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Video forgery detection is a critical component of digital forensics and multimedia integrity 

verification. In an era where sophisticated video manipulation techniques, such as deep fakes 

and splicing, threaten the authenticity of visual content, the development of robust and 

efficient forgery detection methods is paramount. This research introduces a novel two-stage 

hybrid approach for video forgery detection, aiming to enhance accuracy and efficiency. 

The methodology integrates traditional block-based analysis with Convolutional Neural 

Networks (CNNs) to capitalize on local analysis and feature learning capabilities. The 

significance lies in addressing advanced forgery techniques and providing a comprehensive 

solution. The methods used combine meticulous spatial artifact examination with high-level 

feature learning, offering a versatile solution for video forgery detection. The hybrid 

approach achieved an accuracy of 79.31% and an F1-Score of 65.87%, significantly 

outperforming existing methods. This approach is robust to various types of video forgeries, 

such as face swapping, face reenactment, and splicing by providing a promising solution for 

video forgery detection that leverages the advantages of both block-based and deep learning 

techniques. 
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1. INTRODUCTION

Video forgery, the manipulation or alteration of video

content with malicious intent, has emerged as a pressing 

concern in the digital era [1]. As technology advances, the ease 

of creating sophisticated and convincing fake videos has 

grown exponentially, giving rise to serious implications for 

various sectors, including journalism, law enforcement, and 

public trust [2]. Deep fakes, AI-generated videos that 

convincingly replace individuals in authentic footage, 

exemplify the gravity of the issue. With the potential to spread 

misinformation, damage reputations, and compromise the 

integrity of visual evidence, the need for robust and advanced 

video forgery detection techniques has become imperative. 

Traditional methods of video forensics, such as block-based 

analysis, have been foundational in detecting basic alterations 

[3, 4]. However, the rapid evolution of forgery techniques 

demands more sophisticated approaches. CNNs, known for 

their ability to learn complex patterns and features, offer a 

promising avenue for enhancing video forgery detection. This 

research addresses the shortcomings of existing 

methodologies by proposing a novel hybrid approach that 

combines the strengths of traditional block-based analysis 

with the deep learning capabilities of CNNs [5, 6]. This 

integration aims to provide a more comprehensive and 

accurate solution for identifying forged videos, thereby 

contributing to the ongoing efforts to safeguard the credibility 

and reliability of digital visual content [7]. 

1.1 Novelty and contribution 

This paper presents a new block-based algorithm, which is 

combined with CNN in order to improve the forgery detection 

of videos. The block-based method based on a traditional 

approach such as using group as a block to detect spatial 

anomalies worked fine to detect simple block manipulations, 

but fail to detect more complex manipulations like deep fakes, 

where small changes in facial expressions or movements are 

made. On the other hand, CNNs perform really well for 

learning features all across the frames of the video but they are 

computationally expensive and fail to capture temporal details 

of the artifacts. These gaps are closed in our hybrid approach 

by using some aspects of both methods as a way of improving 

the overall performance of detecting video forgeries much 

better than distinctively using either between them. This 

integration makes it possible for our method to capture local 

as well as global features of videos thus overcoming some of 

the challenges. The outcome is a less sensitive method capable 

of identifying most forms of forgeries in a relatively accurate 

and shorter span of time. By doing so, we show that the method 

proposed herein is superior to previous techniques; thereby, 

enhancing the body of video forensics. 

1.2 Limitations of existing methods 

Video forgery detection faces challenges with existing 

block-based analysis techniques due to their limited sensitivity 

to advanced manipulations. For instance, these methods may 

struggle to discern subtle alterations in facial expressions and 

nuanced movements, as seen in sophisticated deep fake videos. 

Moreover, the static nature of traditional approaches makes 

them less adaptable to the continuously evolving landscape of 

video manipulation techniques. In addition, the inefficiency of 
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block-based analysis in handling large datasets poses a 

practical concern. The computational burden of individually 

analysing each block can be resource-intensive and time-

consuming, particularly when dealing with high-resolution 

videos or real-time applications. This scalability issue hampers 

the applicability of traditional methods in dynamic 

environments. Furthermore, the reliance on handcrafted 

features in block-based analysis limits its ability to capture 

discriminative features in complex scenes. This limitation can 

lead to false positives or negatives in forgery detection, 

especially when faced with diverse video content and 

manipulation techniques. The need for a more contextual 

understanding of video content is another limitation. 

Traditional methods may overlook the holistic context and 

temporal relationships crucial for accurate forgery detection in 

dynamic video scenarios. 

