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A significant increase in 5G cellular transmission capacity might be achieved by employing 

Multi-Input Multi-Output (MIMO) antenna systems. It is highly expected that the increasing 

coverage and capacity for beyond 6G may demand the energy efficient transmission and 

design of Massive MIMO detectors (MD) systems. The likelihood of larger detection errors 

may significantly increase as payload demand rises. Due to the variable spatial resolutions 

enhancing the detection probability efficiency for multiple I/O antenna (MIMO) systems is 

a difficult task. Papers prime objective is to design the novel NOMA-Massive MIMO system 

based on the fuzzy adaptive power allocation law and to simulate effectiveness of different 

detectors. It is proposed to design an efficient Infinity-Norm detector (IND) by employing 

the alternating directions methodology using the multipliers (ADMM) convex optimization 

for massive MIMO system. As a novelty the tweaking of MMSE estimate is proposed at the 

IND-ADMM initialization. This tweaked estimate has the potential to improve beam-

forming performance and background noise separation, hence increasing detection accuracy. 

Major advantage of method is its fast speed or convergence rate. This paper contributes to 

validating and expand NOMA-Massive MIMO system using adaptive NOMA power 

allocation and IND-ADMM detector design for higher capacity detection. It is proposed to 

investigate the error rates for different MIMO sizes and different constellation orders of M-

QAM. The new formulation of adaptive reduced constellation order (RCO) is proposed as 

the density of users and massive MIMO channel size is increased. The performance of Box 

based detectors is compared for seven MIMO detectors as matched filter (MF), MMSE, 

Neumann-series approximation, Gauss-Seidel (GS), conjugate-gradient (CG), and proposed 

RCO-ADMIN detectors. The Monte Carlo (MC) simulation of MIMO performance is 

evaluated using detection error probability and execution times for these detection 

techniques. ADMM based IND detectors are faster and offer significant improvement in 

capacity with proposed iterative approach and BER more than 100 times at 5dB less SNR. 
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1. INTRODUCTION

Future 5G wireless communications will use a multiple-I/O 

(MIMO) antenna system with a significant number of trans-

receiver antennas. Beyond 5G and 6G, cellular technologies 

have various prospects for expanding MIMO antenna systems 

in the future [1]. The majority of early study focuses on 

expanding the reach and elevating the energy effectiveness of 

MIMO transmission setups. For next-generation 6G systems 

of communication, to satisfy consumer demands at speed with 

better quality of services (QoS) Massive-MIMO (M-MIMO) 

technique are essentially required. A large upstream receiver's 

various transmitters and radio frequency (RF) chains rapidly 

increased the degree of complexity of M-MIMO detectors [2]. 

Discovering best M-MIMO detection method with the lowest 

level of difficulty with the greatest efficiency has therefore 

gained a lot of attention last decades. 

Therefore, the scope of the paper is to investigate and design 

the efficient M-MIMO detector. In recent times Non-

Orthogonal Multiple Access (NOMA) has emerged significant 

potential to enhance the capacity of existing cellular systems. 

The power allocation and number of users to be adopted is a 

big challenge as the system goes to massive M-MIMO. This 

paper has proposed a mathematical power adoption law 

corresponding to the random user’s distances and the M-

MIMO sizes for the NOMA implementation. 

1.1 Problem statements 

Unlike conventional orthogonal system, in NOMA several 

users can share identical resources by using varying power 

levels sharing. It requires sophisticated power allocation 

techniques to maximize system performance employing this 

approach. The main restriction on the NOMA system's design 

is transmitter's fixed and limited power. Abbreviations and 

Nomenclatures used are given in the Table 1. 
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Table 1. Abbreviations along with nomenclatures used in the study 

 
Abbreviations Abbreviations Notations 

AWGN Additive White Gaussian Noise M-MIMO M-MIMO 𝑀 = 𝐿 Constellation Order 

BPSK Binary-Phase Shift-Keying IND IND d 
NOMA user distance 

vector 

BER Bit Error Rate NOMA NOMA a 
NOMA Power scaling 

factor 

BOX-

DCD 

box-constrained dichotomy 

coordinates descending 
FDMA Frequency Division Multiple Access y MIMO receive vector 

MIMO Multi-Input Multi-Output QPSK Phase Shift Key Iteration 
Monte Carlo Simulation 

Titration count 

BS Base Station QAM Quadrature Amplitude Modulation Itr ADMIN loop titrations 

EE Energy Efficiency QoS Quality of Service 𝐵𝐸𝑅𝑆𝑁𝑅𝑑𝐵
 Bit Error Rate for SNR 

ZF Zero Forcing RCO Reduced Constellation Order p 
Lop count for order of 

QAM 

MF Matched Filter MMSE Minimum Mean-Square Error u An integer for SR loop 

SCCC 
Serially Concatenated 

Convolutional Code 
SIC Successive-Interferences -Cancelation 𝑏𝑖𝑡𝑘 

𝑘𝑡ℎ 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡 Data 

symbol 

ADMM 
Alternating directions 

methodology multipliers 
OIMF-SIC Ordered Improved Multiple Feedback SIC 𝐻1,2 

Channel realization 

Matrix for NOMA 

5G 5th Generation cellular 6G 6th Generation cellular S 
Number of QAM 

symbols 

QR Quadratic Regularization CG Conjugate Gradient 𝑆𝑅 
Sum rate for NOMA-

MIMO 

MU Mobile Unit CF Cell Free Mt Number of UE antennas 

MLD Maximum Likelihood Detector CSI Channel State Information N0 Noise per receivers 

 GS Gauss-Seidel NSA Neumann-series approximation Nr Number of BS antennas 

LTE Long Term Evaluation SNR Signal to Noise Ratio D Diagonal matrix 

DL Down Link AID Approximate Inversion Detectors A 
Approximate invasion 

matrix 

MIA Matrix Inversion Approximation SER Symbol Error Rate 𝑋ℎ 
Detected vector for 

evaluation 

SD Sphere-Decoding UOWC Underwater-optical wireless comm. T Power allocation t 

DOA Direction-Of-Arrival LASSO Low absolute shrink select operator C Chanel Capacity 

 

The concept of adaptive power allocation consists of 

dynamically modify power levels in response to current 

channel data. Therefore, paper proposed to design novel 

NOMA-Massive MIMO system based on fuzzy adaptive 

power allocation law and to simulate effectiveness of different 

detectors. The highly massive beyond 6G huge 64 to 256 

antennas transmitting structure is considered with large 

number dense receiver diversity 16 to 256 users, antenna for 

M-MIMO system detection. Since NOMA users are randomly 

placed in the network thus it’s a big challenge to efficiently 

allocate power to users. The theoretical background is to 

underlying proposed adaptive power allocation based on 

principles of ratio of user’s distance from base station. It is 

assumed to allocate less for closer users and more for distant 

ones. This paper proposed a mathematical formation for 

achieving the solution. 

