
LwSANet: Light Weight Self-Attention Network Model to Recognize Fruits from Images

Gracia Nissi Sathyadhas 1* , Angelin Gladston1 , Khanna H. Nehemiah2

1 Department of Computer Science and Engineering, Anna University, Chennai 60025, India
2 Ramanujan Computing Centre, Anna University, Chennai 60025, India

Corresponding Author Email: gracianissi@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ts. 420117 ABSTRACT

Received: 13 May 2024

Revised: 2 August 2024

Accepted: 15 October 2024

Available online: 28 February 2025

Recognition and counting of fruits play a vital role in harvest estimation, harvesting,

categorizing good and bad fruits, cost estimation, and stock estimation in departmental

stores. Nowadays deep learning algorithms play a major role in automatic object detection.

Automating such mechanical robots faces challenges due to less accurate predictions

because of background foliage, illuminations, and nightmares. In this computer vision task

to detect and classify the intended objects, we designed and developed a Lightweight Self

Attention Network (LwSANet) model. To reduce the amount of processing, and increase

the object detection speed and performance, the Self-Attention Network Block was also

introduced. LwSANet is simple to adopt and has obtained an accuracy of 99.25% and a loss

of 0.003% for single fruit detection and classification. It has obtained an accuracy of 98.2%

and a loss of 0.23% for the detection and classification of fruits from multiple and

overlapped fruit images. When we compare with other state-of-the-art models the achieved

accuracy is 1.68% better than other models. Further, the model performance is compared

with various well-structured state-of-the-art architectures like LeNet, VGG-16, GoogLeNet,

MobileNet, SqueezeNet, and ShuffleNet.

Keywords:

fruit recognition, deep learning, Self-

Attention Network, batch normalization

1. INTRODUCTION

Fruits are rich in nutrients, essential for a healthy body,

maintain blood sugar level and reduces the number of calories

and fats consumed. Day by day, the demand for fruits are

increasing which leads to automation in food industries [1].

The rapid growth in the field of image processing and neural

networks helps to design and develop the automated robot to

do the fruit detection, estimation, counting, yield estimation,

harvesting, harvest estimation, pre-grading, quality estimation

by addressing challenges like occlusions, variations in poses,

intra-class variations, lighting conditions and resource

constraints etc. Convolutional Neural Network (CNN) is the

base for Deep Learning which works well in image recognition.

The general structure of a Deep learning model contains input

layer, CNN layers are for automatic best feature extraction and

output dense layer for classification. The output layer filter

count will be equal to the number of classes to be classified.

Each CNN Layer designed with neurons which processes the

features extracted from the previous layers. Going deeper, the

model extracts more features. Based on the features to be

extracted, the number of hidden layers can also be

implemented. Normalization and Pooling Layers also helps to

improve the performance of recognition of object from images.

Currently, the object detection deep learning algorithms

divided into two categories. Single stage object detection and

two stage object detection. Two stage object detection

algorithms first find the regions and then classifies the objects.

One stage object detection algorithm extract feature from the

network and predicts the class directly.

When compared with machine learning models, deep

leaning models works well for both supervised and

unsupervised learning environments and provides better

accuracy and reduces the training time [1]. Color image

classification suffers due to occlusions, illuminations and poor

visibility [2]. Using machine learning model to recognize

object from an image accurately, the environment should be

structured one [3]. Increasing demand in deploying the deep

learning models in resource constraint devices like mobile and

IoT devices, light weight models are encouraged. There are

many successful pre-trained deep learning network models to

detect and classify the fruits from images such as LeNet, VGG,

and GoogLeNet. Even though many number of successful

pretrained models proposed earlier, the increasing need of

running high quality deep neural network in limited

computational environment or resource constraint devices

motivated to propose Light weight Self Attention Network to

address the challenges of processing the low-quality images

thought resource constraint devices of modern computing

environments.

In this work, a complete analysis has been carried out on the

LeNet, VGG-16, GoogLeNet, MobileNet, SqueezeNet and

ShuffleNet with two publicly available datasets, the Fruits-360

dataset with 131 classes of fruits, grains, nuts, vegetables, and

Fruits-and-Vegetables-for-Image-Recognition dataset with 36

classes of fruits and vegetables. Then a Light weight Self-

Attention Network (LwSANet) model is proposed with data

generation, preprocessing, image augmentation, feature

Traitement du Signal
Vol. 42, No. 1, February, 2025, pp. 183-200

Journal homepage: http://iieta.org/journals/ts

183

https://orcid.org/0000-0002-9474-5155
https://orcid.org/0000-0003-3899-2474
https://orcid.org/0000-0002-3984-7490
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420117&domain=pdf

extraction and classification. Further analyzed the LwSANet

with other models in detail, and the prediction accuracy

achieved 96.10% accuracy.

The main contributions of this work is as follows:

1). A simplified vision like CNN model to recognize fruits

from images were developed with feature extraction block and

classification block.

2). The feature extraction block implemented with

Convolution-Batch Normalization-Activation block (CBA),

Self-Attention Block to form attention on channels and CBA

with MaxPooling. It is used to achieve faster, accurate and

stable training. Instead of dropout, Reshape is used to

compress the global spatial information generated by CBA.

3). Instead of Flattening and Dropout, Global Average

Pooling Layer is used, which maintains the dimensions of the

previous layer. To minimise the size of the activations without

affecting the performance of the network, it takes into account

the average value in each feature map. Also it acts like channel

descriptor.

4). Classification block implemented with Reshape, Fully

Connected Layer-Batch Normalization-Activation (FBA)

blocks, and Dropout. FBA consists of Dense layer,

BatchNormalizaion and Activation Relu [4].

The rest of the paper is organized as follows: Literature

survey section discusses in detail the recent works carried out

related to fruit recognition. System design section elaborates

the proposed LwSANet: Light weight Self Attention Network

model to recognize fruits from images. Experimental design

throws light on implementation setup, experimental results

and results and discussion section discusses in detail the

inferences drawn out of the various experimental results

obtained.

2. LITERATURE SURVEY

The basic LeNet comprises of eight layers including the

Input and output layers. Input layer processes 32x32 pixel size

image that is the max size object detected from its database [5].

Then the inputs were normalized as -0.1 for background and

1.175 for ground truth object to be recognized. Second layer is

a Convolution layer with six feature maps sizing 28×28 which

prevents network from dropping the boundary data it contains

156 trainable parameters. Third layer is subbing sampling

layer with six feature maps sizing 14×14. 2×2 non overlapping

receptive fields were used in subsampling which reduces the

input 28×28 into 14×14. Fourth layers are Convolution layer

which doesn’t connects all the subsampling layer connections

to each neuron, because different set of input connections

helps in extracting different features sets. The organization of

feature extraction connections in this fourth Convolution layer

designed as follows. First six feature maps extract inputs from

every contiguous subset of three feature maps, next six takes

every contiguous set of four and the third final one takes inputs

of all subsampling layer inputs, cumulatively this layer has

1516 trainable parameters. Fifth layer is a Subsampling layer

with 16 feature maps of size 6×6 and 32 trainable parameters.