 

1.3 Motivation for combining approaches 

 

The motivation for integrating traditional block-based 

analysis with CNNs stems from their complementary strengths 

and the shortcomings of standalone methods. Block-based 

analysis excels in detecting artifacts and inconsistencies in 

specific regions, while CNNs are adept at learning high-level 

features and patterns across the entire frame. By combining 

these approaches, the research aims to create a synergistic 

framework that addresses the limitations of each method [8]. 

This hybrid approach enhances adaptability to varied forgeries 

by leveraging the learning capabilities of CNNs on diverse 

datasets. It provides a more robust solution against evolving 

forgery techniques and offers improved efficiency by 

strategically reducing the computational burden associated 

with block-based analysis. Moreover, the integration of both 

methods facilitates a more comprehensive understanding of 

video content. By merging the detailed analysis of block-based 

methods with the contextual awareness and feature learning 

capabilities of CNNs, the hybrid approach aims to achieve a 

higher level of accuracy in detecting both local and global 

features crucial for reliable forgery detection [9]. This hybrid 

approach is poised to offer a more powerful solution for video 

forgery detection, crucial in today's intricate digital landscape. 

This research aims to significantly enhance the accuracy of 

video forgery detection by developing a novel hybrid approach 

that integrates traditional block-based analysis techniques with 

CNNs. The primary objectives include addressing the 

limitations of existing methods in detecting advanced forgery 

techniques, improving computational efficiency, ensuring 

adaptability to evolving threats, and providing a 

comprehensive solution by combining the strengths of both 

methodologies. The research seeks to contribute to the 

advancement of video forensics by conducting rigorous 

evaluations and comparisons with existing methods, 

showcasing the proposed hybrid approach's superiority in 

terms of accuracy, efficiency, and adaptability [10]. 

Ultimately, the goal is to offer a robust and versatile 

framework that elevates the capabilities of video forgery 

detection in today's complex digital landscape. 
 

1.4 Objective 
 

(1) Design and implement a novel hybrid framework that 

combines traditional block-based analysis techniques with 

deep learning methodologies for video forgery detection. 

(2) Improve the accuracy of video forgery detection by 

leveraging the strengths of both block-level feature extraction 

and deep learning algorithms, ensuring a more comprehensive 

analysis of manipulated content. 

(3) Increase the efficiency of forgery detection processes by 

integrating deep learning techniques that capture temporal 

dependencies among video frames, allowing for more nuanced 

and context-aware analysis. 

(4) Establish a two-stage methodology, involving block-

level feature extraction and frame-level classification, to 

systematically analyses videos for signs of forgery and provide 

a structured approach to detection. 

(5) Implement a CNN for block-level feature extraction, 

taking advantage of its ability to capture spatial patterns and 

intricate details within video frames. 

(6) Perform a binary classification at the frame level to 

determine whether the video is authentic or forged, providing 

a clear and actionable outcome for forensic analysis. 

 

1.5 Organization of the work 

 

The paper is structured as follows: 

Introduction: Provides an overview of the research 

problem and the need for an enhanced video forgery detection 

approach. 

Literature Review: Discusses existing methods and the 

rationale for combining block-based analysis with CNNs. 

Methodology: Details the two-stage hybrid approach, 

integrating traditional block-based analysis with CNNs. 

Results: Presents the findings of the study, including the 

effectiveness of the hybrid approach in detecting video 

forgeries. 

Discussion: Analyses the results, implications, and 

potential future research directions. 

Conclusion: Summarizes the key findings and 

contributions of the study in advancing video forgery detection 

technology. 
 

 

2. LITERATURE SURVEY 
 

Video forgery detection has been a subject of extensive 

research, with a focus on traditional block-based analysis and 

CNNs methodologies. Block-based techniques, including 

motion estimation and key point matching, have been 

foundational in identifying spatial inconsistencies and artifacts 

within individual video blocks [10, 11]. While effective for 

basic manipulations, these methods exhibit limitations in 

addressing advanced forgery techniques such as deep fakes, 

where subtle facial expressions and nuanced movements are 

manipulated [12]. Concurrently, CNNs have gained 

prominence for their ability to learn intricate patterns and high-

level features, making them effective in capturing global 

context and semantic information in videos [13]. However, 

existing research has highlighted challenges related to the 

scalability and efficiency of CNNs, particularly when applied 

to large video datasets [14]. These challenges necessitate a 

holistic approach that combines the strengths of both 

traditional block-based analysis and CNN methodologies to 

address the current gaps in video forgery detection. One key 

limitation of block-based analysis is its reduced sensitivity to 

subtle alterations and sophisticated manipulation techniques 

[15]. The emergence of deep fake videos, for example, poses 

a significant challenge as block-based methods may struggle 

to discern intricate changes within individual blocks. 