Selection of the suitable accurate, mathematical model for 

MD is required for designing the effectiveness of massive 

MIMO systems, M-MIMO is indeed an extension of the 

traditional MIMO frameworks by combining the antennas 

together around the base station (BS) transmitter and mobile 

unit (MU) receivers for improve the capabilities of the 

communication systems. The abbreviations used in 

manuscript are shown in Table 1. M-MIMO has become the 

next generation technology used in 5G LTE, a radio interface 

for the physical layer for cellular systems that allows 

transmission bandwidths of 20MHz or more. Designing the 

best choice of MD for such a system's is still an open field of 

near research. Adopting IND is highly advantageous since 

they provide superior bit error rate (BER) performance over 

linear detectors, particularly for high-interference settings. 

These IND detectors may offer less computation cost and be 

more robust than linear detectors. Another advantage of IND 

is that they may be scaled to a massive number of antennas 

more readily. 

Theoretically, the design of IND represents the data to be 

analyzed as a vector, infinity norm is determined as the 

maximum absolute value of the data vector. Another name for 

the IND-ADMM is ADMIM, which is an iterative detection 

technique. The advantage of ADMM-based techniques over 

conventional MIMO detection algorithms is that they can 

handle MD objective functions for M-MIMO structures more 

efficiently. This has been noted that conventional detectors by 

Chang and Chang [3], were computationally complex. But the 

IND detector can be implemented on multi-processing 

hardware due to its fast convergence. 

 

1.2 Assumptions 

 

To make mathematical models used for MIMO detector 

designs simpler, the following assumptions are made. 

▪ The channel state information and data signal are 

randomly generated. It is assumed that trans-

receiver has perfect info of channel. 

▪ Channel is assumed to be flat. 

▪ The additive white Gaussian Noise (AWGN) 

channel noise model is assumed. 

▪ Total BS transmitting power is assumed to be fixed. 

▪ Massive MIMO assumes using of numerous transes 

receive antennas which is futuristic.
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1.3 Contribution of work 

 

The purpose of this work is to design and test an efficient 

IND using ADMM multipliers based convex optimization for 

massive MIMO system capacity enhancement. This research 

contributes to validate and expand MIMO system to the 

concept of NOMA-Massive MIMO for higher capacity 

detection. The capacity improvement based on NOMA-

MIMO system is evaluated. The performance is examined 

based on the error rates calculated at the receiver end after the 

detection of true information. The research contributed to 

adopt the reduced constellation order (RCO) with respect to 

extending capacity and MIMO dimensions. The performance 

of Box based detectors is compared for seven MIMO detectors 

as matched filter, MMSE, Neumann-series approximation, 

Gauss-Seidel (GS), conjugate-gradient (CG), and RCO-

ADMM detectors. The execution time performance is also 

assessed for the various detection methods, final and major 

contribution of paper is to design the adaptive NOMA power 

allocation law for ever increasing MIMO sizes. The power 

allocation parameters are adopted for the random location of 

users in the system. 

 

 

2. NOMA-MASSIVE MIMO CHALLENGES 

 

NOMA-Massive MIMO is one of the exciting technologies 

that have the ability to greatly increase cellular network 

spectral efficiency and capacity. Massive MIMO use many 

antennas to provide beam-forming with spatial multiplexing, 

whereas NOMA employs changing levels of power to allow 

different users to share the same spectrum resource. 

Combining the benefits of NOMA and Massive MIMO may 

significantly improve the spectral efficiency and capacity. 

Besides these advantages there are various issues that must be 

overcome before NOMA massive MIMO can be extensively 

used. Among these major challenges are shown in the cluster 

diagram in Figure 1. 

As clear from Figure 1 that major challenges are error 

performance improvement, efficient channel estimation, 

power allocation, and the efficient and fast MIMO detection 

designs. The adaptive power allocation may require additional 

hardware in the network thus leads to more power 

consumption. This paper manly focus on the NOMA power-

allocation, and effective massive MIMO detection based on 

error performance evaluation. It is highly required to enhance 

the error rate performance of MD. Handling channel 

interference is also a big issue. 

 

 
 

Figure 1. Various challenges of NOMA-MIMO 

communication system 

 

 

3. REVIEW AND CHALLENGES 

 

Lot of recent research has been centered across designing 

an efficient detection method for the M-MIMO 

communication systems. This section has presented the review 

of detection methodologies, respective challenges, and 

limitations. 

 

3.1 Classification of MIMO detection techniques 

 

A survey of M-MIMO based detection techniques has been 

presented by Quan et al. [1]. They classified various detection 

techniques. The most frequently used MIMO detection 

techniques are classified in Figure 2 opted for decreasing the 

receiver side error rates to improve detected signal quality. 

This paper is aimed to consider linear detectors to avoid 

excessive computation time. 

 

 

 
 

Figure 2. Classification of the several MD methods used in this study 
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Quan et al. [1] has studied and introduced a rectangular M-

QAM symbol detection that uses BOXDCD, a combination 

de-regularized and box-constrained based dichotomous 

coordinates descending method. De-regularization approach 

has increased the energy of the solution. Box constraint forces 

de-regularization to take place within the defined rectangular 

border. The mathematical results show that their box detectors 

outperform on state-of-the-art detection approaches 

significantly. According to Borges et al. [2], telecoms have 

evolved into a crucial component of society as a whole 

therefore the need for trustworthy and high-performance 

systems has emerged as the primary goal for researchers and 

engineers. As indicated by cutting-edge research, massive 

MIMO is the fundamental technology for 5G, 6G and beyond. 

Amongst the major benefits, in addition to better energy 

efficiency (EE), including broad spatial multiplexing along 

with increased diversity. Chang and Chang [3] have designed 

the Maximum Likelihood (ML) based MIMO detection it 

works significantly good at lower signal to noise ratio (SNR) 

values. 

Sufyan et al. [4] presented the good extended survey of the 

various challenges and technologies used for the 5G and 

beyond wireless networks. Zhang and Haenggi [5] stated that 

performance of successive interference cancellation (SIC) in 

wireless networks with arbitrary fading distribution and 

power-law path loss is studied using a unified framework in 

this paper. The efficiency of SIC is analytically described as a 

function of numerous system variables. 

The findings imply that particularly in networks with high 

dimensions and low path loss exponents, the marginal value of 

allowing the receiver to successively decode k users decreases 

extremely quickly with k. However, SIC is especially helpful 

when users are grouped together near the receiver and/or 

extremely low-rate codes are applied. 

