 

The metaheuristic ASA consists of the following steps. 

·The optimization problem can be described as follows: 

 

𝑓(𝑋)𝑥
𝑚𝑎𝑥 , 𝑋 ∈ 𝑥𝑖    𝑖 = 1,2, … . 𝑁 (22) 

 

where, f(x) denotes the objective function, X represents the set 

of decision variables, xi denotes a variable with a set of 

possible values for each decision, and N signifies the number 

of decision variables. The definition of continuous decision 

variables includes the upper and lower bounds, as specified in 

Eq. (23). 

 

𝑙𝑥𝑖
≤ 𝑥𝑖 ≤ 𝑢𝑥𝑖

 (23) 

 

𝑥𝑖 ∈ {𝑥1, 𝑥2, … . 𝑥𝑛} (24) 

 

· The number of Anopheles mosquitoes, number of 

decision variables, and range of each decision variable were 

the variables of the search algorithm. 

· In this step, mosquitoes are dispersed randomly 

throughout the search space, and the location of each 

mosquito's optimal point is determined. 

·Each mosquito senses the odor density according to Eq. 

(23), and based on the value obtained, it travels in the direction 

of the optimal point. In a two-dimensional space, for instance, 

we have: 

 

𝑂𝑑𝑜𝑟
𝐴𝑖𝑋𝑖=

1

√(𝑥𝐴𝑖
−𝑥𝑖)

2
+(𝑦𝐴𝑖−𝑦𝑖)2

×log(𝑓𝑖𝑡𝑚𝑒𝑠𝑠 (𝑋𝑖))+𝑏,0≤𝑏≤0.5,
  

(25) 

 

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 ± 𝑂𝑑𝑜𝑟𝐴𝑖𝑋𝑖
× │𝑥𝐴𝑖

− 𝑥𝑖│ (26) 

 

𝑦𝑛𝑒𝑤 = 𝑦𝑜𝑙𝑑 ± 𝑂𝑑𝑜𝑟𝐴𝑖𝑋𝑖
× │𝑦𝐴𝑖

− 𝑦𝑖│ (27) 

 

·The stopping conditions are as follows: 

For a fixed number of iterations, based on the conducted 

simulations, a range between 15 and 30 is recommended. This 

approach is proposed as a decision parameter for problems 

characterized by intricate objective functions and a substantial 

number of decision variables. 

Attaining a sufficiently good solution: this criterion is 

suitable for problems with a defined optimality threshold. 

Number of iterations without alteration in the optimal 

function; this is applicable to problems where achieving 

solution convergence is crucial. 
 

Algorithm 4: Pseudo code of ASA 

% Initialize Anopheles structure 

Anopheles_Stract = struct('Anopheles_Loc', [], 

'Anopheles_fitness', []); 

% Generating initial locations of Anopheles 
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for i = 1:Anopheles_No 

    Anopheles_Stract(i).Anopheles_Loc = 

random_value; % Replace with actual random 

initialization method 

end 

% Evaluation 

for i = 1:Anopheles_No 

    Anopheles_Stract(i).Anopheles_fitness = Calculator 

fitness (Anopheles_Stract(i),Anopheles_Stract(i)). 

Anopheles_Loc); 

end 

% Main loop of Anopheles Search Algorithm 

while ~Stop_Condition 

    for i = 1:Anopheles_No 

        for j = 1:Anopheles_No 

            Odor_Anopheles_Stract_i_to_j = 1 / 

Dist(Anopheles_Stract(i), Anopheles_Stract(j)) × 

log(Anopheles_Stract(i).Anophele fitness) + b 

            % Update position 

Anopheles_Stract(i).Anopheles_Loc=Updated_Location(

Anopheles_Stract(i)),Anopheles_Loc, 

Odor_Anopheles_Stract_i_to_j).       