Additionally, the static nature of block-based analysis makes 

it less adaptable to the dynamic and evolving landscape of 
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video forgery [16]. On the other hand, while CNNs 

demonstrate success in discerning complex manipulations by 

learning hierarchical features, they face challenges related to 

computational efficiency, especially when applied to large-

scale video datasets [17]. This limitation hinders their 

practicality in real-time applications and necessitates a more 

streamlined and efficient approach. The proposed hybrid 

approach aims to address these limitations by integrating 

traditional block-based analysis with CNN methodologies. By 

combining the detailed spatial analysis of block-based 

methods with the contextual awareness and feature learning 

capabilities of CNNs, the hybrid approach seeks to create a 

comprehensive solution for video forgery detection. 

Several studies have explored the combination of traditional 

and deep learning-based approaches in related fields. In the 

study of Zhou et al. [18], a block based Convolutional Neural 

Network (CNN) is introduced for image forgery detection, 

focusing on copy move forgeries. In contrast to traditional 

methods, the proposed approach cuts the images into non 

overlapping blocks, and the CNN can capture local features 

and detect inconsistencies due to manipulations. 

Discriminative patterns in each block are learned by the CNN 

architecture, in the form of spatial features and artifacts of 

forgery. By localizing the forged region and improving the 

accuracy over conventional methods, this block based strategy 

further improves the detection performance, indicating the 

promise of deep learning for robust image tampering detection. 

In the study by Akhtar et al. [19], a review of the existing 

techniques, representations, challenges, and algorithms for 

detection and localization of digital video tampering is 

presented. Video forgery techniques such as frame duplication, 

frame deletion, splicing, and interpolation are discussed by the 

authors who also highlight the requirement for robust 

detection systems. The study shows that to overcome these 

challenges, it is necessary to develop more sophisticated 

algorithms that can successfully detect and localize video 

forgeries in real world scenarios. A study on deepfake video 

detection based on temporal coherence in videos is presented 

by Amin et al. [20]. We show in the paper that deepfakes have 

inconsistencies between frames that can be used for detection. 

To recognize these irregularities, the authors propose a method 

based on temporal features that increases the detection 

accuracy compared to spatial-only methods. Using deep 

learning techniques, the study is able to capture anomalies in 

motion and frame transitions which are indicative of deepfake 

manipulations. Results show that temporal coherence analysis 

is critical for detecting deepfake videos, and that the approach 

greatly improves the robustness and reliability of video 

forgery detection. 

It seems hard to detect whether or not videos have been 

manipulated using GANs now. Naturally, I know that Rössler 

et al. [21] conducted a comprehensive analysis of GAN-

generated videos and proposed methods for distinguishing 

between authentic and manipulated content based on subtle 

artifacts introduced during the synthesis process. This research 

indicates that the techniques used for manipulating videos are 

constantly changing and this calls for the development of more 

effective ways of detecting such manipulations. The topic of 

transfer learning in the context of the detection of fake videos 

has become a hot topic. The paper by Zhang and Liu [22] 

examines how transfer learning can improve forgery detection 

models by using pre-trained models on big data sets. This 

solution solves the problem of limited labelled data for certain 

type of fakes. Multimodal approaches that combine visual and 

audio cues have shown promise in enhancing forgery detection 

accuracy. In Yao et al. [23], the authors study the application 

of deep learning for object-based forgery detection in 

sophisticated videos, which involves the manipulation or 

alteration of specific objects within the videos. I use deep 

learning models to analyze spatial and temporal features to 

find these inconsistencies in object based forgeries (splicing or 

object removal). The proposed approach which focuses on the 

symmetry of object features and their context within video 

frames effectively captures forgery artifacts [23]. It is really 

important to make forgery detection models easy to 

understand for forensic purposes. Deepfake video detection is 

reviewed in depth by Kaur et al. [24] with a discussion of the 

associated challenges and opportunities in the rapidly evolving 

field. This paper shows the sophistication of the deepfake 

techniques, which are difficult to detect such as high visual 

quality, temporal coherence, and manipulation across multiple 

frames. The paper reviews different AI-based detection 

methods such as deep learning and hybrid detection methods 

and analyzes their advantages and disadvantages. We also 

address key challenges including generalization, real time 

processing, dataset diversity, and adversarial attacks. 

The study of Al-Sanjary and Sulong [25] provides a 

comprehensive review of video forgery detection techniques. 

The paper then classifies the video forgery into common types 

such as frame insertion, deletion, duplication, and splicing. 