Liu [6] presented a thorough overview of the various 

designs and VLSI hardware architecture for MIMO system 

design in their paper. To reduce computational complexity, 

these designs employ cutting-edge truncated GS method, and 

ADMIN techniques. To enhance hardware architecture, they 

employ iterative processing units and pipeline designs. These 

techniques have enhanced MIMO performance in various 

ways and to various degrees. Bjørn and Proakis [7] had taken 

MIMO wireless communication systems into account, by 

using a number of transmit and receive antennas to boost data 

rates and achieve diversity in fading multipath channels. They 

first concentrate on an encoded system and determine the best 

and worst receiver architectures for it in both inter symbol 

interference-free and Rayleigh fading. Bjørn then took into 

account coded MIMO systems. The code and the multipath 

channel serve as the constituent codes in what is known as a 

serially concatenated convolutional code (SCCC) for the 

coded system. The MIMO antennas enable increased spectral 

efficiency for a given total transmit power, according to 

Abdaldaim [8], by adding extra channels, the system's capacity 

can be enhanced. In this article, MIMO signal detection was 

examined and discussed in context of minimum mean square 

error (MMSE) equalizer and the zero forcing (ZF) equalizer 

used in the receiver design to lower the average bit error rate 

(BER) in Rayleigh flat-fading channels. But with increasing 

number of antennas, it is still a challenge to improve BER. 

Mandloi et al. [9] have proposed to design the near-optimal 

MIMO detection, by using an improved multiple feedback-

SIC (IMF-SIC) approach and an ordered IMF-SIC (OIMF-

SIC) algorithm. The SIC detector's multiple feedback (MF) 

strategy, in particular, is based on idea of the shadow region. 

If a decision is made in the shadow region, multiple nearby 

constellation points are used in the decision feedback loop that 

comes after the SIC technique, and the best candidate symbol 

is chosen using the maximum likelihood cost. The only 

limitation of method is number of iterations makes it slow for 

real-time uses. Obakhena et a. [10] have outlines the main uses 

for Cell-free (CF) mMIMO widely used for 5G and the 

anticipated 6G wireless networks. An introduction to M-

MIMO solutions, including cellular massive MIMO, network 

MIMO, and CF-mMIMO, is given first, with an emphasis on 

the application domains and accompanying difficulties. CF-

mMIMO architectures, design aspects, and system modeling 

are all thoroughly discussed. Nguyen et al. [11] in their 

research provided low-complexity multiuser detection 

techniques for huge MIMO systems based on Variational 

Bayes (VB) inference. They first look at the massive MIMO 

detection issues with perfect channel state information (CSI) 

at the receiver and demonstrate that a traditional VB technique 

with known noise variation produces subpar detection 

performance. 

Manju and Ganesh [12] have presented an extended review 

of various MIMO detectors and their performance measures. 

Praveena1 et al. [13] have simulated results of SIC based 

MIMO-SC-FDMA detector. Shows that specified algorithm 

outperforms traditional detection methods and achieves 

greater performance with less complexity when the MIMO 

detector work is compared to the other approaches. Divya et 

al. [14] stated that massive MIMO demands higher quality of 

service (QoS) systems for the next-generation connectivity. In 

a MIMO uplink receiver with numerous antennas for wireless 

optical communication, the complexity of symbol detectors 

increased considerably due to (RF) chains because there are so 

many antennas and radio frequencies. As a consequence, 

researchers have created the MMSE-based most effective 

massive MIMO detection approach unique to the scenario. 

Albreem et al. [15] presented the survey of the various MIMO 

detectors using the local search, belief propagation, and the 

faster box based detectors and stated that these are near-

optimal detectors. Suh and Barry [16] identified scalar list 

detection as a crucial component of the K-best detector and 

suggested a low-complexity, effective implementation of the 

scalar list detector for M-ary QAM. Our proposed slicing K-

best detector is obtained by integrating the slicing list detector 

into the K-best framework. Dala Pegorara Souto et al. [17] 

presented a review of the various extremely large MIMO 

systems detection methods including the Intelligent Reflecting 

Surfaces (IRS), and CF-mMIMO which works better in 5G 

environments. 

Rekkas et al. [18] provided an overview of machine learning 

(ML) techniques as well as a current analysis of ML methods 

used in 6G wireless communication systems. Supervised, 

unsupervised, and reinforcement strategies are among these 

procedures. Additionally, they go through unresolved 

problems with ML for wireless communications in general and 

for 6G networks in particular, as well as some possible future 

trends to spur more study in this subject. Lee. [19] had used 

dropping strategy, which eliminates the IoT devices that 

consume a lot of power, to try to improve the performance of 

Massive MIMO with Massive IoT connectivity. The spectrum 

and EE of Massive MIMO systems have been improved by a 

number of scheduling and power control approaches. Tiba et 

al. [20] proposed to adopt deep neural networks (DNNs) used 

for designing the M-MIMO ADMM based detection approach 
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as proposed in their works to overcome the existing limitation. 

Utilizing an unfolding technique, it gets the capacity to 

compute the penalty factors. There is also a suggestion for a 

detector with reduced computing expense. The offered 

methods are capable of handling the higher-order modulated 

signals. Mathematical findings are provided to demonstrate 

the performance of the approaches suggested with respect to 

the previously published studies. 

 

3.2 Review of advanced detectors 

 

Kumar et al. [21] proposed to evaluate the unique hybrid 

method for 16×16, 64×64, and 256×256 MIMO architectures. 

There hybrid methods include Quadratic regularization QR-

maximization likely detection (QR-MLD), QR-MMSE, QR-

ZF equalization (ZFE), and QR-beam formation (QR-BF). 

With negligible complexities, the combination of methods 

achieved an effective bit rate of error (BER) of 10-3 with a 

2.9dB SNR. But execution time and complexity is more. Arun 

Kumar and Gupta [22] presented a book on the beyond 5G 

technologies. They have discussed and described an in-depth 

examination of the main methods, difficulties, frequency 

distribution, initiatives, and current 5G prospects. The current 

report provides a thorough investigation into the problems and 

advancements associated to the rollout of 5G. 