            % Evaluation 

Anopheles_Stract(i).Anopheles_fitness=Calculate_Fitness

(Anopheles_Stract(i),Anopheles_Stract(i)).Anopheles_Loc

); 

        end 

    end 

end 
 

 
 

Figure 8. Flowchart of proposed hybrid enhanced AlexNet 

with ASA 

3.6.3 Hybrid Enhanced AlexNet with ASA 

The optimization was based on Anopheles mosquitoes with 

approximately three tents. Certain Anopheles mosquitoes 

were discovered near three tents but were not carriers. Initially, 

an infant infected with malaria and parasites was ready to 

spread. Second, malaria-infected children and parasites are 

unprepared for spreading the disease, and third, there is the 

existence of a healthy child. The results indicated that 

mosquitoes showed twice the attraction to the scent of children 

in the first tent compared to the others. Figure 8 illustrates the 

flowchart for the ASA-AlexNet. 

Step 1: Initialization.  

where ASA denotes the population, B denotes the best value, 

and I denote the number of iterations. The decision variable 

was bounded by lb (lower bound) and ub (upper bound). The 

ASA algorithm was operationalized using the following 

equations: 

 

𝑃𝑖 = (1, 𝑗) = 𝑙𝑏𝑗 + 𝑋(𝑢𝑏𝑗 − 𝑙𝑏𝑗); 𝑗 

= 1,2,3 … . . 𝑁 
(28) 

 

𝑃𝑖 = 𝑃𝑖 + 𝑋(𝑃𝑖) (29) 

 

In Eq. (30), the inverse distance between Xi and point Yi is 

calculated, where C denotes the optimal point in the solution 

space based on the location Xi, as follows:  

 

𝑂
𝑋𝑖𝑌𝑖=

1
𝐷𝑖𝑠𝑡(𝑋𝑖𝑌𝑖)

×log(𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑌𝑖))+𝑏,0≤𝑏≤0.5
 (30) 

 

Step 2: Random generation.  

Eq. (31) illustrates the calculation of distance. 

 

𝐷𝑖𝑠𝑡(𝑋𝑖𝑌𝑖) = √∑ (𝑋𝑗(𝑋𝑖) − 𝑋𝑗(𝑌𝑖))2𝑛
𝑗=1   (31) 

 

If b=0.5, O increases. The value of b toward the apex of the 

Anopheles motion was the maximum. If b=0, distance and 

optimization are used to compute the motion of the Anopheles 

mosquito.  

Step 3: Fitness function.  

The fitness function is represented in Eq. (32): 

 

Fitness function (𝑋𝑖𝑌𝑖) =
𝑀𝑎𝑥𝑖𝑚𝑖𝑥𝑒 (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦), 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒) 

(32) 

 

where, 𝛽 represents the accuracy and 𝜑 represents the error 

rate. 

Step 4: ASA updates are aimed at enhancing the accuracy 

and reducing the error rates. This optimization process 

calculates parameters by assessing the scent density detected 

by each mosquito and advancing toward the optimal point 

based on these values. The focus was on improving the 

accuracy while minimizing the error rates, as depicted in the 

following maximization equation: 

 

Maximixe (Accuracy) (𝑋𝑖), 𝑋𝑖 ∈ 𝑥𝑖 , 𝑖 = 1,2, … . 𝑁 (33) 

 

where, Maximixe (Accuracy) (Xi), represents the objective 

function. If the decision variable is continuous, it is divided by 

an upper bound (𝑈𝑋𝑖
) and a lower bound (𝐿𝑋𝑖

), as shown in 

Eqs. (34) and (35). 

 

𝐿𝑋𝑖 ≤ 𝑋𝑖 ≤ 𝑈𝑋𝑖 (34) 
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𝑋𝑖 ∈ {𝑋1, 𝑋2 … … 𝑋𝑛} (35) 

 

The minimized error rate is given as: 

 

Minimize (Error rate) (𝑌𝑖) = 𝑋1
2 + (𝑋2 − 1)2 (36) 

 

Eqs. (31) and (34) are the optimization equations for 

achieving the desired function. The smells of anopheles were 

used to optimize the parameters.  

Step 5: Termination.  

Finally, the fitness function is employed to achieve 

optimum accuracy while reducing the computational time. 