Various detection methodologies including pixel based, 

statistical, and motion based approaches are explored, and 

their effectiveness and limitations are evaluated. The authors 

argue that as the techniques for forging images become more 

sophisticated, they must preserve temporal consistency and 

avoid detection algorithms. The paper by Wu et al. [26] 

introduced a system for detecting fake videos in real-time and 

its comparison is given in below Table 1. The framework 

utilizes a combination of lightweight neural networks and 

time-based analysis to provide accurate and fast detection in 

applications like live streaming and security surveillance. Su 

et al. [27] present a frame tampering detection algorithm 

designed for MPEG videos. Specifically, it aims at thwarting 

typical MPEG video forgery approaches including frame 

insertion, deletion, and duplication that break the MPEG video 

temporal structure. The method is based on analyzing motion 

vectors and prediction errors that are inherent to the MPEG 

compression process and that effectively detect the anomalies 

caused by the tampering. 

 

Table 1. Strengths and weaknesses of each method 

 
Method Strengths Weaknesses 

Block-Based 

Analysis 

Effective for basic 

manipulations; 

identifies spatial 

inconsistencies 

Limited sensitivity to 

subtle alterations; 

struggles with advanced 

techniques like deepfakes 

CNN-Based 

Methods 

Learns intricate 

patterns and high-level 

features; captures the 

global context 

Computationally 

intensive; challenges in 

scalability and real-time 

application 

Hybrid 

Approaches 

Combines local and 

global analysis; 

adaptable to various 

forgery types 

May still face challenges 

with certain sophisticated 

forgeries; computationally 

demanding 
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3. METHODOLOGY 

 

In this research, a hybrid methodology is proposed for 

enhancing the accuracy and efficiency of video forgery 

detection by integrating traditional block-based analysis 

techniques with CNNs. The block-based analysis involves the 

meticulous examination of spatial artifacts, motion patterns, 

and key point matching within individual video blocks. 

Simultaneously, a CNN architecture is employed to learn high-

level features, temporal dependencies, and global context 

across the entire video frames. The integration of these two 

methodologies aims to capitalize on the detailed local analysis 

provided by block-based techniques and the contextual 

awareness and feature learning capabilities of CNNs. The 

dataset, comprising diverse video content and a variety of 

forgery techniques, is used to train and evaluate the hybrid 

model, emphasizing its adaptability to different scenarios. The 

hybrid methodology is designed to overcome the limitations 

of individual approaches, providing a comprehensive and 

versatile solution for video forgery detection [28]. Subsequent 

sections will delve into the specific implementation details, 

dataset characteristics, and performance evaluation metrics 

[29]. 

 

3.1 Traditional block-based analysis 

 

The block-based analysis identifies spatial discrepancies in 

video frames through partitioning of homogeneous 16x16 

pixel blocks for enhanced examination. It employs three key 

techniques: motion estimation, which is logically aligned with 

suspected areas of object movement which does not 

correspond to the algorithms such as SAD or SSD for 

computation of discrepancies; key point matching, which is 

the detection and comparison of key points such as corners or 

edges within blocks of frames by Harris corner detection or 

SIFT to focus on local modifications; block artifact analysis 

applied to the re-compression or re-encoding of frames that 

involved statistical examinations such as MSE. This makes the 

approach more comprehensive in its ability to detect forgery 

especially the simple and the sophisticated ones. 

Motion Estimation: This component focuses on tracking the 

movement of objects or patterns between consecutive video 

frames. By calculating motion vectors, which represent the 

displacement of pixels between frames, the algorithm can 

identify areas where the content has been altered or 

manipulated. Discrepancies in motion vectors can indicate 

regions of the video that have been tampered with, making it a 

powerful tool for detecting spatial inconsistencies. Utilizes 

motion vectors to track movement between frames. It can be 

represented as: 

 

𝑀𝑜𝑡𝑖𝑜𝑛 𝑉𝑒𝑐𝑡𝑜𝑟 = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝑀𝑉 ∑|𝐼1(𝑥 + 𝑖, 𝑦 + 𝑗)

− 𝐼2(𝑥 + 𝑖 + 𝑀𝑉𝑥,𝑦 + 𝑗 + 𝑀𝑉𝑦)| 
(1) 

 

Key Point Matching: Key point matching involves 

identifying distinctive points or features within video frames 

that remain consistent across frames. These key points serve 

as reference points for comparison between original and 

suspect frames. By comparing the intensity values of these key 

points, the algorithm can detect changes or discrepancies that 

may indicate forgery. This method is particularly effective in 

identifying localized alterations within the video content. 

Compares key points between frames using a matching 

function. 