Sixth layer is a Convolution layer with 120 feature maps and

each unit connected with 5×5 neighborhood of all 16 features

maps of fifth subsampling layer. Seventh layer is a fully

connected layer with 84 units connected with all the Sixth

Convolution layer units. Eighth layer is the output layer of 10

units fully connected layers with 10164 trainable parameters.

A simple loss function is used with the above network as

estimation criterion for training samples represented as in Eq.

(1):

𝐸(𝑇𝑠) =
1

𝑆
∑𝑌𝑜(𝑋𝑖, 𝑇𝑠)

𝑆

𝑠=1

 (1)

The penalties of in correct classification due to more

discriminative criterion is handles using the following Eq. (2):

𝐸(𝑇𝑠) =
1

𝑆
+∑(𝑌𝑜(𝑋𝑖, 𝑇𝑠)

𝑆

𝑠=1

+ log⁡(𝑒−𝑚 +∑𝑒−𝑌𝑛(𝑋𝑖,𝑇𝑠))

𝑛

𝑛

) (2)

The basicVGG-16 based model consists of 13 convolutional

layers into five blocks [6]. The blocks are interconnected

sequentially with its next layer along with pooling layer with

2×2 pixel window. Finally, three fully connected layers, first

two layers have 4096 channels and last fully connected layer

have channels equal to number of classes to be classified. The

hidden layers used ReLU as an activation function. The input

image size fixed as 224×224. The model also trained and

tested with single scale image and multi-scale images. The

multi scale images sampled between the range 256 and 512

and made it as 384 as fixed. For insufficient training image

sets, data augmentation techniques used to increase the

number of images to avoid overfitting. Dropout ratio set to 0.5

and model trained for 74 epochs. During testing it achieved

6.8% of error rate [7]. Automatic Fruit classification VGG-16

model trained with two datasets, first 18 classes of 1653

images and second with 15 classes of 2633 images. Due to a

smaller number of training images, second dataset accuracy of

prediction is low.

The basic GoogLeNet incorporates the structures of LeNet

and AlexNet [8]. This model initially built with 22 layers along

with the design of group convolutions. The group convolutions

called as Inception module. Each inception module has three

1×1, 3×3 and 5×5 convolution layers and one parallel Max

Pooling layer, which increases the number of output from level

to level. Then dimensionality reduction convolutions were

added before each 3×3 and 5×5. Two auxiliary layers were

added to increase the gradient signal to propagate back and to

provide additional regularization.

Yolo is another model with many numbers of versions for

object detection [9]. The basic first version model itself

contains 26 convolutional layers and 2 fully connected layers.

The version 2 contains 30 layers and version 3 is with 106

layers. Even though the v2 have 30 layers, the prediction

accuracy is still bad when the object is little bit small. In this

one multiclass problem turned into multi label problem. With

CPU the training takes nearly 3000ms. Version from 4 handles

high resolution images for training and testing. The model can

be trained with 200 like less number of images for 2000

iterations and batch size 21. The object detection accuracy in

natural environment is high in Yolo when compared with other

Models like Alexnet, Resnet101 [10]. The parameters of

Proposed and predefined models considered for our

experiment were shown in Table 1.

The trainable parameters are defined and optimized

automatically by the model. The non-trainable parameters are

hyper parameters, which are optimized manually and are not

optimized according to its gradient. The various Fruit

Detection applications, technologies used and their Solutions

were listed in Table 2.

184

Table 1. Comparison of predefined networks parameters with proposed model

Network Layers
Trainable Parameters

Data Set 1

Trainable Parameters

Data Set 2

Non-Trainable

Parameters
Duration

LeNet

Conv2D-3

Sampling-2

Dense-2

0.99M 0.9M 0 ~90s

VGG-16
Conv2D-13

Dense-3
14.7M 14.7M 0 ~140s

GoogLeNet

Conv2D-15 (Except DI Block)

MaxPooling-5

AvePooling-3

Dense-6

Fully Connected-2

Dropout-2

7.5M 7.5M 512 ~290s

MobileNet

Conv-14

Conv dw-13

BN-27

4.2M 4.2M - ~102s

SqueezeNet

Conv-101

MaxPooling-3

GlobalAvgPooling-1

1.25M 1.25M - ~148s

Shuffle Net

Bottleneck-4

Group Conv-8

ShuffleNet Unit-4

(203 Layers)

1.42M - 2088 ~107

LwSANet
Conv2D-6

Dense-7
0.25M 0.25M 1052 ~100s

Fruits-360 and Fruits-and-Vegetables-Image-Recognition datasets were used for all the model analysis.
All the models executed for 20 epochs and 50 epochs.

Table 2. Summary of literature review

S. No. Problem Techniques and Data Set Used Solution / Review

1

Automatic Fruit Classification

Using Deep Learning for Industrial

Applications [7].

Fine-tuned visual geometry group-16.

Dataset 1-Consists of 18 classes of clear fruit images with

1653 color images.

Dataset 2-supermarket fruit dataset, which contains 15

classes of 2633 images.

Even though trained for 100

epochs, for second dataset the

accuracy achieved is 88.35,

because of low number of training

images.

2

Circular Fruit and Vegetable

Classification Based on Optimized

GoogLeNet [8].

Used Swish and Drop block.

Data set-6 classes of 6600, each class 1100, test set is

100/class.

Compared with 5 Models and produced better

performance with Optimized GoogLeNet.

Training accuracy of GoogLeNet

as 96.88%

the testing accuracy as 96%.

3

Real-Time Detection of Ripe Oil

Palm Fresh Fruit Bunch Based on

YOLOv4 [9].

Data set-Own 240 Positive Images and 250 Negative

Images.

Accuracy is 86% @1000 Iterations

and 100% @ 2000 Iterations.

Yolo tiny V4 takes less than 2 Hrs.

4

Real-Time Monitoring Method of

Strawberry Fruit Growth State

Based on YOLO Improved Model

[11].

CSP block in the YoloX network replaced with a self-

designed feature extraction module C3HB block.

Normalized Attention Module attached to improve

detection accuracy.

Own 5600 Strawberry images were used.

Accuracy-94.26%

5

A Single Stream Modified

MobileNet V2 and Whale

controlled Entropy based

Optimization Framework for

Citrus Fruit Diseases Recognition

[12].

MobileNet-V2 CNN model finetuned and the model

trained using TL.

Approximately 1000 Citrus Fruit Images were used.

Accuracy-99.7%

6

Identification and Depth

Localization of Clustered Pod

Pepper Based on Improved Faster

R-CNN [13].

Improved Faster-RCNN.

ResNet as Backbone.

Dataset-Own 328 augmented as 3062.

Horizontal & Vertical Comparison using Faster R-CNN

and YOLOv3 network.

Accuracy-87.30%

Very limited number of images

were used.

7

Multi-Task Cascaded

Convolutional Networks Based

Intelligent Fruit Detection for

Designing Automated Robot [14].

Image Fusion technique is used to improve the detection.

Dataset-1800 own images, 316 from the internet and 511

from ImageNet.

Using image augmentation, dataset size increased.

Images Labelled manually.

With few other class images, the

model can be trained easily.