Finally, the ASA mechanism selects the optimal value of the 

AlexNet classifier to effectively classify input MR images as 

normal or abnormal. 

 

 

4. RESULTS AND DISCUSSION 

 

Evaluating algorithm efficiency is crucial in computerized 

system design, particularly for predicting unexpected data. 

Simulations were performed in MATLAB 2021a on an Intel 

Core i5-8250U CPU with 8 GB of RAM, as detailed in Table 

3. The different performance metrics and the formulas are 

summarized in Table 4. 

Figures 9(a) and 9(b) illustrate the input and filtered images, 

and Figures 9(c) and 9(d) depict the segmented and 

categorized MRI images. 

 
Input Image Preprocessing Segementation Detection 

    

  
 

 

    

 
   

  
  

 
(a)  

(b) 

 
(c) 

 
(d) 

 

Figure 9. Experimental result of tumor detection for MR 

image 

 

Table 3. Details of experimental setup 
 

Sl. No Name Value 

1 RAM 8GB 

2 CPU Intel (R) Core (TM) i5-5200U 

3 HDD 500GB 

4 Window Window 10, 64bit 

5 Implementation Tool MATLAB2021a 

 

Table 4. Performance metrics [19] 
 

Performance Metric Formula 

Sensitivity/Recall TP/(TP+FN) 

Precision TP/(TP+FP) 

Specificity TN/(TN+FP) 

Accuracy (TP+TN)/(TP+TN+FP+FN) 

F-measure 2*TP/(2*TP+FP+FN) 

False Positive Rate FAR = FP/(FP+TN) 

Dice similarity coefficient (DSC) 2*TP/(FP+2TP+FN) 

Jaccard similarity index (JSI) TP/(TP+FP+FN) 
 

4.1 Comparative analysis using BTC dataset 
 

As shown in Figures 10-11 and Table 5 the proposed 

method achieves an accuracy of 99.76%, which is the highest 

among the compared models, reflecting its superior capability 

in correctly identifying positive cases. Furthermore, the 

proposed method also demonstrates a marked improvement in 

sensitivity (96.73%) and specificity (98.76%), indicating its 

effectiveness in both detecting true positives and correctly 

identifying negatives. The precision and F-measure values are 

also notably high, at 97.61% and 97.21% respectively, further 

supporting the robustness of the proposed method in 

delivering consistent and reliable classification results. 

As presented in Table 6, multiple ML and DL algorithms 

and their variants were evaluated. the conventional approach 

of several performance measures, such as the DSC, JSI, Error 

rate, and FPR has been performed. The table shows crucial 

characteristics, such as the DSC and JSI tested against the 

current approach and new process. Figure 12 also shows a 

graphical illustration of the comparison between the DSC and 

JSI. In this example, the JSI defines the region of interest. DSC 

parameters were used to determine the exact number of ratios 

of accessible tumors. 

 

 
 

Figure 10. Performance evaluation accuracy, sensitivity, and 

specificity 
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Figure 11. Performance evaluation precision and f-measure 

 
 

Figure 12. Comparison of DSC and JSI 

 

Table 5. Comparison of the proposed algorithm to existing methods 

 
Approach Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F-Measure (%) 

SVM 92.74 90.78 92.52 91.23 91.91 

CNN 94.64 92.24 94.72 93.91 93.86 

DCNN 95.60 92.16 95.30 94.41 93.71 

ResNet-50 97.86 92.36 96.59 95.76 96.16 

VGG-16 98.90 93.96 97.21 96.21 96.46 

Proposed method 99.76 96.73 98.76 97.61 97.21 

 

Table 6. Parametric evaluation and comparison 

 
Approach DSC JSI Error Rate FPR 

SVM 82.74 88.10 0.088 0.2297 

CNN 87.00 89.30 0.073 0.1099 

DCNN 90.10 93.21 0.076 0.1086 

ResNet-50 92.23 95.43 0.031 0.0588 

VGG-16 94.63 96.52 0.020 0.0321 

Proposed Method 97.32 98.50 0.010 0.0024 

 