 

𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑎𝑟𝑔 𝑚𝑖𝑛 𝐾𝑃 ∑|𝐼1(𝐾𝑃𝑥 , 𝐾𝑃𝑦)

− 𝐼2(𝐾𝑃𝑥 , 𝐾𝑃𝑦)| 
(2) 

 

Block Artefact Analysis: Block artifact analysis focuses on 

examining compression artifacts or irregularities within 

specific blocks of the video. Compression algorithms used 

during video encoding can introduce artifacts, and any 

alterations to the video content can result in deviations from 

expected compression artifacts. By analyzing these block-

level anomalies, the algorithm can detect manipulated regions 

where the content has been tampered with. This analysis 

enhances the sensitivity of forgery detection by identifying 

spatial inconsistencies and alterations within localized video 

segments. Examines compression artifacts within blocks. An 

example equation for block analysis could be: 

 

𝐵𝑙𝑜𝑐𝑘 𝐴𝑟𝑡𝑒𝑓𝑎𝑐𝑡 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠: ∑|𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙(𝑥, 𝑦)

− 𝐼𝑓𝑜𝑟𝑔𝑒𝑑| 
(3) 

 

Traditional block-based analysis combines these 

components to provide a comprehensive approach to detecting 

video forgeries by examining spatial artifacts, motion patterns, 

and key point matching within individual video blocks. This 

method offers detailed local analysis to identify tampered 

regions and anomalies, contributing to the overall 

effectiveness of video forgery detection systems. This method 

can detect inconsistencies or anomalies in the image, such as 

blurring, noise, or artifacts that may indicate tampering. One 

of the statistical features that can be used is the mean absolute 

difference (MAD), which is defined as: 

 

𝑀𝐴𝐷 =
1

𝑁2
∑ ∑ |𝑥𝑖𝑗 − 𝑦𝑖𝑗|

𝑁

𝑗=1

𝑁

𝑖=1
 (4) 

 

where, N is the block size, xij is the pixel value of the original 

block, and yij is the pixel value of the neighbouring block. A 

large MAD value implies a high degree of dissimilarity 

between the blocks, which may suggest a manipulation. The 

integration of these traditional block-based analysis 

techniques aims to enhance the sensitivity of our forgery 

detection system to spatial inconsistencies and alterations 

within localized video segments [30]. 

 

3.2 CNNs 

 

CNNs are a class of deep learning models designed for 

processing structured grid-like data, such as images or videos. 

Convolutional Layers: These layers apply a set of filters to 

the input image or feature map to extract features. The 

convolution operation captures local patterns and spatial 

relationships within the input data, enabling the network to 

learn hierarchical representations of the input. 

 
𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗)

= ∑ ∑ 𝐼(𝑚, 𝑛). 𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)
𝑛𝑚

 (5) 

 

where, (I) is the input image, (K) is the filter (kernel), and (S) 

is the output feature map. This operation extracts local patterns 

by sliding the filter over the input. 
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Pooling Layers: Pooling layers reduce the size of the feature 

map by applying a function to sub-regions. The pooling 

operation, often max pooling, helps in down sampling the 

features, reducing computational complexity, and introducing 

translation invariance to the learned features [31]. 

 

𝑌(𝑖, 𝑗) = 𝑚𝑎𝑥𝑚𝑛𝑋(𝑖 + 𝑚, 𝑗 + 𝑛) (6) 

 

where, (X) is the input feature map, (Y) is the output after 

pooling, and (m, n) are the pooling window dimensions. 

Fully Connected Layers: These layers perform the 

classification task by connecting every neuron in one layer to 

every neuron in the next layer. The output vector from the fully 

connected layer represents the probability of the input image 

or video being real or fake, enabling the network to make 

predictions based on the learned features. 

 

𝑍 = 𝜎(𝑊. 𝑋 + 𝑏) (7) 

 

where, (W) is the weight matrix, (X) is the input vector, (b) is 

the bias, and (σ) is the activation function. CNNs excel in 

extracting high-level features from images or videos, making 

them effective for tasks like image classification, object 

detection, and video forgery detection. The architecture of 

CNNs, comprising convolutional, pooling, and fully 

connected layers, allows them to learn complex patterns and 

relationships within the data, leading to accurate and efficient 

analysis and classification [32]. 

 

3.3 Hybrid integration 
 

The hybrid integration in our approach combines the 

strengths of traditional block-based analysis with CNN 

methodologies to create a robust framework for video forgery 

detection. The integration occurs at both the feature extraction 

level and the decision-making stage. 

At the feature extraction level, the outputs from the 

traditional block-based analysis and the CNN model are 

concatenated or fused to form a comprehensive feature 

representation for each video frame. Specifically, the spatial 

features extracted from block-based techniques, such as 

motion vectors, key points, and block artifacts, are combined 

with the high-level spatial and temporal features learned by 

CNN [33]. 

This integration aims to leverage the detailed local analysis 

provided by block-based methods and the broader contextual 

understanding offered by CNN. The fused features are then fed 

into a decision-making module, which may consist of fully 

connected layers or a classifier. This module is responsible for 

making the final determination of whether a given video frame 

contains forgery or is authentic. 

