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In order to improve the recognisability of thin cloud multi-spectral remote sensing image, a 

method of removing thin cloud from remote sensing images based on thin cloud physical 

model is proposed. Generally, the contrast of the region polluted by thin clouds in remote 

sensing image is low, and the real scene can be restored by increasing the contrast. However, 

the excessive contrast enhancement will cause data loss. The relationship between the 

contrast of MSE (Mean squared error) and the transmission of cloud is inversely calculated, 

and the transmission is estimated by establishing a cost function. The number reduces the 

loss of data information and maximizes the contrast. The intensity of sunlight is estimated 

by using the weighted quadtree search method. Finally, the restored image is obtained 

according to the thin cloud physical model. Experimental results show that the entropy of 

image information increases from 5.961 to 6.65, the e increases from 0.356 to 0.767, and 

FADE reduce from 0.289 to 0.261. These data indicate that our method achieved better 

results in terms of data information retention and thin cloud removal. 
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1. INTRODUCTION

Optical remote sensing satellite images are widely used in 

the field of earth observation and remote sensing of the earth 

because of their wide coverage, large data volume and high 

resolution [1-3]. A significant portion of the atmospheric 

system is covered by clouds [4], which are composed of tiny 

droplets and variable-sized ice crystals, and solar radiation 

passing through the clouds is scattered and absorbed before it 

reaches the target on the ground, leading to changes in colour 

and brightness in different areas of the remote sensing image, 

which results in blurred images and reduced contrast. When 

the clouds are too thick will not be able to obtain the target 

image, thin clouds will cause uneven illumination, thin cloud 

removal for remote sensing images can improve the quality of 

remote sensing images and the accuracy of the application [5-

8]. The signal-to-noise ratio of cloud remote sensing images is 

low, and the visibility of colour remote sensing images is poor, 

therefore, thin cloud removal for colour remote sensing images 

has very important practical significance. 

The current methods for thin cloud removal from remote 

sensing images are homomorphic filtering [9], Tasseled Cap 

Transformation method [10], image transformation based 

methods (Haze optimized transform, HOT) [11], and HOT 

improvement based methods [6, 12], and cloud physical model 

based methods [5, 7]. 

The method of homomorphic filtering is based on the 

characteristics of the thin cloud spectrum concentrated in the 

low-frequency band, through the filter compression of the low-

frequency band to eliminate the impact of thin clouds on the 

image, which will cause a certain amount of data loss, 

notification of a greater demand for computer resources. The 

Tasseled Cap Transformation is an orthogonal linear transform 

determined based on the data structure of remote sensing 

images, the fourth component of the transform is related to the 

clouds, and cloud removal was realised by discarding the 

fourth component, this method was not suitable for scenes 

with brighter ground targets. The HOT based method first 

generates a transformed image (HOT map), which could be 

used to calculate the strength of the impact on clouds and mist. 

Based on the HOT value, the image was divided into multiple 

layers, and then dark target subtraction was performed on each 

layer [13] to achieve the goal of removing clouds and mist.  

The HOT-based method first generated a transformed 

image (HOT map), according to the size of the HOT value can 

be deduced from the strength of the degree of influence with 

the cloud, based on the HOT value, the image was divided into 

multiple layers, and then each layer of the dark target 

subtraction [13] to achieved the purpose of removing the 

cloud, the method in the vegetated area has a good result, but 

for man-made features and other types of ground cover would 

produce excessive correction results. 

Chen et al. proposed a remote sensing image cloud removal 

method using Iterative Haze optimized Transformation 

(IHOT) and cloud trajectories [6]. The method estimated cloud 

thickness using iterative Haze optimized transformation 

(IHOT), then marked the shadow areas affected by the cloud. 

Similar pixels in neighbouring regions at different cloud 

thicknesses were fitted by cloud trajectories. The cloud-

contaminated areas in the image were corrected according to 

the relationship between surface reflectance and IHOT, the 

visual effect of remote sensing image was improved, but the 
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estimation of cloud trajectory would be affected by the shadow 

detection error, which led to inaccurate estimation of cloud 

trajectory and failed to achieve the expected effect. The 

method based on the cloud physics model achieved thin cloud 

removal by eliminating the effect of clouds in the light 

transmission process. The model includes the cloud 

transmittance, atmospheric light intensity, and the attenuation 

coefficient of sunlight in the atmospheric transmission 

process, which can remove the effect of clouds on the image 

while preserving the colour information of the image. 