The fraction of tumor pixels was similar to the expected 

number of tumor pixels. The tabular and graphical 

representations show the suggested methods, with a DSC 

value of 97.32% and a JSI value of 98.50%. The error rate 

quantifies the relationship between inaccurate predictions and 

total evaluation instances. The error rate comparison is shown 

graphically in Figure 13. Shows a lower error rate of 0.010 

than existing techniques. Figure 14 shows a graphical 

illustration of the FPR comparison. The tabular and graphical 

representations show that the approach has a slight advantage 

in FPR value of 0.0024. The FPR of the proposed model is 

0.0024, which is lower than that of other techniques. The 

computational time of each method in seconds using a similar 

dataset and parameters shown in Figure 15 that the SVM 

method takes a long time to simulate (660 s), whereas the 

proposed enhanced AlexNet model takes the least time (187.8 

s). 

In the confusion matrix, the column represents an instance's 

expected value, and the row represents the instance's accurate 

(true) value. This matrix lives up to its name by helping us see 

whether there are any confused findings or class overlaps. 

Figures 16-17 depict the confusion matrices, respectively. 

Figure 18(a) and Figure 18(b) show accuracy and loss and 

Table 7 shows the performance comparison of existing 

approaches. 

 
 

Figure 13. Comparison of error rate 
 

 
 

Figure 14. FPR comparison graph 
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Table 7. Performance comparison of the proposed and existing algorithms 

 
 SVM CNN DCNN ResNet-50 VGG-16 Proposed 

Glioma 

Precision 0.85 0.90 0.92 0.93 0.91 0.95 

Recall 0.80 0.92 0.94 0.95 0.94 0.96 

F-measure 0.87 0.90 0.93 0.94 0.95 0.97 

Meningioma 

Precision 0.76 0.80 0.88 0.92 0.93 0.94 

Recall 0.78 0.82 0.85 0.93 0.94 0.95 

F-measure 0.82 0.86 0.88 0.90 0.92 0.93 

Pituitary 

Precision 0.80 0.82 0.87 0.90 0.93 0.95 

Recall 0.82 0.83 0.89 0.91 0.94 0.96 

F-measure 0.84 0.85 0.86 0.88 0.93 0.97 

 

 
 

Figure 15. Comparison of simulation time 

 

 
 

Figure 16. Confusion matrix for testing set 

 

 
 

Figure 17. Confusion matrix for training set 

 
(a) 

 
(b) 

 

Figure 18. Training and validation graph 

 

Table 8. Performance analysis based on preprocessing 

 

Filter Applied 
PSNR 

(dB) 

MSE 

(dB) 

MAE 

(dB) 
SSIM 

Anisotropic 

diffusion filter 
9.0927 14.622 0.06783 0.598 

Averaging filter 10.022 11.635 0.05672 0.620 

Guided filter 10.2054 9.825 0.05387 0.789 

FNLM 15.3656 5.129 0.00582 0.820 

 

Table 8 lists the PSNR, MSE, MAE, and SSIM values for 

different filters. The image means of the FNLM approach 

achieved the highest SSIM of 0.820, while those of the guided 

filter, averaging filter, and anisotropic diffusion filter were 

0.789, 0.620, and 0.598, respectively. The FNLM model 

yielded a minimal MAE of 0.00582 for the image mean and 

values of 0.05387 and 0.05672 for the guided and average 
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filters, respectively. The maximum average PSNR image 

value calculated by the FNLM was 15.3656, whereas the 

guided and average filters yielded 10.2054 and 10.022, 

respectively. 

The sensitivity, specificity, and accuracy metrics presented 

in Table 9 were used to analyze multiple automated 

segmentation algorithms, yielding valid results. Furthermore, 

we compared the results of three well-known approaches 

(watershed algorithm, K-means, DWT, and the proposed 

method). According to these data, the proposed MasiEMT-

SFO technique was the most efficient for segmenting 3D MRI 

images. For instance, the MasiEMT–SFO approach achieved 

the best accuracy with positive but insignificant sensitivity and 

specificity metrics. The MasiEMT-SFO method proposed in 

this work can segment 3D MRI images more accurately and in 

a shorter time than the other three methods. Consider T2-

weighted MRI, for example. Watershed, K-means, and DWT 

algorithms had accuracies of 62.54%±0.04, 79.18%±0.138, 

and 86.54%±0.03, respectively, with a volume average 

accuracy of 90.9%±0.052. The proposed approach is practical, 

with a sensitivity of 90.23% ± 0.026. 