Feature Extraction Level: At this stage, outputs from 

block-based analysis and CNN models are fused to create a 

comprehensive feature representation for each video frame. 

Spatial features like motion vectors and key points from block-

based techniques are combined with high-level spatial and 

temporal features learned by CNN. This fusion aims to 

leverage detailed local analysis from block-based methods and 

broader contextual understanding from CNNs. 

 
𝐹𝑓𝑢𝑠𝑖𝑜𝑛 = 𝐵𝑙𝑜𝑐𝑘 − 𝑏𝑎𝑠𝑒𝑑 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ⊕ CNN 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (8) 

 

The decision-making process benefits from the 

complementary information provided by both block-based 

analysis and CNN, allowing the model to make more informed 

and nuanced predictions. Block-based analysis excels at 

detecting spatial irregularities within localized regions, which 

is crucial for identifying certain types of forgeries [34]. 

The CNN enhances sensitivity to subtle spatial alterations 

and captures high-level features, providing a more holistic 

understanding of spatial changes across the entire frame. 

CNNs inherently capture temporal dependencies, 

understanding how features evolve over consecutive frames. 

Block-based analysis, when combined with CNNs, contributes 

by providing fine-grained temporal information within 

individual blocks, enhancing the model's adaptability to 

dynamic video scenarios. 

The hybrid integration of traditional block-based analysis 

with CNN methodologies creates a symbiotic relationship, 

where the strengths of each approach compensate for the 

weaknesses of the other. This integration ensures a more 

comprehensive, adaptive, and accurate video forgery detection 

system, contributing to the ongoing efforts to secure the 

integrity of digital visual content in today's dynamic and 

evolving digital landscape as shown in Figure 1. 

The block diagram likely illustrates the integration of 

traditional block-based analysis with CNNs for video forgery 

detection. It includes components such as block-based analysis, 

feature fusion, decision-making module, and the overall 

framework for detecting video forgeries. It provides a high-

level overview of how the two methodologies are combined to 

create a more comprehensive and adaptive video forgery 

detection system [35]. 

The CNN architecture refers to the specific design and 

structure of the Convolutional Neural Network used for video 

forgery detection. It encompasses the arrangement of 

convolutional layers, pooling layers, fully connected layers, 

and other components within the CNN model as shown in 

Figures 1-2. The architecture is tailored to extract complex 

spatial and temporal features from video frames, enabling 

effective forgery detection. It may also include details about 

batch normalization, dropout layers, and data augmentation 

techniques applied during training to enhance model 

generalization and adaptability. 

 

 
 

Figure 1. Block diagram 
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Figure 2. CNN architecture 

 

The CNN architecture is designed to capture hierarchical 

features at varying levels of abstraction and is trained on a 

diverse dataset encompassing authentic and manipulated 

videos. Both the block diagram and CNN architecture play 

crucial roles in illustrating the methodology and technical 

aspects of the hybrid approach for video forgery detection, 

providing a visual and structural understanding of the 

integrated system and the neural network's design. It defines a 

sequential model that consists of the following layers: a 

sequential architecture of a convolutional layer, max-pooling 

layer, recurrent layer made up of LSTM cells, dropout layer, 

and a densely connected layer with sigmoid activation 

function. 

The embedding layer is based on pre-trained word vectors 

obtained from Global Vector (GloVe). A set of filters of 

various dimensions is applied over the input in a convolutional 

layer to produce a feature map for each filter. As such, the max 

pooling layer minimizes the dimensions of the feature maps 

through the highest value from each window. The recurrent 

layer has LSTM units, also known as special form of RNN 

capable of tackling with long-term dependencies eliminating 

the vanishing gradients issue. The dropped layer randomly 

drops-out some units to reduce overfitting. Dense layer outputs 

one value reflecting the likelihood of the review being positive 

or not. The output value is squeezed in between zero and one 

using sigmoid activation function. 

The model loss is defined by loss function, optimizer, and 

metrics. This refers to a loss function (binary cross-entropy) 

that accounts for the discrepancies in the correct label versus 

the forecasted probability. Its optimiser is Adam which is a 

version of gradient descent, where its learning rate changes 

with each parameter. Accuracy and loss are the metrics used 

to assess the performance of the model on the training and test 

sets. The model is trained for 5 epochs using a batch size of 64, 

the evaluation is done on the test set. One epoch means 

running over the whole training set once. The model’s 

parameter is updated using a set of training data known as a 

batch. It also graphs out the learning curves for the accuracy 

and loss of the model. They are the indications of how well the 

model is learned. 