In this paper, we proposed a method for removing thin 

clouds from multi-spectral remote sensing images based on 

cloud physics model, which is based on the effective 

estimation of cloud transmittance, sunlight intensity, and 

atmospheric attenuation coefficient to derive the true 

reflectance of the ground target. Among them, the estimation 

of cloud transmittance is crucial, and the estimation of cloud 

transmittance is achieved by the method of optimal contrast 

enhancement. Increasing the contrast of the image could 

improve the visual effect of the image contaminated by clouds, 

but the overstretching of the contrast would cause the pixel 

values to be overflowed or truncated. The optimal contrast 

enhancement value is determined by establishing a cost 

function to ensure that the loss of data information is reduced 

while maximizing the contrast. 

 

 

2. METHODOLOGY 

 

2.1 The physical model of thin cloud image 

 

Thin clouds can lead to degradation of the acquired remote 

sensing images. Currently, and the more commonly used 

physical model for thin cloud image [5, 14] is shown in Figure 

1. 

 

 
 

Figure 1. The physical model of thin cloud image 

 

The image received by the image detector is composed of 

two parts, one is the part of sunlight that reaches the detector 

after being reflected from the clouds, and the other is the part 

of sunlight that reaches the detector after being reflected from 

the ground target and passing through the clouds, and the 

imaging model is expressed as follows: 

 

𝑰(𝑥, 𝑦) = 𝜶𝐿𝑟(𝑥, 𝑦)𝑡(𝑥, 𝑦) + 𝑳(1 − 𝑡(𝑥, 𝑦)) (1) 
 

where, 𝑰(𝑥, 𝑦) represents the image received by the detector, 

𝑟(𝑥, 𝑦)  is the true reflectance of the ground target scenery 

which represents the expected image to be obtained, 𝑡(𝑥, 𝑦) is 

the cloud transmittance, 𝐿 is the intensity of sunlight, 𝜶 

represents the attenuation coefficient of sunlight during 

atmospheric transmission, 𝜶𝐿𝑟(𝑥, 𝑦)𝑡(𝑥, 𝑦)represents the part 

of the ground scenery that passes through the cloud after 

reflection, 𝑳(1 − 𝑡(𝑥, 𝑦)) represents the cloud background. 

The imaging model can be written as: 

 

𝑟(𝑥, 𝑦) =
𝑰(𝑥, 𝑦) − 𝑳(1 − 𝑡(𝑥, 𝑦))

𝜶𝐿𝑡(𝑥, 𝑦)
 (2) 

 

2.2 Estimation of cloud transmittance 

 

The contrast of image areas contaminated by thin clouds is 

usually low, and the estimation of transmittance is achieved by 

maximizing contrast. MSE (Mean Squared Error) contrast, 

which represents the degree of difference between pixels, is 

calculated as follows: 

 

𝐶𝑀𝑆𝐸 =∑
(𝑟𝑖(𝑞) − 𝑟𝑖(𝑞))

2

𝑁

𝑁

𝑞=1

 (3) 

 

Among them 𝑖 ∈ {r,g,b} represents the three color channels 

of the image, 𝑁 represents the total number of pixels in the 

region, and 𝑟𝑖(𝑞) is the mean of 𝑟𝑖(𝑞). After estimating the 

intensity of sunlight 𝐿, 𝑟𝑖(𝑞) depends on the selection of the 

transmittance t. For simplicity, Eq. (3) can be rewritten as: 

 

𝐶𝑀𝑆𝐸 =∑
(𝐼𝑖(𝑞) − 𝐼𝑖(𝑞))

2

𝑡2𝑁

𝑁

𝑞=1

 (4) 

 

where, 𝐼𝑖(𝑞) is the mean of 𝐼𝑖(𝑞), according to Eq. (4), 𝐶𝑀𝑆𝐸 

is a decreasing function of t. Therefore, the contrast can be 

improved by decreasing t. For an 8-bit image, we assume that 

(a, b) is a valid range for input pixel values which lead to 

output pixel values within (0, 255). When most of the input 

values are in the valid range, the output image have a high 

contrast. Otherwise, the output pixel values would be below 0 

or above 255, result in the loss of image information.  