Table 10 shows that enhanced AlexNet outperforms the four 

models in practically every performance indicator, with 99% 

precision, 98% accuracy, 99.8% specificity, 99.67% recall, 

and 99.7% F-score for brain tumor diagnosis. GoogLeNet had 

the second-highest accuracy (96.22%), whereas DenseNet201 

had the lowest accuracy (95.00%) within the compared 

architecture.  

 

Table 9. Performance analysis based on segmentation 

 
Different Parameters Different Segmentation Sensitivity Specificity Accuracy 

T2-weighted 

Watershed algorithm 63.36% ± 0.143 61.37% ± 0.136 62.54% ± 0.04 

K-means 72.07% ± 0.43 75.8% ± 0.545 79.18% ± 0.138 

DWT 87.08% ± 0.045 89.2% ± 0.156 86.54% ± 0.03 

proposed 90.23% ± 0.026 91.4% ± 0.0067 90.9% ± 0.052 

FLAIR 

Watershed algorithm 66.5% ± 0.0037 59.4% ± 0.464 70.12% ± 0.038 

K-means 79.4% ± 0.030 65.35% ± 0.35 78.2% ± 1.118 

DWT 80.5% ± 0.008 78.53% ± 0.025 82.5% ± 0.026 

proposed 95.4% ± 0.03 90.5% ± 0.0088 94.7% ± 0.636 

T1-C 

Watershed algorithm 78.4% ± 0.036 70.13% ± 0.436 77.2% ± 0.0323 

K-means 82.5% ± 0.45 78.3% ± 0.025 80.3% ± 0.0456 

DWT 86.3% ± 0.12 84.5% ±0.034 85.6% ± 0.046 

proposed 96.3% ± 0.003 94.7%± 0.003 95.7% ± 0.018 

 

Table 10. Comparison with state-of-the-art DL models 

 
Algorithms Accuracy (%) Precision (%) Recall (%) F1-score (%) Specificity (%) 

ResNet50 97.06 96.20 95.21 97.26 94.54 

DenseNet201 95.00 97.00 96.54 98.24 96.76 

DarkNet53 95.26 98.22 97.57 97.32 96.36 

GoogLeNet 96.22 98.50 98.22 98.40 87.00 

Proposed 98.00 99.00 99.67 99.70 99.80 

 

Table 11. Brain tumor detection and classification comparison with existing approaches 

 
Reference No. Algorithm Accuracy 

[45] Weighted KNN 89.80% 

[47] BrainMRNet 96.05% 

[48] ResNet-50 95.00% 

[49] TumorDetNet 96.08% 

[50] Residual-CNN 96.60% 

[51] RCNN 98.21% 

[52] KNN-SVM 98.30% 

[53] DCNN 98.00% 

[54] MLP 96.50% 

[55] Ensemble Classifer 96.40% 

[56] RBF 88.00% 

[57] CNN 98.90% 

[58] EfficientNet 98.86% 

[59] VGG-16 CNN 98.93% 

[60] ResNet, AlexNet, UNet, and VGG16 99.30% 

[61] InceptionV3 99.60% 

Proposed Enhanced AlexNet 99.98% 

 

The experiment as shown in Table 11 prioritizes accuracy 

as the performance metric for the baseline method. 

Additionally, to highlight the method's effectiveness, 

reliability, and superiority, the study compared it with leading 

techniques on datasets with lower performance. The proposed 

framework achieved an accuracy of 99.98%, followed by 
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study [60] with 99.6%, and study [45] with the lowest 

accuracy of 89.8% for tumor recognition.  