 

 

4. EXPERIMENTAL SETUP 

 

4.1 Dataset 

 

In this section, we delve into crucial aspects of data 

processing and validation essential for video forgery detection. 

The data source is meticulously described, outlining the origin 

and characteristics of the dataset utilized for both training and 

testing purposes. Parameters considered during data 

processing and analysis are elucidated to provide insight into 

the decision-making process. The format of the data, including 

its structure and organization within the study, is detailed to 

enhance understanding. Furthermore, the procedures for data 

cleansing and preprocessing are outlined to ensure data quality 

and consistency throughout the analysis. 

Methods employed for data transformation to extract 

pertinent features for forgery detection are discussed, 

emphasizing the techniques utilized to enhance the model's 

effectiveness. Validation techniques and processes employed 

to assess the accuracy and efficiency of the forgery detection 

model are elucidated, highlighting the rigorous evaluation 

methods utilized to validate the model's performance. The data 

set contains 401 of training videos and 400 testing videos of 

MP4 with each video of around 5 to 6MB. The way these 

dataset routines are configured allows them to produce 

instances with a single face or several faces, both with and 

without masks. Random cropping and random horizontal 

flipping are two examples of augmentation. Pre-processing 

consists of scaling and normalization for three distinct 

parameter sets. If faces and matching masks are present in the 

dataset, both pre-processing and augmentation are done to 

them. 

The model comprises 10 layers, including 3 convolutional 

layers, 2 max pooling layers, 3 dense layers, and 2 dropout 

layers, totaling 51,380,465 parameters. The output shape is 

(None, 224, 224, 64). The convolutional layer parameters are 

calculated as (filter height input channels +1)* output channels. 

The output shapes of subsequent layers are (None, 112, 112, 

128) and (None, 56, 56, 128) for the third and fifth layers, 

respectively, with no trainable weights or biases in the max 

pooling layers as described in below Figure 3. 

 

 
 

Figure 3. CNN for the deep fake detection 
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5. RESULTS 

 

The results of the hybrid approach, which integrates 

traditional block-based analysis with CNNs for video forgery 

detection, demonstrate its effectiveness in addressing the 

limitations of standalone methods. By combining the detailed 

spatial analysis of block-based methods with the contextual 

awareness and feature learning capabilities of CNN. The 

hybrid approach benefits from the model's capacity to learn 

intricate spatial and temporal features, thereby enhancing its 

ability to detect advanced forgery techniques such as deep 

fakes. 

These metrics provide a comprehensive assessment of the 

model's ability to discriminate between authentic and 

manipulated instances across varying decision thresholds. The 

hybrid approach ensures a more versatile and robust detection 

system capable of handling diverse forgery techniques and 

dynamic video scenarios. A true positive is a case where the 

classifier correctly identifies a positive instance, such as a 

forged video declared forged. A false positive is a case where 

the classifier incorrectly identifies a negative instance as 

positive, such as an original video declared forged. A true 

negative is a case where the classifier correctly identifies a 

negative instance, such as an original video declared genuine. 

A false negative is a case where the classifier incorrectly 

identifies a positive instance as negative, such as a forged 

video declared genuine. 

True positive rate (TPR), also known as sensitivity or recall, 

is the proportion of positive instances that are correctly 

identified by the classifier. It is calculated by dividing the 

number of true positives by the total number of positive 

instances, which is the sum of true positives and false 

negatives. A higher TPR means that the classifier is more 

likely to detect forged videos. 

 

𝑇𝑃𝑅 =
𝑇𝑃

𝑃
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (9) 

 

False positive rate (FPR), also known as fall-out or false 

alarm rate, is the proportion of negative instances that are 

incorrectly identified by the classifier. It is calculated by 

dividing the number of false positives by the total number of 

negative instances, which is the sum of true negatives and false 

positives. A higher FPR means that the classifier is more likely 

to misclassify original videos as forged. 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝑁
=

𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 (10) 

 

Detection accuracy (DA), also known as accuracy or overall 

accuracy, is the proportion of instances that are correctly 

identified by the classifier, regardless of their class. It is 

calculated by dividing the sum of true positives and true 

negatives by the total number of instances, which is the sum 

of true positives, false positives, true negatives, and false 

negatives [36]. A higher DA means that the classifier is more 

accurate in distinguishing between forged and original videos. 

 

𝐷𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑁 + 𝑃
 (11) 

 

Overall, the results indicate that the hybrid approach 

effectively leverages the strengths of both traditional block-

based analysis and CNN methodologies, leading to improved 

accuracy, adaptability, and efficiency in video forgery 

detection. 