185

Table 3. Summary of state-of-the-art models

Methods Advantage Drawback

LeNet Very small network Accuracy is low

VGG-16 Small network Need to train for many epochs

GoogLeNet Better accuracy Network depth is too high. Requires more time for training

MobileNet Small network, Less computation MFLOPs and parameters are too high

SqueezeNet Good in accuracy with small dataset Not suitable for large data set

Shuffle Net Compact for resource constraint devices Doesn’t supports optimizing hyperparameters

LwSANet
Compatible for small and large devices. Accuracy is high. Supports optimizing hyperparameters for different dataset. No constraint

for image resolution. Light weight model and less computation.

State-of-the-art Model Squeeze and Excitation network

models mainly concentrate on accuracy. Because of its

SEBlock, it needs additional computational cost and resources.

It achieved good performance with benchmarked datasets

because of its channel-wise feature responses and attention

mechanism. MobileNet employs depth-wise separable

convolutions to reduce computational complexity

significantly while maintaining reasonable accuracy. It can be

deployed in mobile and embedded devices because it is so

compact than VGG and GoogLeNet and aims to be more

suitable in mobile or embedded environment deployment with

limited resources. LwSANet prefers attention mechanisms to

maintain accuracy with a very less number of layers in the

model compared with LeNet, VGG, and GoogLeNet, also the

compressed network can be deployed in Mobile or embedded

environments. A deep neural network model with less number

of layers and an attention mechanism decreases computational

cost and time. This motivates to design a Lightweight Self

Attention Network Model. Also, the proposed Lightweight

model is compared with other lightweight models’ state-of-

the-art architectures MobileNet, SqueezeNet, and Shuffle-Net.

Details are listed in Table 3.

3. PROPOSED METHODOLOGY

3.1 Data acquisition and preprocessing

Two datasets were used for our model training and testing.

The first dataset is a Fruits-360 dataset. It contains 90483

single-fruit images of 131 classes. Fruits-360 Dataset [15] was

proposed on focusing high-quality datasets to resolve the

modeling objects, human-robot interaction, and autonomous

robots for harvesting and fruit estimation, created a dataset

with 131 classes of images in white plain background.

Preprocessing involved resizing all snapshots to a uniform

resolution appropriate for the network entry, accompanied by

normalization to standardize pixel values throughout the

dataset. Data augmentation techniques which include random

rotations, flips, and zooms were implemented to artificially

extend the dataset size and enhance the model's robustness to

versions in fruit presentation. Most of the other dataset

contains noisy background. The dataset contains 106 varieties

of fruits, 18 classes of vegetables and 7 nuts classes that are

listed in Table 4.

Table 4. Fruits-360 data set summary [15]

Fruit Classes Fruit Classes Vegetable Classes Nuts / Grains Classes

Apple 13 Mulberry 1 Beetroot 1 Chestnut 1

Apricot 1 Nectarine 2 Cantaloupe 2 Corn 2

Avacado 2 Orange 1 Cauliflower 1 Hazelnut 1

Banana 3 Papaya 1 Cucumber 2 Nut Forest 1

Blueberry 1 Passion Fruit 1 Eggplant 1 Nut Pecan 1

Cactus Fruit 1 Peach 3 Ginger Root 1 Walnut 1

Carambula 1 Pear 9 Kohlrabi 1

Cherry 6 Pepino 1 Onion Red 3

Clementine 1 Physalis 2 Pepper 2

Dates 1 Pineapple 2 Potato 4

Fig 1 Pitahaya 1

Granadilla 1 Plum 3

Grape 8 Pomegranate 1

Guava 1 Pomelo 1

Huckleberry 1 Quince 1

Kaki 1 Rambutan 1

Kiwi 1 Raspberry 1

Kumquats 1 Redcurrant 1

Lemon 3 Salak 1

Lychee 1 Strawberry 2

Mandarine 1 Tamarillo 1

Mango 2 Tangelo 1

Mangostan 1 Tomato 9

Maracuja 1 Watermelon 1

Melon 1

186

Figure 1. Sample images from fruits 360 data set

The fruits are placed on white paper and rotated using a

simple motor to capture the 360-degree direction of the image.

However, the fruits are placed on a white background, and due

to various illuminations and lighting conditions, the

background becomes noisy that is not uniform. To remove that

background, a flood fill type algorithm is used. Sample images

are listed in Figure 1.

Then the size of the image was scaled to 100×100 pixels.

Another dataset like CIFAR uses 28×28 size images. High

scaling helps in differentiating similar fruits. Finally, the

dataset includes 67692 Training images, 22688 Testing

images, and 103 multiclass images, a total of 90483 images.

Testing was done with test images of the dataset and also

with external images of different size and types, randomly

downloaded from Google. The types may be of jpg, tiff, and

png. When the externally imported image size is big, it will be

down-sampled. When a down-sampled image’s intensity or

pixel value is too low, then the image will be anti-aliased to

avoid poor pixelization. This concept addresses the problem of

exploiting the high and low-resolution input images.

Data Augmentation is also done with the first dataset images

to generate a few more scaled, rotated, sheared, zoomed, and

flipped images, which avoids overfitting during training. The

augmented image sample is shown in Figure 2.

The second dataset is Fruit-and-vegetable-image-

recognition contains 36 classes of fruits and vegetables images

with average size of 1500×1500 pixels. Each class contains

single fruit, multiple or overlapped fruits of same class and cut

fruits also. Each class contains nearly 100 high quality images.

But the number of images under each class is very low when

we compare with first dataset. There are 3115 images of 36

classes for training and 359 images of 36 classes for testing.

Figure 2. Augmented images

The Fruit-and-Vegetable-Image-Recognition dataset [16] is

a collection of images used for training and testing deep

learning models to recognize and classify different types of

fruits and vegetables. The images in this dataset were

compiled using Bing Image Search for a personal project on

food item image recognition. Please note that the creator does

not own the rights to these images. If you are the copyright

holder of any image in this dataset and have concerns about its

use, please contact the creator to request removal. The creator

will promptly honor such requests to ensure compliance with

all legal obligations and respect intellectual property rights.

Here are some key details about the dataset:

- Images: The dataset typically contains a large number of

images of various fruits and vegetables, often with different

angles, lighting conditions, and backgrounds.

- Classes: The dataset is usually labeled with multiple

classes, each representing a specific type of fruit or vegetable

(e.g., apple, banana, carrot, broccoli, etc.).

- Annotations: Each image is annotated with the

corresponding class label, allowing machine learning models

to learn from the data.

- Size: The dataset size can vary, but it's often in the range

of thousands to tens of thousands of images.

- Source: The dataset may be created by researchers,

collected from public sources (e.g., web scraping), or

contributed by users.

- Applications: The dataset is useful for various applications,

such as:

- Fruit and vegetable classification

- Quality inspection

- Automated harvesting

- Food recognition

- Nutrition analysis

Sample images are listed in Figure 3.

Overfitting is avoided using data augmentation with

rescaling, shift, shear, zoom, and flip operations. The rescale

set to 1./255, which will rescale the data between -0.5 to +0.5.

The mean will be 0. The zoom range set as 0.2, will perform

zoom in within the image size. The various augmentation

operations and their properties were listed in Table 5.

Horizontal_flip set as True, will perform flip the image

horizontally and generates augmented images during training

to avoid overfitting. Also, it increases the generalization of the

model [11].