 

4.2 Comparative analysis using CE-MRI Figshare dataset  

 

Using the CE-MRI Figshare dataset, Figure 19 shows the 

proposed simulated enhanced AlexNet classifier increased by 

98.42%, as indicated in Table 12. The SVM model had the 

lowest average accuracy at 91.67%, while VGG-16 had the 

lowest average accuracy of 95.60%. The enhanced AlexNet 

algorithms have the following metrics: 98.42%, 97.62%, 

97.30%, 96.43%, and 96.03% for accuracy, recall, precision, 

specificity, and f-measure, respectively. Figure 20(a) shows 

the analysis of the methods with an accuracy parameter. SVM, 

CNN, DCNN, ResNet-50, VGG-16, and the proposed method 

have accuracy values of 0.72, 0.73, 0.76, 0.78, 0.81, and 0.83, 

respectively, for 50% of the training set. SVM, CNN, DCNN, 

ResNet-50, VGG-16, and the proposed method have accuracy 

values of 0.75, 0.77, 0.82, 0.85, 0.86, and 0.88 for 90% of the 

training data. Figure 20(b) shows an analysis of the methods 

with sensitivity parameters. The sensitivities of SVM, CNN, 

DCNN, ResNet-50, VGG-16, and the proposed method were 

0.61, 0.625, 0.67, 0.7, 0.75, and 0.78 for 50% training data. 

The recall or sensitivity of SVM, CNN, DCNN, ResNet-50, 

VGG-16, and the suggested method were 0.65, 0.67, 0.74, 0.76, 

0.82, and 0.85, respectively, for 90% of the training data. 

Figure 20(c) shows the analysis of the methods with a 

specificity parameter. The specificities of SVM, CNN, DCNN, 

ResNet-50, VGG-16, and the suggested method are, for 50% 

training data, 0.91, 0.92, 0.93, 0.94, 0.947, and 0.96, 

respectively. The specificities of SVM, CNN, DCNN, ResNet-

50, VGG-16, and the suggested method are, for 90% of 

training data, 0.95, 0.955, 0.96, 0.96, 0.97, and 0.987, 

respectively. 

 

 
 

Figure 19. Performance evaluation of the suggested method 

using CE-MRI Figshare dataset 

 

Table 12. Comparison with existing methods for CE-MRI Figshare dataset 

 
Approach Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F-Measure (%) 

SVM 91.67 89.34 90.30 90.32 90.60 

CNN 92.31 90.11 91.41 91.60 92.42 

DCNN 93.30 90.44 92.03 92.30 92.40 

ResNet-50 94.53 91.45 93.26 93.43 93.03 

VGG-16 95.60 95.63 94.10 94.12 94.13 

Proposed method 98.42 97.62 96.43 97.30 96.03 
 

Table 13. Statistical analysis using BTC dataset 
 

BTC Dataset 

Algorithm  Accuracy Sensitivity Specificity 

SVM 
Mean 0.9224 0.9028 0.9202 

Variance 0.004 0.002 0.002 

CNN 
Mean 0.9414 0.9174 0.9422 

Variance 0.003 0.005 0.003 

DCNN 
Mean 0.951 0.9166 0.952 

Variance 0.002 0.004 0.004 

ResNet-50 
Mean 0.9736 0.9186 0.9609 

Variance 0.004 0.005 0.005 

VGG-16 
Mean 0.984 0.9346 0.9671 

Variance 0.004 0.002 0.003 

Proposed 
Mean 0.9926 0.9623 0.9826 

Variance 0.003 0.001 0.002 
 

Table 13 presents an accuracy mean of 0.9926, while SVM, 

CNN, DCNN, ResNet-50, and VGG-16 achieve accuracies of 

0.9224, 0.9414, 0.951, 0.9736, and 0.984, respectively. The 

proposed model achieved an accuracy of 0.003, whereas SVM, 

CNN, DCNN, ResNet-50, and VGG-16 exhibited variances of 

0.004, 0.003, 0.002, 0.004, and 0.003, respectively. 