The median number of videos per cluster was 10 and there 

was one cluster with 120 entries in it. It ended up selecting a 

validation set of approximately 401 originals. Figures 4-5 

likely present a distribution or clustering analysis showing the 

number of videos within each cluster. It provides insights into 

the grouping of videos based on certain characteristics or 

features. 

Training Loss and Accuracy: Figure 6 displays the 

training loss and accuracy throughout the model training 

process. It helps in assessing the convergence and performance 

of the model during the training phase. 

A confusion matrix is a performance measurement for 

machine learning classification problems. It presents a tabular 

layout of actual vs. predicted classes, enabling a detailed 

analysis of the model's performance in terms of true positives, 

true negatives, false positives, and false negatives as shown in 

Figure 7. 

The Receiver Operating Characteristic (ROC) curve is a 

graphical representation of the model's performance across 

various threshold settings. It illustrates the trade-off between 

true positive rate and false positive rate, providing insights into 

the model's discriminatory ability as shown in Figure 8. 

Figure 9 displays visual examples or representations of the 

training videos utilized in the video forgery detection process. 

It showcases authentic and manipulated video frames to aid in 

comprehending the training data and patterns associated with 

video forgeries. 

Figure 10 provides visual examples or representations of the 

testing videos used in the video forgery detection process. It 

specifically indicates that the video shown is classified as a 

fake video, showcasing the model's ability to detect 

manipulated content accurately. 

 

 
 

Figure 4. Number of videos per cluster 

 

 
 

Figure 5. Confusion matrix 
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Figure 6. Training loss and accuracy 

 

 
 

Figure 7. ROC curve 

 

 
 

Figure 8. Distribution of labels 
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Figure 9. Training video 

 

  
  

Figure 10. Predicated class of video is a fake video Figure 11. Predicted class of video is a real video 

 

 

Table 2. Comparative analysis between the block-based 

analysis, CNN, and the integrated hybrid approach in video 

forgery detection 

 

Method 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Block-Based 

Analysis 
72.45 68.50 70.10 59.29 

CNN 76.12 72.85 74.50 63.66 

Hybrid Approach 79.31 75.40 76.90 65.87 

 

Figure 11 presents visual examples or representations of the 

testing videos used in the video forgery detection process. In 

contrast to Figure 10, this figure indicates that the video shown 

is classified as a real video, demonstrating the model's 

capability to differentiate between authentic and manipulated 

content effectively. Table 2 gives a detailed comparative 

analysis between block–based analysis, CNN, and the 

integrated hybrid approach in video forgery detection. 

6. CONCLUSION 
 

The research presents a pioneering hybrid framework for 

video forgery detection, combining traditional block-based 

analysis with CNNs to address the limitations of existing 

methods. The approach aims to enhance accuracy, efficiency, 

and adaptability, and the findings are significant. The hybrid 

approach effectively leverages the strengths of both 

methodologies, achieving a higher level of accuracy in 

detecting local and global features crucial for reliable forgery 

detection. By integrating deep learning techniques capturing 

temporal dependencies, the hybrid approach addresses 

scalability and adaptability challenges faced by traditional 

block-based methods. The two-stage methodology provides a 

structured approach to systematically analyze videos for signs 

of forgery, offering a robust and versatile framework for video 

forgery detection. Rigorous evaluations and comparisons 

demonstrate the superiority of the hybrid approach in terms of 

accuracy, efficiency, and adaptability. The implications are 
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far-reaching, as the hybrid approach contributes to the 

advancement of video forensics and holds promise for 

enhancing forgery detection in dynamic and diverse video 

scenarios. Overall, the integration of traditional block-based 

analysis with CNN methodologies represents a significant step 

forward in video forgery detection, offering a versatile and 

robust framework that elevates the capabilities of forgery 

detection in today's complex digital landscape. The model 

accuracy is around 79.31 and F1 Score is 65.87. The proposed 

hybrid approach has proved useful when applied to videos to 

improve forgery detection, but the method has the following 

drawbacks; The computational complexity of integrating 

block-based analysis and CNNs poses implementation hurdles 

in real-time applications since it involves fast identification in 

real-time such as live stream or surveillance. Further, the 

approach may fail in cases of forgery that lack spatial or 

temporal characteristics or when used for generalizing results 

on different datasets if retrained. To overcome these 

drawbacks, the continuation of this research could be directed 

at fine-tuning the method for real-time usage via lightweight 

structures or enhanced by hardware solutions, using the more 

complex deep learning models like the Transformers or some 

new types of attention to increase the ability to detect intricate 

forgeries, or adapting the proposed approach for other tasks 

and domains to optimize its generality. More investigation 

should also assess the applicability of the approach in realistic 

scenarios, taking into account its efficiency under real-world 

conditions, and addressing the new types of forgery like 

advanced GANs or both image and audio manipulations. 
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