Various conjugated gradients (CG) approaches were 

proposed as in studies [23-25]. Labed and Aounallah [23] 

work proposed a CG based on sequential over-relaxation 

(SOR) approaches to build a new sequential approach that 

circumvents the calculation problem associated with matrix 

invert. They proposed a method for uplink mMIMO 

identification is based on the two iteration techniques' joint 

waterfall architecture. An approach with consistent efficiency 

and minimal computing complexity was produced by first 

applying and fine-tuning the CG technique for the first the 

solution, then using the SOR approach in the last iterations for 

terminals tasks. Wei et al. [24] has studied and examined large 

multiple-input multiple-output (MIMO) identification using 

based on models’ methods of deep learning. Large MIMO 

networks offer greater coverage, range, and spectral 

performance than traditional MIMO devices. Regretfully, the 

gains in efficiency of computation are substantial in exchange 

for these advantages. Ouameur and Massicotte [25] created a 

massive MIMO detector design approach employing a deep 

expanded CG based structure. They’re suggested CG method 

blends the benefits of offering deep instruction with an 

approach based on models for enabling the easy integration of 

domain expertise into efficient variable estimation. But the 

low time of execution is still a challenge for CG based 

methods. 

Various Gauss-Siedel (GS) based MD was proposed in the 

studies [26-28]. Torres et al. [26] proposed to examine the 

integration of the SMF method to limited bandwidth and 

chirping sounds embedded in white noise, having been 

initially introduced by Torres et al. [26] as in both 

identification and estimate situations. Data depicted that the 

SMF is a workable method for signal recognition and estimate 

in moderate to elevated ratios of signal to noise (SNR) values, 

and it might be used in apathetic, actual time signal 

identification and estimate situations. Yao et al. [27] had 

proposed to model the neural detector system, called Blocking 

the Gauss-Networks (BGS-Net), which is based upon the 

Gauss iterative technique. This reduces the high cost of 

concurrent execution of the classic GS iteration method. By 

splitting up a huge inversion of a matrix into smaller matrix 

inversions of the and thus may decrease complication. Chataut 

et al. [28] designed the Symmetry Sequential Overlap Relax 

based Gauss-Seidel (SSORGS) approach as a novel alternative 

of the GS method proposed in this work. The suggested 

approach will deal with the difficulties in signal detection 

brought on by enormous MIMO technology. Additionally, we 

introduce a new Symmetric Sequential Over relax 

preconditioned (SSOR) technique and a starting strategy 

depending on the immediate channel conditions of the client 

and the starting location, which further improves the originally 

proposed method's rate of resolution. 

Gustafsson et al. [29] explained that the level of difficulty 

in massive scenario is not less as typically claimed, since the 

difficulty of accurate techniques is nearly identical when three 

variables are utilized for the Entire sequence. Higher analogy, 

the second popular defense of the Newman series estimation, 

is true. The authors Shao and Zu [30] proposed an innovative 

joint Newtonian repetition and Friedrich serial technique to 

accelerate resolution. The Wiener series is reconstructed using 

the first repetition result of the Newtonian repetition method. 

They then construct an extremely likely resolution condition 

that can provide helpful suggestions for real-world large 

MIMO networks. 

 

3.3 Review of box based detectors 

 

The box based MIMO detectors are most frequent in recent 

times and are used because of their faster convergence time. 

Many Box detectors were proposed in literature and reviewed 

sequentially in this section. Quan et al. [1] studied a detection 

method for square m-ary (M-QAM) symbols based on 

combined de-regularized and box-constrained dichotomy 

coordinates descending (BOX-DCD) with repetitions were 

presented. The solution's efficiency was maximized using de-

regularization. The de-regularization of the box-constraint is 

capable of comparing the outcome to linear the square border 

detectors only. 

Shahabuddin et al. [31] provided a new method for 

detecting data and appropriate VLSI architecture for an 

enormous multiple users (MU) radio transmitter that combines 

multiple input and multiple output (MIMO). Our technique, 

called ADMIN, implements infinite norm restricted 

equalization using an alternate directional approach to 

multiplier (ADMM). In situations where the total amount of 

users is lower than the number of antennae in the BS, the 

iteration ADMIN method works better than linear sensors 

detectors. Gebeyehu et al. [32] enhanced the bit error rate 

(BER) and other performance indicators like gain, efficiency 

of energy, and spectral effectiveness. For identifying the 

message that was sent signal, intricate analysis is needed due 

to an enormous amount of users and antennas. Transmission 

communication signal identification is a problem in huge 

MIMO systems. Numerous techniques for detection, such as 

Matching Filter (MF), CG) GS, ZF, MMSE, and optimized 

coordinates descending (OCD), were developed in response to 

these issues. Shahabuddin et al. [33] employed the MIMO 

networks for the small-scale businesses for efficient MIMO 

detection. In this research, they analyses matrix breakdown 

strategies for these systems. For M-MIMO arrangements they 

have presented the computationally demanding nature of 

nonlinear detecting strategies based on QR, Cholesky, and 

LDL decomposition methods. They contrasted them with the 

most advanced huge MIMO identification methods based on 
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approximation inversion. 

Yang et al. [34] offered an iterative identification approach 

that uses training from deep artificial neural networks (DNNs). 

Using the potent data produced by DNNs, we first present a 

constrained optimization-based technique for efficiently 

detecting repetitive soft output data. They suggested a way to 

alter the method's iteration variables, which provides great 

resilience and quick resolution. Sulttan [35] proposed an 

iterative decode approaches have contributed to the reduction 

of complication and enhancement efficiency (e.g. BER) in a 

variety of electronic communication networks over the past 

decade. The primary technology for improving and achieving 

large-speed, rapid data transfer, enhanced dependability, and 

penetration in mobile communications are MIMO methods. 

Low complication systems are needed for detecting in 

contemporary mobile phone networks since excessive 

computation by the CPU consumes more electrical power and 

reduces mobile adaptability. Seethaler and Bolcskei [36] 

proposed a cost savings come from a decrease in the 

semiconductor area needed for metrics computing and the 

circuit's critical pathway length, but they also follow from a 

decrease in computing difficulty via IND based designs 

integration to Sphere-Decoding (SD), 

Liu et al. [37] proposed a solution to the single-input multi-

output (SIMO) characterization for underwater optical 

wireless communication (UOWC) to prevent deep 

discoloration, Berceanu et al. [38] proposed downlink MIMO-

OFDM technology described in this research uses its assets to 

satisfy the needs of multiple concurrently engaged users. A 

MMSE sensor is used at the customer service, and then a SIC 

is used for noise reduction. Demir and Björnson [39] address 

one-bit quantized and generalized additive equipment defects 

in huge multiple-input multiple-output (MIMO) devices for 

the detection of signals. Firstly, they introduce the generalized 

linear transmitters built around Bussgang breakdown and 

quantization-unawareness for the device impairments model 

under consideration. Chataut and Akl [40] have focused on 

enormous MIMO systems and provide an extensive review of 

the essential technologies that are needed for both 5G and 6G 

systems within this article. In addition to discussing some 

cutting-edge mitigation methods, we cover all the basic 

problems with contamination of pilots, channels estimating, 

coding, client planning, energy conservation, and signals 

identification in an enormous MIMO system. Tiba and Zhang 

[41] have gone beyond the restrictions and presented two deep 

neural networks (DNN)-based sensors in this operate: (1) to 

achieve greater efficiency, we create a DNN design that can 

effectively approximate adjustable punishment settings. (2) 

Without actually calculating the ADMM parameter revisions, 

they build a sub-DNN structure that is capable of estimating 

them. Zhang et al. [42] have recently worked on dense 

direction-of-arrival (DOA) estimates for MIMO radar, 

particularly on an approach that utilizes the traditional lowest 

absolute shrinking and selection operator (LASSO) estimate. 