Consequently, the improvement of contrast will inevitably 

be accompanied by the loss of data information. In order to 

find the best t value which can achieve the best results of the 

recovered image, the cost function 𝐸𝐶  is proposed to find the 

optimal value of t. The contrast cost function is given as: 

 

𝐸𝐶 = ∑ ∑
(𝐼𝑖(𝑞) − 𝐼𝑖(𝑞))

2

(𝑡)2𝑁𝑊
𝑞∈𝑊𝑖∈{𝑟,𝑔,𝑏}

 (5) 

 

where, 𝐸𝐶  is the contrast cost function, 𝑁 represents the total 

number of pixels in the region of W. The cost function for data 

loss is defined as: 

 

𝐸𝑠 = ∑ ∑{(𝑚𝑖𝑛{0, 𝑟𝑖(𝑞)})
2

𝑞∈𝑊𝑖∈{𝑟,𝑔,𝑏}

+ (𝑚𝑎𝑥{0, 𝑟𝑖(𝑞) − 255})
2} 

(6) 

 

where, 𝑚𝑖𝑛{0, 𝑟𝑖(𝑞)} represents the portion of data truncation 

caused by pixel values below 0, and 𝑚𝑎𝑥{0, 𝑟𝑖(𝑞) − 255}) 
represents the portion of data overflow caused by pixel values 
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above 255. The contrast cost function and data loss cost 

function have been defined, then the transmittance 𝑡  is 

calculated by minimizing the total cost function 𝐸𝑇, the total 

cost function 𝐸𝑇 is defined as:  

 

𝐸𝑇 = 𝛽𝐸𝑆 + 𝐸𝐶 (7) 

 

where, β is the adjustable weight parameter, used to adjust the 

specific weight given to reducing the degree of data loss or 

increasing the degree of contrast. According to the imaging 

model we have: 

 

𝑡(𝑥, 𝑦) =
𝐼(𝑥, 𝑦) + 𝐿

𝑙(𝛼𝑟(𝑥, 𝑦) − 1)
 (8) 

 

In order to minimise data loss, we set 0 ≤ 𝑟𝑖(𝑞) ≤ 255, 

data truncation and data overflow were avoided when 

ordering, then the following limiting conditions could be 

obtained for the value range of: 

 

𝑡 ≥ 𝑚𝑖𝑛
𝑖∈{𝑟,𝑔,𝑏}

𝑚𝑖𝑛
𝑞∈𝑊

{
𝐼𝑖(𝑞) − 𝐿𝑖
−𝐿𝑖

} (9) 

 

𝑡 ≥ 𝑚𝑎𝑥
𝑖∈{𝑟,𝑔,𝑏}

𝑚𝑎𝑥
𝑞∈𝑊

{
𝐼𝑖(𝑞) − 𝐿𝑖

𝐿𝑖(255𝛼 − 1)
} (10) 

 

By minimizing t, we can maximize the 𝐶𝑀𝑆𝐸, according to 

the above qualification conditions Eq. (9) and Eq. (10), We 

define t𝑚 as the minimum value of t, The t𝑚 is given as: 

 

𝑡𝑚 = 𝑚𝑎𝑥

{
 
 

 
 𝑚𝑖𝑛

𝑖∈{𝑟,𝑔,𝑏}
𝑚𝑖𝑛
𝑞∈𝑊

{
𝐼𝑖(𝑞) − 𝐿𝑖
−𝐿𝑖

}

𝑚𝑎𝑥
𝑖∈{𝑟,𝑔,𝑏}

𝑚𝑎𝑥
𝑞∈𝑊

{
𝐼𝑖(𝑞) − 𝐿𝑖

𝐿𝑖(255𝛼 − 1)
}

 (11) 

 

We achieve a balance between data loss and contrast 

enhancement by controlling the value of b. 

 

2.3 Intensity of sunlight estimation 

 

In this paper, we are estimating the intensity of sunlight 

based on the pixel value relationship associated with a single 

image. When t tends to 0, the portion reflected from the surface 

of the imaging target is attenuated in the atmosphere and the 

detector is only able to acquire the sunlight illuminance 

portion. Therefore, the intensity of the sunlight in the thickest 

region of the clouds is used as an approximate estimation of 

the sunlight intensity. 

He et al. [15] calculated the maximum value of the pixel 

points with the brightness value in the first 0.1% of the dark 

channel image as the estimation of global ambient light, this 

method is robust, but it is not applicable to the bright regions 

in the image, and the estimation value will be larger for RGB 

colour images. The estimation method of sunlight intensity in 

this paper is proposed based on the research of He et al. Firstly, 

the minimum channel map of the thin cloud degradation 

remote sensing image is given as: 

 

𝐷(𝑋) = 𝑚𝑖𝑛
𝑐∈{𝑟,𝑔,𝑏}

(𝐼𝐶(𝑥)) (12) 

 

Figure 2(a) is the input image, and Figure 2(b) is its 

minimum channel image. Once the minimum channel image 

is acquired, it is computed using a weighted quadtree search 

approach [16] as shown in Figure 3. 