187

Figure 3. Sample images from fruits and vegetables image recognition data set

Figure 4. General structure of LwSANet

Table 5. Image augmentation

No. Operation Properties

1 Resize 224×224,3

2 Rescale To normalize the image as 1/255

3 Shear Range 2% in clock-wise and anti-clock-wise directions

4 Zoom Range 2% in all sides

5 Horizontal Flip True

3.2 System design

The Proposed model is a Light weight Self Attention

Network (LwSANet) Architecture shown in Figure 4. The

network consists of two major blocks, backbone block for

feature extraction and the second block is a classification block

built with fully connected dense layers to classify the image

one among 131 classes. The feature extraction block contains

three units. Each unit built with a Convolution-Batch

Normalization-Activation block (CBA), Self Attention block

(SA) by referring [17-20], then CBA block and MaxPooling

layer.

Classification block built with Fully Connected Layer-

Batch Normalization-Activation (FBA). To compress the

global spatial information i.e., output of CBA Block, Reshape

is used. FBA used twice then dropout is used in front of Output

Dense Layer.

3.3 Feature extraction

3.3.1 CBA Block

The first unit CBA filter size is 32≈128, kernel size is 3x3.

The convolutional layers compute a dot product of input vector

and weight vector with bias. All image’s 2-dimensional pixel

values are flattened and generated as vectors. The first layer

inputs are multiplied with randomly generated weight values

Wv.

𝐹𝑖 = ∑ (𝐼𝑣.𝑊𝑣) + 𝐵𝑖

ℎ⁡𝑥⁡𝑤

𝑣=1

 (3)

This weighted sum of the first layer is represented as Fi by

finding sum of product of Input vector Iv and Wv as represented

in Eq. (3). These features are normalized using Batch

Normalization method [21]. This method helps to achieve

faster and stable training through re-centering, rescaling and

188

length-direction decoupling. It also supports to use higher

learning rates without affecting the gradients of the image

pixels. When we use Batch Normalization with Dropout, it

worse the performance of the network [22]. CBA block is built

as Convolution layer with filters, kernel size, strides, batch

normalization and activation function shown in Figure 5.

Figure 5. Architecture of CBA block

Each channel input features are normalized into zero mean

(µc) and unit variance using computation of the mean and

standard deviation (𝜎𝑐) as in Eq. (4):

𝜇𝑐 =
1

𝑁
∑ 𝐼𝑣𝑐

(𝑛)
𝑁

𝑛=1
,

𝜎𝑐 = √
1

𝑁
∑(𝐼𝑣𝑐

(𝑛)
− 𝜇𝑐)

2
+ 𝛼

𝑁

𝑛=1

(4)

where, Iv is an input vector𝛼⁡is a small constant. Considering

the input layer over a mini batch normalization, the inputs N

samples share the same channel are normalized together [17].

It can be represented as in Eq. (5):

𝑚𝐵𝑐
(𝑛)

=
1

𝜎𝑐
(𝐼𝑣𝑐

(𝑛)
− 𝜇𝑐) (5)

During the complex scene evaluation, the normalization

procedure fits the distribution of the input and recovers the

features. The recovered features can be computed using linear

transformation with channel parameter β as in Eq. (6):

𝑅𝑓𝑐
𝑛 = 𝑀(𝑚𝐵𝑐

(𝑛); 𝜃) + 𝛽 (6)

These normalized features are then passed through the ‘relu’

activation function to produce the state of the layer L2. Relu is

a non-linear activation function which maps the input values

to either 1 or 0 directly. In convolutional neural network,

maximum of 50 to 60 percent of the hidden units are activated,

because the weight vector Wv defined randomly. It can be

represented as in Eq. (7):

𝑓(𝑚𝐵𝑐
(𝑛)) = max(0,𝑚𝐵𝑐

(𝑛)) =
𝑚𝐵𝑐

(𝑛)
+ |𝑚𝐵𝑐

(𝑛)
|

2

= {
𝑚𝐵𝑐 , 𝑖𝑓⁡𝑚𝐵𝑐 > 0
0, 𝑖𝑓⁡𝑚𝐵𝑐 ≤ 0

(7)

Except output layer all the other layers were incorporated

with Relu activation function.

3.3.2 Self-Attention (SA) Network block

SA Block forms a self-attention on channels which contains

two units, Reshape and Self-Attention Modules, it takes

transformed input from CBA Block show in Figure 6. The

reshape unit maps the input mBc with the feature maps F to

compress the global spatial information generated by CBA

Block into a channel description. The output of reshaping unit

is represented as Fr. The self-attention on channels increases

the feature identification on images by convolutional layers

also reduces the irrelevant noises [23].

The input mBc
(n) denoted as 𝐹 ∈ 𝑅𝑒𝐻′𝑥𝑊′𝑥𝐶′ mapped with

the feature map and Reshaping operation is applied to the

features with height, width and channel which results a

channel descriptor by aggregating feature maps and spatial

dimension of the input, represented as 𝑅 ∈ 𝑅𝑒𝐻′𝑥𝑊′𝑥𝐶′ and the

transformed output R, as represented in study [17]. The

convolution’s filter kernel V=[v1,v2…,vc] used with parameter

and generates the output R=[r1,r2…,rc] as in Eq. (8),

where,

𝑟𝐶 = 𝑣𝑐 ∗ 𝐹 =∑𝑣𝑐
𝑠 ∗ 𝑅𝑒𝑠

𝐶′

𝑠=1

 (8)

The interdependencies between the features increases the

sensitivity of the informative features but there may be a

chance for exploiting these due to transformation in the

subsequent operation. This can be avoided by introducing

global pooling averaging to generate channel wise statistics z

achieved by as in Eq. (9),

𝑧𝑐 = 𝐹𝑠𝑞(𝑟𝑐) =
1

𝐻𝑥𝑊
∑∑𝑟𝑐(𝑖, 𝑗)

𝑊

𝑗=1

𝐻

𝑖=1

 (9)

The Self-Attention block captures channel-wise

dependencies of features from the data received from Reshape

block to create non-linear interaction between channels and

the mutually exclusive relationship between non-linear must

be learnt [24]. The output of Self-Attention block is attained

by rescaling the Re with the activation as mentioned in Eq.

(10).

𝑥̃𝑐 = 𝐹𝑠𝑐𝑎𝑙𝑒(𝑅𝑒𝑐⁡, 𝑠𝑐) = 𝑠𝑐𝑅𝑒𝑐 (10)

Figure 6. SANet block architecture

189

Its major functionality is built with a dense layer, permute

and multiply functions. Self-Attention block recalibrates the

features in the feature maps by identifying the discriminative

features. Here the weight matrix of each layer is compressed

and applied to dense layer to avoid improper conflict selection

of features and packing. Also, it reduces the conflict features.

First Dense layer activated with Relu and the second dense

layer in SA Block activated with swish activation function.

Even though swish is slower than Relu, for getting more

reliable and better results for complex data, it is used.

3.3.3 Classification

At the end of feature extraction block, Global Average

Pooling layer is incorporated instead of Dropout and

Flattening which takes average value of each feature map.