Although it adds a new user variable, the alternating-direction 

approach to multiplication (ADMM) is a useful technique for 

resolving this issue. 

The main difficulty of the selection and investigation of 

appropriate M-MIMO detection algorithms is to minimize the 

system's BER. It is sometimes necessary to utilize a rapid but 

efficient detection approach, particularly in real-time 

broadband applications. As a result, this research addressed 

the issue of underestimating the effectiveness of lineal 

detection algorithms considering their execution times. 

4. MIMO DETECTION METHODOLOGIES 

 

The paper discusses M-MIMO framework assuming a user 

terminal having 𝑀𝑇  multiple antennas is served by a BS 

having 𝑀𝑅  antenna arrays, where, 𝑀𝑅 >𝑀𝑇 . Assumed to be 

taken from a set Sc in a rectangle M-QAM\PSK complex 

symbols in which q as a positive integer q=l𝑜𝑔2 (M), is a 

transmission symbols vector S. The received signal matrix y, 

which is complex, may then be expressed as: 

 

𝑦 = 𝐻𝑠 + 𝑣 (1) 

 

where, y∈ 𝐶𝑀𝑅  is the signal matrix received, x∈ 𝐶𝑀𝑇  is the 

transmitted input matrix, H∈ 𝐶𝑀𝑅𝑥𝑀𝑇 is the channel state info 

matrix (CSI), and v∈ 𝐶𝑀𝑅𝑥𝑀𝑇  is the additive AWGN noise. 

Data transmitted over noiseless channels may be defined as 

the: 

 

𝑥 = 𝐻𝑠 (2) 

 

System representation of M-MIMO DL and mathematical 

signal flow is represented in Figure 3. It is clear from the 

Figure that our prime concern is to model the MIM with larger 

BS antennas and highly dense users in the network considering 

beyond 6G scenario. 

 

 
(a) MIMO DL system model 

 

  
(b) Mathematical MIMO signal flow diagram 

 

Figure 3. Channel formation process for the M-MIMO DL 

system 

 

The challenge of current detectors is to receive the vector 

( 𝑦 − 𝐻𝑥 ) free of distortions and channel noise. Several 

equalizers or detection techniques were previously suggested. 

Nonlinear detectors are quicker than linear detectors, which 

are the most widely used. This report presents a comparison of 

these detectors. 

 

4.1 Maximum likelihood detector (MLD) 

 

Mathematical representation to given channel may be 

provided via MLD as: 

 

xMĽ = 𝑎𝑟𝑔 min
𝑥∈𝑋(𝑁𝑡 ,1)

‖𝑦 − 𝐻𝑠‖2 (3) 

 

where, 𝑋(𝑁𝑡 ,1)  represents the used integer numbers of 

transmitted symbols for M levels of PSK\QAM constellations 

orders. In the ML solution message 𝑠 is chosen that minimizes 

the distance among the received signal as well as the 

hypothesized noise-free transmission Hs. However, their 
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computing complexity in 𝑁𝑡  is exponential in nature, making 

it exceedingly costly whenever the number of antennas gets 

massive. 

 

4.2 Matching Filter (MF) 

 

The MF interprets interference from different sub-streams 

as only noise when A=H is set. The estimated amount of 

received signal using MF is provided by: 

 

𝑥𝑀𝐹=𝐻ℎy (4) 

 

where, 

 

𝐻ℎ = 𝐴 = (𝐻ℎ𝐻)−1𝐻ℎ  (5) 

 

However, when compared to more advanced detectors, MF 

performs worst for a large number of users. 

 

4.3 MMSE detector 

 

A most recently developed modulation scheme uses a 

minimum mean square error (MMSE) MIMO detector with 

low complexity. It is the linear detector algorithm that is used 

most often. By using MMSE detection, the Bayesian estimator 

in the continuous linear detection mechanism can be employed 

to improve efficiency [3]. It is expressed numerically as 

follows: 
 

𝐸(𝑥
𝑦⁄ ) = (𝐻 𝐻ℎ + (

σ2

Ex
) I)

−1

(𝐻ℎ𝑦) (6) 

 

where,  Ex  indicate energy of transmitted symbols' 

enlargement. Consequently, the MMSE reduction problem is 

written as: 

 

xMMSĚ = 𝑎𝑟𝑔 min
𝑎∈𝑥𝑚

‖𝐸(𝑥
𝑦⁄ )

𝑖
− 𝑥‖

2
 (7) 

 

The MMSE algorithm is considered to be the fastest 

amongst all linear detectors. 
 

4.4 Gauss-Seidel (GS) 
 

The linear channel problem (as defined in Eq. (1)) must be 

solved using the Gauss-Seidel (GS) algorithm, often known as 

the sequential displacement approach. The equalization matrix 

A is sub divided by the GS technique into three components: 

a diagonal matrix (D), a matrix with an upper triangular 

shape 𝑈𝑡, along with the lower triangular matrix 𝐿𝑡, with the 

formula being A=D+𝑈𝑡 +𝐿𝑡 . Where the actual matrix A is 

given as: 

 

𝐴 = (𝐻 𝐻ℎ + (
𝑁0

Ex

) 𝐼𝑈) (8) 

 

The D is a diagonal matrix and is represented as: 

 

𝐷 = 𝑑𝑖𝑎𝑔(𝐴) = [

𝐴11

𝐴22

𝐴𝑁𝑁

] (9) 

 

If proper initialization is taken into account, the GS 

technique converges swiftly. The GS algorithm's predicted 

signal is expressed as: 

 

𝑋𝑛
ℎ = (𝐷 − 𝐿𝑡)−1(𝑦𝑀𝐹+𝑋𝑛−1

ℎ 𝑈𝑡) (10) 

 

4.5 Conjugate Gradient (CG) detector 

 

The conjugate gradients (CG) technique offers another 

approach for solving linear equations with n iterations. The 

signal generated by the CG method is denoted as: 

 

𝑋ℎ(𝑛+1)
= 𝑋ℎ𝑛

+ 𝛼𝑛𝑝𝑛 (11) 