 

 
 

Figure 2. The minimum channel graph 

 

 
 

Figure 3. The quadtree method to calculate L 

 

Firstly, we divide the minimum channel map into four 

regions of the same size and calculate the score value K for 

each sub-region separately, the region with large K value is 

more suitable for estimating the solar intensity estimation, K 

value is calculated by subtracting the standard deviation of 

these pixels from the mean of the pixels in the region, then we 

have: 

 

𝐾𝑎 = (𝐷𝑎̅̅̅̅ − 𝜎𝑎
2), 𝑎 = 1,2,3,4 (13) 

 

where, 𝑎  represents the index of each region, 𝐷𝑎̅̅̅̅  represents 

the mean of the region of 𝑎, and 𝜎𝑎
2 represents the variance of 

the region of 𝑎. We select the region with the largest value of 

K as the region to continue the iteration, and then divide it into 

four regions, and this step continues until the size of this region 

is smaller than a set threshold, and the mean value of each 

channel of the thin cloud image corresponding to the final 

selected region is the estimation of the sunlight intensity 𝐿. 

When the transmittance t and light intensity L are known, 

we can get the real image by calculation, and in order to 

suppress the noise generation, the transmittance t is limited to 

the interval of (0.1-0.95), then 𝑟(𝑥) is given as: 

 

𝑟(𝑥) =
𝐼(𝑥) − 𝐿

𝛼𝐿𝑚𝑖𝑛{𝑚𝑎𝑥{𝑡(𝑥),0.1},0.95}
+
1

𝛼
 (14) 

 

where, 𝑟(𝑥) is the expected image, and α represents the ability 

of the atmosphere to scatter light per unit volume. In this 

paper, we have assigned the value of α  as 0.96, the α  can 

usually be regarded as a constant in a homogeneous region 

[17].  
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3. RESULTS AND DISCUSS EXPERIMENTATION  

 

The current image evaluation methods are divided into 

subjective and objective evaluation methods, the subjective 

evaluation methods are mainly based on human visual 

perception, and the objective evaluation methods are based on 

quantitative indicators. The subjective evaluation part of this 

paper mainly consists of comparing the experimental results 

of the method based on thin cloud background removal 

proposed by Liu et al. [5], dark channel prior dehazing method 

proposed by He et al. [15], the Multi-Scale Retinex (MSR) 

algorithm, and the algorithm proposed in this paper. We select 

some classical objective evaluation assessment indices, 

including the image entropy [18], the structural similarity 

index (SSIM) [19], the ratio of new visible edges (e) [20], and 

the fog aware density evaluator (FADE) [21]. 

 

3.1 Experimental results 

 

Due to the presence of clouds in the original thin cloud 

remote sensing images, the visibility of the scene is reduced. 

In order to verify the effectiveness of the algorithm in this 

paper, multiple remote sensing images were selected for 

comparative experimental analyses, and the image data were 

obtained from Google Earth and NASA Earth Observatory 

websites. Firstly, in order to determine the optimal value of the 

parameter 𝛽, which is used to balance contrast enhancement 

with data loss, we conducted a comparative analysis of the 

experimental effects for different 𝛽  values. The results of 

these experiments are illustrated in Figure 4. 

Different values of 𝛽  correspond to distinct processing 

outcomes. As shown in Figure 4(b), when β is set to a smaller 

value of 1, the processed image exhibits higher contrast, but 

suffers from significant loss of detail. Conversely, as shown in 

Figure 4(f), when β is set to a larger value of 10, the image 

retains more detail, but the effectiveness of thin cloud removal 

is compromised. Setting βto 6 achieves an optimal balance 

between preventing information loss and effectively removing 

haze. As a result, we maintain β at 6 across all experiments. 

 

 
 

Figure 4. Comparison of processing results using the proposed method with different 𝛽 parameters 

 

 
 

Figure 5. Comparison of experimental results between different algorithms 
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In the following experiments, according to the 

characteristics of cloud distribution and the differences in 

cloud thickness, representative remote sensing images U, V, 

Y, Z were selected, and the comparison of experimental results 

between different algorithms are as shown in Figure 5. 

Figure 5(a) are the original image, Figure 5(b) are the results 

after processing by MSR algorithm, the processing result of 

MSR algorithm show that although the contrast has been 

improved, the image brightness is too bright and there is a 

colour distortion. Figure 5(c) are the result of Liu's method, a 

part of the cloud layer in the image are removed, and the clarity 

enhancement effect is insufficient. Figure 5(d) represent the 

experimental results based on the dark channel prior method, 

there are noticeable deviations in the color and texture 

information of the ground scenery compared to the original 

image. 