Flattening divides the two dimensional image into one

dimensional image which increases the length and processing

cost [25]. Average Pooling layer maintains the size of the

previous convolutional layer. The resulting feature size will be

equal to the size of the previous layer feature map. It considers

the average value in each feature map to reduce the size of the

activations without compromising the performance of the

network. Dropout is only two times, that is after three sets of

pooling layers. Then the pooled data converted into a vector

using reshape with 1×1.

3.3.4 FBA Block

FBA Block built as Fully connected layer with

input_channels, kernel_initializer, BatchNormalizaion and

Activation shown in Figure 7. The model has two FBA Blocks

that is the second and third last layer with input_channels 270

and 350. Output layer is also a dense layer with input_channels

131 in case of Dataset1 and 36 in case of Dataset2. Which is

equal to the number of classes to be classified. Because, the

backbone Feature Extraction block contains CNN layers with

filter sizes 32, 64 and 128.

Figure 7. Architecture of FBA block

Figure 8. Prediction probabilities of the test images

Fully connected layers use back propagation and feed

forward computation to accomplish learning and inference on

the entire image at once to predict the dense output from the

entire image. The last output dense layer is incorporated with

SoftMax, which transforms the raw vector values into vector

of probabilities, to create a distribution of probabilities over

the input classes. The prediction probabilities of the test

images were shown in Figure 8.

S(O)i =
e𝑂𝑖

∑ e𝑂𝑖𝑁
𝑗=1

 (11)

The value of e≈2.718 [12]. All the Oi is the values of the

input vector of the output image that values may be of positive,

negative and zero, even though the input is always positive

because of eOi.∑ e𝑂𝑖𝑁
𝑗=1 Normalizes the values and makes the

sum of all values to 1. N is the number of Input classes in Eq.

(11).

Dense layers are used to classify the images based on the

features extracted. If there is one Dense layer, that uses the

edge feature to classify the images. Here the data set contains

131 class of fruits. In apple category itself, 13 varieties are

there. To classify these 13 categories differently, the in depth

feature like texture, color are needed. To improve the

classification more effectively, more number of Dense layers

we need. Dense layer takes input of any size and produces

output of corresponding size by resampling. There may be loss

in last dense layer that can be represented as in Eq. (12),

𝑙𝑓(𝐿𝑖𝑗) =∑𝑙𝑓′(𝐿𝑖𝑗; ∅)

𝑖𝑗

 (12)

Loss function lf calculate on the layer Lij by summing the

gradient of its spatial components. This gradient descent on lf

calculated on the whole image using feedforward and back

propagation by considering the entire image by minibatch.

Activation Function:

The activation function supports to improve the training

accuracy of the model. The SA Block dense layers use Relu

and swish as an activation function. CBA Block and FBA

Block also uses Relu as activation function. The function of

Relu is defined as f(x)=max(0,x); where f(x)=1 if x>0 and f(x)

= 0 if x<=0.

The max operation in Relu is faster than the tanh operation

of sigmoid function. Therefore, Relu makes the hidden unit

operations as light weight. Gradient at the infinity is not zero

in Relu, that’s what it converges faster and facilitate gradient

disappearance [4].

The swish function also used in SA Block’s second Dense

layer. Swish is a smooth non-monotonic function which has

lower bound and without upper bound. When compare to the

Relu, Swish has very good convergence performance [8]. The

function swish defined as f(x)=x*(sigmoid(βx)) [26]. The

sigmoid function defined as f(x)=1/(1+e-x). In proposed

system, the β defined as 1, also it acts as Sigmoid-weighted

Linear Unit [13]. When β=1, it acts as f(x)=x*sigmoid(x), then

the output ranges from -0.5 to ∞ [8].

The output layer uses SoftMax activation function as output

classifier to represent the probability distribution over 131

output classes first dataset fruits-360 and 36 output classes for

the second dataset Fruits and Vegetables for Image

Recognition. It used for predicting a class from multiple

disjunct classes and its probability lie between 0 and 1.

190

SoftMax squeezes the input vector probability between 0 and

1, the larger input vector will correspond to larger probability,

that can be calculated by applying ez
i exponential function to

each component and normalizes these values by dividing the

sum of all these exponentials.

4. ENVIRONMENTAL SETUP

Experiment done with Kaggle with accelerator GPU T4×2.

The proposed model was developed using Python,

TensorFlow, Keras and output visualized using matplotlib.

Two data sets were used for train, test and validate. The first

data set is fruits-360 [15], which contains 131 classes of 90483

images and splitted as 67692 for training and 22688 for testing.

The second dataset Fruits and Vegetables for Image

Recognition contains 3825 images of 36 classes, each image

contains many numbers of fruits of same class. Among them

359 images used for Testing and 3466 images for Training.

The images were resized into 224×224 pixels. Different

dataset and class have different number of sample images,

there is no balancing applied between classes. During training

the learning rate was set to 0.001. During execution it will

monitor val_loss, if the epoch continuously not showing any

progress, it will reduce the learning rate with early stopping

method. This slows down model learning and increases the

likelihood of reaching a local or global minimum, causing the

model to converge quickly [13]. For first dataset the model run

for 20 epochs and for second dataset it was 50. The other

parameter settings were listed in Table 6.

Simple and computationally efficient stochastic objective

function optimizer ‘Adam’ with categorical cross-entropy

used for gradient based optimization [27]. The loss may be

different when the same content with different type of images.

Residual-like connection used to take better advantage of

multiscale attention features and contrastive loss with weight

0.1 is added with Cross-Entropy loss to reduce the loss [28].

Table 6. Hyperparameters

S.No Hyperparameters Value Set

1 Input shape 100×100 | 224×224

2 Kernal Initializer He_normal

3 Activations Swish | Relu

4 Stride 1

5 Filter Size 32 | 64 | 128

6 Epochs 20 | 50

7 Batch Size 32

8 Class Mode Categorical

9 ReducedLr – min_delta 0.0001

10 Early Stopping restore_best_weights=True

11 Optimizer Adam

12 Leraning Rate 0.001

13 Output Classes 131 | 36

4.1 Kernel initialization

The weight of the neurons in the network initialization plays

important role in improving training accuracy during the

staring stage of the training. At the initial stage, the

convolution kernel and the training samples are independent

to each other. Too large initialization results to exploding the

gradients and too small initialization results to vanishing

gradients problems. We didn’t use any pretrained model

weights for our proposed model initialization. When the depth

of the network and the samples are high, he_normal works

well when we compare with other initializers [29]. Based on

result-based approach, he_normal kernel initializer is

preferred for our proposed LwSANet Model.

4.2 Experimental results and discussion

To evaluate the performance of our LwSANet it is

compared with LeNet, VGG-16 and GoogLeNet using

Transfer Leaning. For training, dataset train images were used.

For testing, test images from dataset and few images

downloaded from internet with different size and resolution

were used. The focus is not on state-of-the-art results, so we

implemented the simple architectures of LeNet and

GoogLeNet, also used the pre-trained models of VGG-16.

4.3 Improving training accuracy using dropout layer

Introducing dropout layer between the convolutional layers

improves the training accuracy by dropping some neurons

randomly from the hidden layer. It is an effective technique for

model averaging in neural networks and it reduces complex

co-adaptations on the training data [30].