 

where, 

 

𝛼𝑛 = 𝑛𝑜𝑟𝑚(𝑝)2 (𝑝′⁄ 𝐴𝑝) (12) 

 

where, the exponent matrix product is defined as: 

 

𝑒 = 𝐴𝑝 (13) 

 

4.6 Neumann Approximation Series (NAS) 

 

Neumann series (NS) based solution is well suited for huge 

MIMO systems; the NS has been suggested for carrying out a 

Matrix Inversion Approximation (MIA). The NS expansion is 

used to simulate the inversion of matrix using an array of 

matrices-vector multiplications, that are cheap to implement 

using hardware but has a delayed convergence. An iterative 

approximation of the K-term Neumann series, as matrix 

inversion solution, is defined as follows: 
 

𝐴𝑛
−1=𝐴𝑛−1

−1 +(-(𝐷−1𝐿𝑡)𝑖𝑡𝑟 ∗ 𝐷−1) (14) 

 

The final solution is given as: 

 

𝑋ℎ = 𝐴−1𝐻ℎ*y (15) 

 

The time and BER performance of the NS based methods 

are questionable. 

 
 

5. DESIGN OF ITERATIVE ADMM-BASED IND 

 

The IND is a well-known box-constrained MIMO detector 

[31-35]. An optimization algorithm called ADMM breaks 

down complex problems into simpler sub problems that are 

easier to tackle. 

The optimization problem is defined as: 

 

𝑚𝑖𝑛
𝑠.𝑡.  𝑋  €  𝐶

𝑓 (𝑥) (16) 

 

With a 𝑋€𝑅𝑛  the convex optimization problem can be 

written as ADMM form as: 
 

for 𝑋 = 𝑍 min
X  €  C

[𝑓(𝑥) + 𝑔𝐼𝐹(𝑧)] (17) 

 

where, 𝑔𝐼𝐹 is indicator function? The suggested detector with 

an IND (∞-norm) basis makes use of the complex valued 

vector x's component-wise ∞-norm. IND aims to maximize the 

solution values as: 

 

‖𝑥‖∞˜ = max
𝑖

[max
𝑖

[𝐻(𝑥𝑖), 𝑦(𝑥𝑖)]] (18) 
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The BOX constrain is considered for IND as ‖𝑥‖∞ ≤ 𝜌 

with box of length 2 𝜌. This box constrain allows reducing the 

problem, to convex optimization as: 

 

𝑥˜𝐵𝑜𝑥 = arg min
𝑥∈𝑅𝐶𝑂

𝑖
‖𝑦 − 𝐻𝑥‖𝑁

𝑀 
 (19) 

 

where,  𝑅𝐶𝑂
𝑖 , is reduced constellation order of ith QAM 

symbol (𝑆𝑖). Thus the Eq. (17) can be re modified as: 

 

𝑥˜𝐵𝑜𝑥 = arg min
𝑥∈𝑅𝐶𝑂

𝑖
(
1

2
(𝑦 − 𝐻𝑥)𝑁

𝑀
˜ 

+ 𝑔𝐼𝐹(𝑧)) s, t,

x = z 

(20) 

 

Expand the Eq. (20) using augmented Lagrangian 

expansion gives: 

 

ℒ𝛽(x, z, λ) =
1

2
(𝑦 − 𝐻𝑥)𝑁

𝑀 + 𝑔𝐼𝐹(𝑧)

+
β

2
[𝑧 − 𝑥 − λ] 𝑀

𝑀 

(21) 

 

Taking derivative and equating Eq. (21) to zero gives the 

solution of ADMM optimal augmented Lagrangian solution 

for x and z as: 

 

𝐻ℎ(𝑦 − 𝐻𝑥) − 𝛽(𝑧 − 𝑥 − 𝜆) = 0 

 

Which leads to x solution. 

 

𝑥˜ = [𝐺−1(𝑥𝑀𝐹 + β(𝑧 − λ))] (22) 

 

where, 𝐺 = 𝐻ℎ𝐻 + 𝛽. 𝐼 and the variable 𝑥𝑀𝐹  is matched filter 

represented as 𝑥MF=H’y. it is to note that initializing z = λ =
0 may leads to MMSE inital solution. 

This paper proposed to use the energy scaling concept based 

on iteratively updating the variables associated with Monte 

Carlo simulation for enhancing the performance of the existing 

ADMIN based MIMO detection methods. A well-known 

numerical method for addressing a broad range of constrained 

convex and non-convex optimization issues is the ADMM 

methodology [12]. It functions by dividing the initial convex 

optimization challenges into smaller, more manageable vector 

problems. 

ADMM solves the optimization problem as given in (20) 

for communication systems using the comparable Algorithm 

1: the major advantage of ADMIN is its speed of convergence 

and efficiency at higher SNR level. In this paper, an efficient 

concept of reduced constellation order (RCO) is proposed for 

Massive MIMO along with proposed modified iterative 

ADMIN detectors. These all modifications may offer use of 

ADMIN detectors at low and high SNR values too. The energy 

is scaled 3 times and titration count 𝑖𝑡𝑟𝐿  is scaled to 5. 

The IND is iterated until a stopping requirement is satisfied 

the ADMM algorithm modifies the estimation of the sent 

symbols every iteration, depending on the received signals and 

limitations The suggested approach founded on ADMM and 

IND has several advantages, including increased 

dependability, improved spectrum efficiency (SE) and EE, 

improved geographical variety, and more. 

 

Algorithm 1. Modified Tweaked ADMM based IND 

Detector: ADMIN 

Inputs: ← received vector 𝑦, CSI matrix 𝐻, noise estimate 

𝑁0 and energy 𝐸𝑠 

1: Generate initial MMSE estimate 

2: β=𝑁0𝐸𝑠
−1s ← set energy tweaking scale as 3 fold for 

improvement 

3: G=Hh H+β 𝐼𝑈  

4: G=L d L H 

5: L˜=L−1, D˜=D−1 

6: Initialization of loop parameters 

7: z=0 ; 

8: λ=0 and solve for 

9: 𝑥MF=H’y: as matched filter estimate 

10. Iterate over Detection loop 

11: for i=1:1: 𝑖𝑡𝑟𝐿  ↑ have scaled up to 5 

12: xˆ←Lt H D t  Lt (𝑥MF+β(z−λ)) 

13: Update z as: zˆ←projCO (xˆ+λ, α) 

14: λ←λ−γ(zh−xh) 

15: z←zh 

16: end 

17: output: xh  

 

Additionally, the proposed system seeks to overcome the 

limitations of hardware cost, energy usage, as well as signal 

detection-related difficulties, particularly when massive 

antennas are used. 