Figure 5(e) present the processed results of the algorithm 

proposed in this paper. Due to the thick cloud cover in the 

original image U of Figure 5 and the alternating distribution of 

thick and thin clouds in the original image V, some residual 

clouds remain in the processed results when applying our 

method. For the original images Y and Z, the areas with thin 

clouds have been effectively improved. A subjective visual 

analysis indicates that our method outperforms the 

aforementioned methods in terms of texture information, color 

fidelity, and cloud removal. The thin cloud-covered areas in 

the original images have been effectively removed, while the 

contrast of the images has been enhanced, improving the 

visibility of remote sensing images affected by thin clouds and 

thereby increasing their application value. 

 

3.2 Quantitative results comparison 

 

Table 1. The corresponding values of image entropy, 

SSIM, e and FADE 

 

Image 
Image 

Entropy 
SSIM e FADE 

Original 

U 

V 

Y 

Z 

6.333 

6.134 

6.215 

5.961 

0.743 

0.698 

0.732 

0.712 

2.632 

0.675 

1.786 

0.356 

0.357 

0.626 

0.315 

0.289 

MSRCR 

method 

U 

V 

Y 

Z 

6.415 

6.254 

6.323 

6.372 

0.783 

0.745 

0.765 

0.756 

2.806 

0.927 

1.946 

0.463 

0.281 

0.472 

0.306 

0.285 

Liu’s method 

U 

V 

Y 

Z 

6.354 

6.403 

6.397 

6.218 

0.763 

0.745 

0.756 

0.772 

2.763 

0.654 

1.845 

0.547 

0.335 

0.607 

0.282 

0.276 

He’s method 

U 

V 

Y 

Z 

6.434 

6.207 

6.401 

6.179 

0.712 

0.746 

0.786 

0.749 

2.782 

0.765 

1.864 

0.658 

0.317 

0.608 

0.264 

0.286 

Ours 

U 

V 

Y 

Z 

6.658 

6.754 

6.801 

6.675 

0.748 

0.716 

0.763 

0.748 

2.788 

0.842 

1.985 

0.767 

0.305 

0.593 

0.256 

0.261 

 

Image information entropy, as a statistical feature of 

images, serves as one of the objective evaluation indicators in 

this paper. Pixels with varying brightness levels in an image 

exhibit distinct spatial shapes and contain differing amounts of 

information. The greater the uncertainty in the image's shape, 

the higher the amount of information it contains, and 

consequently, the greater the image's information entropy. 

Structural Similarity (SSIM) is an objective evaluation metric 

independent of image brightness and contrast, aligning with 

the characteristics of the human visual system. It reflects the 

algorithm's ability to preserve structural information in 

images. A higher SSIM value indicates a greater similarity 

between the cloud-removed image and the ground truth image. 

The ratio of newly visible edges (e) is an image evaluation 

metric used to assess the effectiveness of restoring invisible 

edges in blurred images. In this paper, it is employed to 

evaluate the changes in visible edges before and after thin 

cloud removal. The Fog Aware Density Evaluator (FADE) can 

be used to predict the visibility of blurred scenes. It predicts 

the visibility of objects in haze by measuring the deviation in 

statistical patterns between natural scene images and images 

affected by haze or fog. The smaller the value of FADE, the 

higher the visibility of the processed image. 

The experiments demonstrate that our algorithm achieves 

better performance on image structure information 

preservation, visible edge enhancement and thin cloud 

removal, the results are shown in Table 1. 

 

 

4. CONCLUSION  

 

To improve the clarity of multi-spectral remote sensing 

images, this paper proposes a thin cloud removal method 

based on a cloud physical model. By estimating the 

transmittance of the cloud layer and the intensity of sunlight in 

the thin cloud remote sensing image model, the true 

reflectance of ground objects is accurately reconstructed, 

effectively removing thin clouds from degraded remote 

sensing images. The experimental results demonstrate that the 

method proposed in this paper significantly improves metrics 

such as image entropy and SSIM. In conclusion, our method 

exhibits superior performance in both thin cloud removal and 

the preservation of image details, effectively enhancing the 

visual quality and practical utility of remote sensing images 

degraded by thin clouds. In future research, we will focus on 

removing clouds from multi-spectral remote sensing images 

under conditions of thicker cloud layers and heterogeneous 

cloud distributions using deep learning techniques. 
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