It is a geometric mean of predictions from an exponential

number of learnt models with shared parameters that is about

equal weighted. Dropout makes filter value to 0 [31] and

generates noisy input to the next fully connected layer and

prevents them from developing co-dependency and overfitting

[32].

4.4 Analysis using Fruits-360 dataset

Model trained and tested with single fruit images. Few

multiple fruit images were also tested. The preprocessed

100x100 pixel size images were taken as input. The same set

of sample images were taken for comparison with existing

models LeNet, VGG-16, GoogLeNet, MobileNet, MicroNet,

SqueezeNet and the proposed LwSANet model. All the

models were trained for 20 epochs. Batch size set to 32. The

validation accuracy is listed in Table 7.

4.5 Analysis using fruits-and-vegetables-image-dataset

Each image in this dataset contains multiple number of fruit

image of same class. Each class contains 100 training images

and 10 testing images. Due to this limited number of images,

data augmentation is applied on the training data to avoid

overfitting. All the models trained for 50 epochs. Batch size

set to 5 because of dissimilarity in images. The validation

accuracy represented in Table 8.

The prediction performance of proposed models is shown in

Figures 9(a) and (b). Figure 9 (a) represents the images from

the test data of the dataset 2. 12 sample images were tested and

the predictions were represented with their probability of the

prediction. Even though the prediction probability of the

images were less, all the images were predicted correctly. The

probability may be affected due to the size reduction of the

high-quality images. The prediction of Google search images

was represented in Figure 9(b). The tested 12 sample images

of different classes of fruits and vegetables were predicted

correctly with good probability.

191

Table 7. Accuracy of the models when training with dataset1-20 epochs

Model Val_Accuracy @Epoch–5 Val_Accuracy @Epoch–10 Val_Accuracy @Epoch–15 Val_Accuracy @Epoch–20

LeNet 99.04% 99.79% 100% 100%

VGG-16 84.60% 94.77% 97.33% 98.18%

GoogLeNet 92.76% 96.52% 97.99% 98.25%

MobileNet 65.8% 73.5% 79.21% 84.4%

SqueezeNet 76.2% 78.6% 80.7% 80.15%

Shuffle Net 77.5% 79.21% 81.3% 85.03%

LwSANet 97.85% 99.71% 99.77% 99.93%

(a) Dataset-1 test images- predicted by LwSANet–after 20 epochs

(b) Google search images- predicted by LwSANet–after 20 epochs

192

(c) Data set-2 test images- predicted by LwSANet – after 50 epochs

(d) Google search images- predicted by LwSANet–after 20 epochs

Figure 9. Performance of LwSANet on various image sets over different training epochs

193

Table 8. Accuracy of the models when training with dataset2-50 epochs

Model
Val_Accuracy

@Epoch–10

Val_Accuracy

@Epoch–20

Val_Accuracy

@Epoch–30

Val_Accuracy

@Epoch–40

Val_Accuracy

@Epoch–50

LeNet 77.78% 98.74% 98.70% 96.46% 98.90%

VGG-16 69.18% 70.63% 70.63% 70.63% 70.63%

GoogLeNet (Aux1_Acc) 49.05% 55.87% 63.66% 67.36% 70.68%

MobileNet 91.17% 96.87% 97.72% 97.92% 97.72%

SqueezeNet 24.69% 32.05% 38.16% 47.06% 56.22%

ShuffleNet 62.82% 68.59% 72.14% 77.75% 80.16%

LwSANet 64.35% 71.03% 91.09% 95.54% 98.10%

4.6 Accuracy and loss function

The learning is based on the gradient function, which is

much easier to smooth the image towards an increase in the

gradient. This process reduces the noise in the image,

improves learning rate and reduces the loss.

𝐼𝑘 = 𝐼𝑘−1 − 𝜖
𝜕𝐸(𝐼)

𝜕𝐼
 (13)

where, 𝜖 is a scalar constant. The real-valued gradient vector I

is iteratively adjusted using the gradient decent algorithm E(I)

as in Eq. (13).

The training done until it reaches the accuracy of 99%, but

that reduces prediction or validation accuracy. Most of the

images tested from external source was predicted wrongly.

The reason behind that is the model bi-hearted the images as

such. That affects prediction accuracy. The Accuracy and Loss

comparison between proposed model and predefined models

were shown in Table 9.

4.7 Evaluation metrics

Set of predicted labels of images were compared with actual

labels of that images from the dataset were compared. It is

calculated by intersection of two labels by union of two labels

for this Jaccard coefficient is utilized. The various parameters

evaluated using this are, precision in Eq. (14), recall in Eq. (15)

and F1 in Eq. (16).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (14)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (15)

𝐹1 =
2𝑥𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑥𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (16)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (17)

where, TP is True Positive, TN is True Negative, using these

the metrics precision, recall f1 and accuracy can be calculated

as in Eq. (17).

The existing successful models LeNet, VGG-16,

GoogLeNet and proposed model LwSANet were tested in four

sets of images. 12 single fruit images taken from Fruit-360

dataset and another 12 single fruit images taken from Google

Search. The prediction results were shown in Figure 10.

Accuracy score was compared while training using first

dataset during 5,10,15 and 20 epochs. All the models were

trained for 20 epochs. Because, when the accuracy reaches

above 99%, the model bi-hearted the images and the prediction

accuracy was reduced. So, the average limit of 20 epochs were

used. The accuracy score of Dataset 1 and Dataset 2 were

shown in Figures 11 and 12.

Sample predictions were represented with the images

depicted below. Because of the number large number of layers

in Google, it took much amount of time for training. In epoch

50 it reached 70% accuracy, also the prediction accuracy is

less. So, GoogLeNet only trained for 75 epochs. After that, it

predicted 100% accurately. Sample images were listed in

Figure 13.

Table 9. Accuracy and loss comparison

 Fruits–360 Dataset
Fruits-and-

Vegetable Dataset

Model Accuracy Loss Accuracy Loss

LeNet 100% 1.10 96.10% 0.34

VGG-16 96.61% 0.12 70.63% 4.82

GoogLeNet

(Aux1_Acc)
98.25% 0.05 71.19% 0.91

MobileNet 84.4% 0.14 97.72% 0.24

SqueezeNet 80.15% 0.54 56.22% 5.21

ShuffleNet 85.03% 0.2 80.16% 0.42

LwSANet 99.93 0.0028 98.2 0.23

Figure 10. Correct and incorrect classification accuracy

comparison with state-of-the-models

194

Figure 11. Accuracy score for dataset 1

Figure 12. Accuracy score for dataset 2

(a) GoogLeNet performance for dataset 1 test images

195

(b) GoogLeNet performance for single fruit google search (GS) images

(c) GoogLeNet performance for multiple fruit image from ds 2-50 epochs

196

(d) GoogLeNet performance for multiple fruit images from google search

 (e) Performance of GoogLeNet model-after 75 epochs

Figure 13. Performance of SANet

Table 10. GMAC, GFLOP, top-1 error and top-5 error analysis

 GMAC GFLOPs Parameters Top-1 Error Top-5 Error

LeNet 7.8 15.7 0.99M 91.67% 2.29

vgg16 15.52 31.04 14.7M 75.0% 1.29

GoogLeNet 1.51 3.02 7.5M 33.33% 5.17

mobilenet_v2 320.3 0.640 4.2M 24.0% 1.16

squeezenet1_0 836.82 1.673 1.25M 38.27% 2.15

shufflenet_v2_x2_0 44.77 0.895 1.47M 30.75% 0.88

LwSANet 188.65 0.431 0.25M 8.33% 0.02

197

Table 11. Computational time

Model
Computational

Time

LeNet 28 ms

VGG-16 46 ms

GoogLeNet 45 ms

MobileNet 145 ms

SqueezeNet 35 ms

Shuffle Net 30 ms

LwSANet 20 ms

4.8 Ablation experiment and analysis

In the ablation experiment, the LwSANet model tested with

different dataset images, different number of classes, changes

in the performance by increasing the number of CBA Block,

MFLOPs count and also the performance metrics compared

with state-of-the-art deep neural networks and resource

constraint networks.