 

 

6. POWER ADAPTIVE NOMA-MIMO WITH ADMM 

DETECTION 

 

The paper proposed to investigate the error rates for 

different MIMO sizes and for different constellation orders of 

M-QAM. The MIMO channel damnations are varied by 

changing the Nr and Nt for different MIMO structures. In this 

work the concept of the MIMO is extended to the integration 

of the NOMA concept with the basic two user concept. The 

system diagram of the NOMA-Massive MIMO with adaptive 

power allocation is shown in Figure 4. 

 

 
 

Figure 4. Proposed NOMA-Massive MIMO system with adaptive power allocation 
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6.1 Adaptive power allocation 

 

In this paper, it is proposed to adopt the power levels of the 

NOMA user in proportion to the distance of the user from BS. 

The initial power level allocation and the user distance vectors 

are defined as: 

 

𝑑 = [𝑑1 , 𝑑2 … . . 𝑑𝑛 ] and 𝑎 = [𝑎1 , 𝑎2 … . . 𝑎𝑛] (23) 

 

where, 𝑑 𝑖s the distance vector of NOMA users from BS; and 

𝑎 is the power scaling vector and 𝑛 is the number of users in 

the network connected to BS. The paper proposed to adopt the 

power using the power allocation theorem in order to improve 

the energy efficiency of NOMA users. 

 

Theorem 1: 

The optimal power allocation is achieved in NOMA system 

when the power scaling factor 𝑎 of each user is adopted in 

theorem total sum of the distance scaling factor 𝑑 as: 

 

𝑇 = ∑ 𝑑𝑗 1000⁄

𝑛

𝐽=1

 (24) 

 

When j is assigned that distance vector 𝑑𝑗 is defined in term 

of n as the number of users. Then, power scaling ratio for 

NOMA user is calculated as: 

 

𝑎 = ∈⏟
𝑑=1 ,𝑛

𝑑𝑗 𝑇 ∗ 1000⁄  
(25) 

 

Justification: Using Theorem 1 it is proposed to allocate 

main power to every distant NOMA user in proportion to 

distance vector from BS. This will allow closer users to use 

less power and distant user to use more power and offers EE 

solution to the system. 

For example for two users with random distance vector 

d=[1000, 50000] the power algorithm factor 𝑎 = [
1

6
  

5

6
] 

respectively. The power adoption Algorithm is given in 

Algorithm 2; The flow chart of the proposed NOMA-M-

MIMO methodology using the modified iterative ADMIN 

detector is given in Figure 5. The number of Monte Carlo 

simulations and the ADMIN loop iteration are adopted 

optimally for performance enhancement. 
 

Algorithm 2. NOMA Power Adoption 

1: Inputs: ← number of input users N, vector d, vector a, 

2: Define random distance vector 𝑑 and initial power factor 

vector 𝑎 using Eq. (23). 

3: Calculate threshold ← 𝑇 using the Eq. (24) 

4: estimate the optimal power allocation per user using Eq. 

(25) as: 
 

𝑎 = ∈⏟
𝑑=1 ,𝑛

𝑑𝑗 𝑇 ∗ 1000⁄  

 

5: Calculate the Sum Rate SR for evaluation 

6: end Algorithm 
 

In order to justify the power allocation effectiveness, the 

sum rates (SR) are calculated and plotted for the radon 

distance vectors. The standard description of various QAM 

symbols used for modeling is shown in Table 2. It is clear from 

Table 2 that order of modulation is used to adopt the symbol 

vectors. 

Experimental Setup: The proposed M-MIMO system is 

simulated using the MATLAB environment. The MIMO 

signal 𝑥  and channel realization information 𝐻  is randomly 

generated. The simulation parameters used for modeling 

NOMA-M-MIMO system are shown in Table 3. The optimal 

selection of number of antennas at the transmitter and receiver 

is used for simulations and the tweaked parameter is set to 3. 

 

 
 

Figure 5. Flow chart of the proposed evaluation 
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Table 2. Description of M-QAM symbols (de Sousa et al. [43] and reference [44]) 

 

Order of QAM Symbols Used 

2 [-1 1] 

4 [-1 -1i, -1+1i, 1-1i, +1+1i] 

16 [-3-3i,-3-1i,-3+3i,-3+1i,-1-3i,-1-1i,-1+3i,-1+1i,+3-3i,+3-1i,+3+3i,+3+1i,+1-3i,+1-1i,+1+3i,+1+1i]; 

64 

[-7-7i,-7-5i,-7-1i,-7-3i,-7+7i,-7+5i,-7+1i,-7+3i,-5-7i,-5-5i,-5-1i,-5-3i,-5+7i,-5+5i,-5+1i,-5+3i,-1-7i,-1-5i,-1-1i,-1-3i,-

1+7i,-1+5i,-1+1i,-1+3i,-3-7i,-3-5i,-3-1i,-3-3i,-3+7i,-3+5i,-3+1i,-3+3i,+7-7i,+7-5i,+7-1i,+7-

3i,+7+7i,+7+5i,+7+1i,+7+3i,5-7i,+5-5i,+5-1i,+5 3i,+5+7i,+5+5i,+5+1i,+5+3i,++1-7i,+1-5i,+1-1i,+1-

i,+1+7i,+1+5i,+1+1i,+1+3i,+3-7i,+3-5i,+3-1i,+3-3i,+3+7i,+3+5i,+3+1i,+3+3i] 

 

Table 3. Simulation and optimization parameters used for experiments 

 
Parameter Description Range/Value 

d Distances of NOMA users from nearest BS d=[10 100]m 

a Power allocation factors of NOMA users from BS a=[0.3 0.7] 

eta Path loss exponent Set to 1 

Pt Transmitting power in dB Pt=1:30 

BW MIMO System Bandwidth BW=106 

𝑁𝑜 Noise power in dB scale 𝑁𝑜 = −174 + 10 ∗ 𝑙𝑜𝑔10(𝐵𝑊) 

𝑁𝑅 Number of MIMO receive antennas 𝑁𝑅 = [4, 8,16, 32, 64] 
𝑁𝑇 Number of MIMO transmitting antennas 𝑁𝑇 = [4, 8,16, 32, 64] 

trials Number of MC iterations Trials=10000 or 100000 

detectors Type of MIMO detectors used MF, CG, GS, NSA, ADMIM 

Q Number if Bits used per-symbol Q=log2(length(symbols) 

𝐶MIMO (K) Channel capacity of kth SNR for MIMO channel - - 

tweaked Parameter to be used for modified ADMIM Tweaked=[2 or 3] 

beta Pre-processing energy factor for AMIM initialization 𝑏𝑒𝑡𝑎 = (𝑁𝑜/𝐸𝑠). 𝑡𝑒𝑤𝑎𝑘𝑒𝑑 

Es Network energy Es=max(abs (symbol2)) 

 

 

7. RESULT AND DISCUSSIONS 

 

In this paper, experimentations have been performed for 

designing the high capacity efficient methodology considering 

the beyond 6G communication using MIMO detection 

technique. The paper considered BER, channel capacity, time, 

and sum rate as parameters for performance evaluation. The 

concept of MIMO is extended to NOMA-Massive MIMO and 

the various techniques of MIMO detections are considered for 

the equalizers at the detectors. In the design methodology, the 

highly massive beyond 6G huge 64 to 256 antennas 

transmitting structure is considered with large number dense 

receiver diversity 16 to 256 user’s, antenna for MIMO system 

detection. The computation of a likelihood of error as well as 

the mathematically defined symbol error rates or BER is used 

to assess the MIMO system's effectiveness. 