The proposed model achieves a specificity mean of 0.9826, 

while SVM, CNN, DCNN, ResNet-50, and VGG-16 achieve 

specificities of 0.9202, 0.9422, 0.952, 0.9609, and 0.9671, 

respectively. In terms of variance, the proposed model 

achieved a specificity of 0.001, whereas the SVM, CNN, 

DCNN, ResNet-50, and VGG-16 exhibited sensitivities of 

0.004, 0.003, 0.004, 0.003, and 0.002, respectively. Similarly, 

Table 14 presents the statistical analysis of the CE-MRI 

Figshare dataset including accuracy, sensitivity, and 

specificity parameters. The proposed model achieves an 

accuracy mean of 0.9792, while SVM, CNN, DCNN, ResNet-

50, and VGG-16 achieve accuracies of 0.9117, 0.9181, 0.928, 

0.9403, and 0.951, respectively. 

 
Table 14. Statistical analysis using CE-MRI Figshare dataset 

 
CE-MRI Figshare Dataset 

Algorithm  Accuracy Sensitivity Specificity 

SVM 
Mean 0.9117 0.8884 0.898 

Variance 0.003 0.002 0.004 

CNN 
Mean 0.9181 0.8961 0.9091 

Variance 0.004 0.004 0.003 

DCNN 
Mean 0.928 0.8994 0.9153 

Variance 0.004 0.003 0.004 

ResNet-50 
Mean 0.9403 0.9095 0.9276 

Variance 0.002 0.002 0.003 

VGG-16 
Mean 0.951 0.9513 0.936 

Variance 0.001 0.004 0.002 

proposed 
Mean 0.9792 0.9712 0.9593 

Variance 0.002 0.003 0.001 
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Ethical Considerations: 

Ethical approval for this study was granted by the Ethics 

Committee following local regulations and guidelines. 

Throughout the study, stringent measures were implemented 

to safeguard data privacy and confidentiality. When applicable, 

informed consent was obtained from all patients. Steps were 

also taken to address potential biases and ensure the ethical 

and fair application of AI-driven technologies in neurological 

healthcare. 

 

Clinical Relevance: 

Clinical data sourced from imaging repositories were 

integrated into AI-powered clinical decision support systems 

(CDSS). These systems deliver evidence-based 

recommendations directly to clinicians during patient care, 

assisting with tasks such as diagnosis, treatment selection, and 

prognosis estimation. The integration included the use of the 

proposed DL algorithms, predictive analytics models, and 

expert systems to comprehensively analyze patient data, 

generate clinical insights, and facilitate informed clinical 

decision-making.  

The proposed enhanced AlexNet classifier with ASA was 

combined with a DL algorithm in the suggested research to 

achieve more accurate, efficient, and improved results in the 

medical field. The hybrid approach, which takes advantage of 

both enhanced AlexNet's classifier capabilities and the ASA's 

optimization, has the potential to achieve cutting-edge results 

in brain tumor classification tasks. It seeks to outperform 

traditional methods by incorporating advanced techniques for 

classification and parameter optimization. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 20. Comparison CE-MRI Figshare dataset in terms of 

(a) Accuracy (b) Sensitivity (c) Specificity 

 

 

5. CONCLUSIONS 

 

This paper presents an enhanced AlexNet classifier for the 

detection of brain tumors. The suggested algorithm can 

accurately detect and categorize tumors into two types: benign 

and malignant, as well as three types: pituitary, meningioma, 

and glioma. The efficiency of the proposed technique was 

further tested using the publicly available Kaggle datasets. The 

proposed system outperformed traditional algorithms, with an 

accuracy of 99.76% for detecting brain tumors and 97% for 

classifying them as pituitary tumors, gliomas, or 

meningiomas. Simulation results show that the proposed 

architecture outperforms conventional brain tumor detection 

and classification architectures. The proposed approach 

provides the highest brain tumor diagnosis and classification 

accuracy compared to existing methods while requiring 

minimal preprocessing. Our future goals include optimizing 

the model to decrease the computation time, reduce memory 

usage, and simplify the system complexity. This research can 

be extended to identify and classify additional diseases and 

more intricate types of tumors. 
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