The dataset1 images used with 100x100 resolution. Even

though the resolution of the image is low, training with 131

number of classes images, increases the MFLOPs. When we

compare with state-of-the-art deep neural network

with >=1GFLOPs models, proposed model’s floating point

operations count limited with MFLOPs. Proposed model’s

MFLOPs also compared with state-of-the-art resource

constrained networks like MobileNet, SqueezeNet, ShuffleNet.

Proposed model’s FLOP count is 0.431 GFLOPs, recorded in

Table 10.

Introduction of CBA and FBA blocks decreases the number

of parameters by 12% MFLOPS by 16.3%. Also, the proposed

model performance analyzed with different number of CBA

and FBA Blocks. Increasing a greater number of such blocks

doesn’t make much impact on the performance of the model.

Increasing a greater number of time training also freezes the

accuracy.

4.9 Computational time

Table 11 presents a comparison of the calculation efficiency

of several detectors.

On a 640×480 image using a GTX-1080Ti, the LeNet

weights size and computation time are 7.4M and 28ms,

respectively. VGG-16 (small) yields comparable outcomes;

the magnitude of the weights and computation time of VGG-

16 (small) measures 35.4M and 30ms in turn. In contrast to

better detection performance is achieved using LeNet and

VGG-16 (small). LedNet's IoU and F1 scores when combined

with LW-net are 0.826 and 86.3%, which are, respectively, 4.4%

and 3.9% greater than the LeNet (small). The experimental

findings show that LeNet with resnet-101 achieves

comparable computing efficiency to the VGG-16. Two stages

make up the FasterRCNN detector: an RPN and a

classification stage network. Consequently, the computation

time is given in the Table 11.

4.10 Effect of batch size

The number of input samples is applied to the network's

layers to minimize memory usage. The batch size significantly

influences the experiment's outcome. If the batch size is too

small, there may be an underfitting risk, and if the value is

excessive, there may potentially be an overfitting risk be wary

of overfitting.

4.11 Practical applications and deployment scenarios of

LwSANet

The LwSANet framework designed for crop recognition

from snapshots has beneficial applications in various fields

wherein green and accurate photograph recognition is needed.

It can be utilized in automatic classification systems to

categorize and classify harvests primarily based on function

popularity and can be used to robotically identify the fruit,

decreasing the want for manual sorting and speeding up

processes. Its characteristics a lightweight also makes it

appropriate for mobile embedded devices, along with actual-

time fruit detection on hand-held scanners for purchasers and

small farmers enables cellular apps and different programs.

The performance and accuracy of the version make it a

valuable device in useful resource-constrained environments

wherein excessive computing electricity isn't to be had.

4.12 Discussion

The novelty of LwSANet lies in its strategic use of a

lightweight self-attention mechanism, tailor-made specifically

for the undertaking of fruit popularity. Unlike conventional

fashions like LeNet or VGG-sixteen, which depend closely on

deep and huge convolutional layers, LwSANet integrates self-

attention in a compact form to awareness of relevant

capabilities in the photograph while minimizing

computational overhead. This technique permits LwSANet to

capture diffused variations in fruit textures and shapes, which

can be critical for accurate type, especially in scenarios

wherein fruits have similar appearances. The version's

architecture is designed to stability performance and accuracy,

making it appropriate for deployment on resource-limited

gadgets along with cell telephones or edge computing

structures. In terms of results, LwSANet outperforms several

modern-day models no longer just in accuracy however

additionally in performance, as evidenced by means of

decrease parameter counts and quicker inference times. The

particular strategies employed, including the lightweight self-

interest mechanism and optimized function extraction layers,

contribute to this performance enhance.

5. CONCLUSION

The increase in population day by day increases the need of

nutritional foods like fruits and vegetables. Fruits and

vegetables are recommended good nutrition food for all age

people. Improper maintenance and categorization of these

foods in supermarkets or during transportations, affects the

health of one another. Rotten fruits make other fruits rotten.

The problem of labour shortage to work in field have

tremendous impact on quality maintenance of fruits and

vegetables. Because of the technology advancements, we can

address these problems through automated robots or machines.

In this work we propose a deep learning based Light weight

Self-Attention Network to detect and classify different fruits

and vegetables from images. The proposed model is compared

with State-of-the-art deep neural network models LeNet,

VGG-16, GoogLeNet and Tiny network models MobileNet,

ShuffleNet, SqueezeNet. Two data sets were used to evaluate

the performance of the proposed model. The model

demonstrated that, the way of organizing the different layers,

normalization, dropout, multiply and permute improves the

198

performance of simple CNN models. Incorporation of Self-

Attention Block enables channel wise feature recalibration,

proper usage of Batch normalization and Dropouts helps to

remove unwanted pixel data and to bring mattered pixel data

to the next layer. By using the feature extracted with pruning,

the model will produce compressed smaller and faster model

to be deployed in resource constraint devices.

REFERENCES

[1] Huynh, T.T.M., Le, T.M., That, L.T., Van Tran, L., Dao,

S.V.T. (2022). A two-stage feature selection approach

for fruit recognition using camera images with various

machine learning classifiers. IEEE Access, 10: 132260-

132270.
https://doi.org/10.1109/ACCESS.2022.3227712

[2] Gill, H.S., Khalaf, O.I., Alotaibi, Y., Alghamdi, S.,

Alassery, F. (2022). Multi-Model CNN-RNN-LSTM

based fruit recognition and classification. Intelligent

Automation & Soft Computing, 33(1).
http://doi.org/10.32604/iasc.2022.022589

[3] Moon, J., Lim, S., Lee, H., Yu, S., Lee, K.B. (2022).

Smart count system based on object detection using deep

learning. Remote Sensing, 14(15): 3761.
https://doi.org/10.3390/rs14153761

[4] Agarap, A.F. (2018). Deep learning using rectified linear

units (relu). arXiv Preprint arXiv: 1803.08375.

https://arXiv.org/abs/1803.08375

[5] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. (1998).

Gradient-based learning applied to document recognition.

Proceedings of The IEEE, 86(11): 2278-2324.
https://doi.org/10.1109/5.726791

[6] Campos-Leal, J.A., Yee-Rendón, A., Vega-López, I.F.

(2022). Simplifying vgg-16 for plant species

identification. IEEE Latin America Transactions, 20(11):

2330-2338. https://doi.org/10.1109/TLA.2022.9904757

[7] Hossain, M.S., Al-Hammadi, M., Muhammad, G. (2018).

Automatic fruit classification using deep learning for

industrial applications. IEEE Transactions on Industrial

Informatics, 15(2): 1027-1034.
https://doi.org/10.1109/TII.2018.2875149

[8] Fu, Y.S., Song, J., Xie, F.X., Bai, Y., Zheng, X., Gao, P.,

Wang, Z.T., Xie, S.Q. (2021). Circular fruit and

vegetable classification based on optimized GoogLeNet.

IEEE Access, 9: 113599-113611.
https://doi.org/10.1109/ACCESS.2021.3105112

[9] Lai, J.W., Ramli, H.R., Ismail, L.I., Hasan, W.Z.W.

(2022). Real-time detection of ripe oil palm fresh fruit

bunch based on YOLOv4. IEEE Access, 10: 95763-

95770. https://doi.org/10.1109/ACCESS.2022.3204762

[10] Xuan, G., Gao, C., Shao, Y., Zhang, M., Wang, Y.,

Zhong, J., Li, Q., Peng, H. (2020). Apple detection in

natural environment using deep learning algorithms.

IEEE Access, 8: 216772-216780.
https://doi.org/10.1109/ACCESS.2020.3040423

[11] An, Q., Wang, K., Li, Z., Song, C., Tang, X., Song, J.

(2022). Real-time monitoring method of strawberry fruit

growth state based on YOLO improved model. IEEE

Access, 10: 124363-124372.
https://doi.org/10.1109/ACCESS.2022.3220234

[12] Hassam, M., Khan, M.A., Armghan, A., Althubiti, S.A.,

Alhaisoni, M., Alqahtani, A., Kadry, S., Kim, Y. (2022).

A single stream modified mobilenet v2 and whale

controlled entropy based optimization framework for

citrus fruit diseases recognition. IEEE Access, 10:

91828-91839.
https://doi.org/10.1109/ACCESS.2022.3201338

[13] Zhong, S., Xu, W., Zhang, T., Chen, H. (2022).

Identification and depth localization of clustered pod

pepper based on improved Faster R-CNN. IEEE Access,

10: 93615-93625.
https://doi.org/10.1109/ACCESS.2022.3203106

[14] Zhang, L., Gui, G., Khattak, A.M., Wang, M., Gao, W.,

Jia, J. (2019). Multi-task cascaded convolutional

networks based intelligent fruit detection for designing

automated robot. IEEE Access, 7: 56028-56038.
https://doi.org/10.1109/ACCESS.2019.2899940

[15] Muresan, H., Oltean, M. (2018). Fruit recognition from

images using deep learning. Acta Universitatis

Sapientiae, Informatica, 10(1): 26-42.

https://doi.org/10.2478/ausi-2018-0002

[16] Fruits and Vegetables Image Recognition Dataset taken

from, https://www.kaggle.com/datasets/kritikseth/fruit-

and-vegetable-image-recognition, accessed on Aug.

2024.

[17] Woo, S., Park, J., Lee, J.Y., Kweon, I.S. (2018). Cbam:

Convolutional block attention module. In Proceedings of

the European Conference on Computer Vision (ECCV),

pp. 3-19.

[18] Hu, J., Shen, L., Sun, G. (2018). Squeeze-and-excitation

networks. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 7132-

7141.

[19] Li, P., Gai, S. (2023). Single image deraining using

multi-scales context information and attention network.

Journal of Visual Communication and Image

Representation, 90: 103695.
https://doi.org/10.1016/j.jvcir.2022.103695

[20] Su, Z., Liu, R., Feng, Y., Zhou, F. (2023). Attention-

adaptive multi-scale feature aggregation dehazing

network. Journal of Visual Communication and Image

Representation, 90: 103706.
https://doi.org/10.1016/j.jvcir.2022.103706

[21] Xu, Y., Xie, L., Xie, C., Dai, W., Mei, J., Qiao, S., Shen,

W., Xiong, H., Yuille, A. (2023). Bnet: Batch

normalization with enhanced linear transformation. IEEE

Transactions on Pattern Analysis and Machine

Intelligence, 45(7): 9225-9232.
https://doi.org/10.1109/TPAMI.2023.3235369

[22] Li, X., Chen, S., Hu, X., Yang, J. (2019). Understanding

the disharmony between dropout and batch

normalization by variance shift. In Proceedings of The

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 2682-2690.

[23] Ilyas, T., Khan, A., Umraiz, M., Jeong, Y., Kim, H.

(2021). Multi-scale context aggregation for strawberry

fruit recognition and disease phenotyping. IEEE Access,

9: 124491-124504.
https://doi.org/10.1109/ACCESS.2021.3110978

[24] Zhao, Z., Hao, K., Liu, X., Zheng, T., Xu, J., Cui, S., He,

C., Zhou, J., Zhao, G. (2023). MCANet: Hierarchical

cross-fusion lightweight transformer based on multi-

ConvHead attention for object detection. Image and

Vision Computing, 136: 104715.
https://doi.org/10.1016/j.imavis.2023.104715

[25] Tamayo-Monsalve, M.A., Mercado-Ruiz, E., Villa-

Pulgarin, J.P., Bravo-Ortiz, M.A., Arteaga-Arteaga, H.B.,

199

Mora-Rubio, A., Alzate-Grisales, J.A., Arias-Garzon, D.,
Romero-Cano, V., Orozco-Arias, S., Gustavo-Osorio, G.,

Tabares-Soto, R. (2022). Coffee maturity classification

using convolutional neural networks and transfer

learning. IEEE Access, 10: 42971-42982.
https://doi.org/10.1109/ACCESS.2022.3166515

[26] Dubey, S.R., Singh, S.K., Chaudhuri, B.B. (2022).

Activation functions in deep learning: A comprehensive

survey and benchmark. Neurocomputing, 503: 92-108.

https://doi.org/10.1016/j.neucom.2022.06.111

[27] Elfwing, S., Uchibe, E., Doya, K. (2018). Sigmoid-

weighted linear units for neural network function

approximation in reinforcement learning. Neural

Networks, 107: 3-11.
https://doi.org/10.1016/j.neunet.2017.12.012

[28] Kingma, D.P., Ba, J., (2017). Adam: A method for

stochastic optimization. Preprint at arXiv.

https://arXiv.org/abs/1412.6980

[29] Wang, Z., Shi, S., Zhai, Z., Wu, Y., Yang, R. (2022).

ArCo: Attention-reinforced transformer with contrastive

learning for image captioning. Image and Vision

Computing, 128: 104570.
https://doi.org/10.1016/j.imavis.2022.104570

[30] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever,

I., Salakhutdinov, R.R. (2012). Improving neural

networks by preventing co-adaptation of feature

detectors. arXiv preprint arXiv:1207.0580.

https://doi.org/10.48550/arXiv.1207.0580

[31] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,

Salakhutdinov, R. (2014). A simple way to prevent

neural networks from overfitting. Journal of Machine

Learning Research, 15(56): 1929-1958.

200

https://doi.org/10.1016/j.imavis.2022.104570