 

𝑃𝑏𝑀𝑄𝐴𝑀 ≈
4

𝑙𝑜𝑔2𝑀
 𝑄 (√

3 𝛾𝑏 𝑙𝑜𝑔2𝑀

𝑀−1
)  (26) 

 

where, M is order of the modulation symbol and Q is the error 

function. 

 

7.1 Validation of the massive MIMO detectors 

 

The first experiment is performed to validate the existing 

BER performance of various mentioned Massive MIMO 

detectors in this paper. These MD includes CG, NAS, GS, and 

ADMIN detectors. The experimentation considered the 

normal user density of 16 and 32 users along with the 64 

antennas at the BS transmitter at downlink. The ultimate goal 

is to evaluate the performance of box detection methods 

including ADMM detector. The huge beyond 6G massive 64 

antenna structure was considered with the large number of 

receiver units. Figure 6 compares BER for 64QAM 

modulation system for these MIMO detections. 

In order to examine the performance of the MIMO detection 

for the higher antenna sizes. The antenna at transmitting 

structure is kept to 64 and the BER is evaluated for the 

different numbers of the user units for the 64QAM MIMO 

architecture. Figure 6(a) and Figure 6(b) evaluated the BER 

for the MIMO detectors for 16 users and 32 users respectively. 

It is observed that most of methods including GS, CG, and 

NAS failed to offer good BER performance but infinity norm 

detector ADMIN offers significant comparative performance 

and offers the minimum BER of the order of 3.1×10-4 for 

64×16 at 20dB for case a) and 2.6×10-4 BER for the 24dB SNR 

for 64×32 antenna system/in case 2 of Figure 6. But still there 

is a significant chance of improvement in the performance. For 

statistical analysis the symbol error rate (SER) is calculated as; 

 

𝑆𝐸𝑅 = 1 − (1 − 𝐵𝐸𝑅)𝑁𝑏𝑝𝑠  (27) 

 

For 64 QAM modulations, the bits per symbol 𝑁𝑏𝑝𝑠 =

6 and respectve SER is shown in Table 4. 

The BER and SER comparative performance of various 

state of art MD methods for different MIMO sizes for 

validated approach are shown in Table 4. The BER is 

increased to nearly 100 times with decreasing user density 

from 64 to 16 users. Also, it is to be observed from Table 4 

that, as the size of channel increases the SNR performance is 

also decreased and it requires higher SNR relatively. Thus, 

significant chance of performance enhancing is required for 

such detectors with the increasing capacity of channels. 

It is clear from Table 4 that ADMIN outperforms over other 

MIMO detectors. In order to statically signify the results, the 

t-test is carried out and the mean BER and SER are compared 

in Table 5 for four MD’s respectively for 64×16, 64×32, and 

64×64 MIMO sizes. It can be observed that ADMIM is 

capable of offering lower BER at even lower SNR values. 
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Table 4. Statistical comparison of various state of art MIMO detectors  

 
Method Parameters 64×16 MIMO 64×32 MIMO 64×64 MIMO T-Test 

CG 
BER 1.8×10-2 at 30 dB 1.5×10-1 at 30 dB 2.8×10-1 at 30 dB 1.4933×10-1 

SER 10,325×10-2 at 30 dB 6.23x10-1 at 30 dB 8.6×10-1 at 30 dB 5.2875×10-1 

Neuman 
BER 1×10-1 at 30 dB 4×10-1 at 30 dB 5×10-1 at 30 dB 3.337×10-1 

SER 9.99×10-1 at 30 dB 9.96×10-1 at 30 dB 9.84×10-1 at30 dB 9.93×10-1 

GS 
BER 4.1×10-4 at 20 dB 3.9×10-2 at 30 dB 2.7×10-1 at 30 dB 3.41366×10-2 

SER 24.57×10-4 at 20 dB 21,234×10-2 at 30 dB 32.32×10-2 at 30 dB 18.67×10-2 

ADMIN 
BER 3.1×10-4 at 20 dB 2.6×10-4 at 24 dB 6.1×10-2 at 30 dB 2.0523×10-2 

SER 18.6×10-4 at 20 dB 15.59×10-4 at 24 dB 30.68×10-2 at 30 dB 10.340×10-2 

 

Table 5. Statistical t-test performance of parameters 

 
Parameters Neuman CG GS ADMIN 

BER 3.337×10-1 1.4933×10-1 3.41366×10-2 2.0523×10-2 

SER 9.93×10-1 5.2875×10-1 18.67×10-2 10.340×10-2 

SNR 30 dB 30 dB 26.66 dB 24.66 dB 

 

  
(a) For 64 antennas and 16 users (b) with 64 antennas and 32 users 

 

Figure 6. Result of validation of the BER for various Massive MIMO detectors for 64QAM beyond 6G MIMO detections 

 

It can be observed from Table 5 that ADMIM offers 1.6638 

times the average BER improvement and 1.80560 times the 

average SER improvement over GS method at system SNR 

range of 20dB, the best performance is highlighted in red. 

 

7.2 Massive MIMO detectors for large mobile units 

 

The experiment offers to increase the number of MU’s 

considering the large density in future communication system. 

The MU’s is considered to be 64 for 64 BS antennas and BER 

is evaluated for the M-MIMO system. Performance for the 

Box based MIMO detectors and the relative comparison with 

other methods is presented in Figure 7. 

The number of users is doubled to large 64 user’s receiver 

units are considered for evaluation. With the existing ADMIN 

detector there is significant reduction in BER performance is 

observed in Figure 7. This Figure is clearly and statistically 

justified in Table 6. 

The BER is validated first as random experiment for 

64QAM and large 64×64 antennas at 30dB and comparative 

performance of minimum BER for various MD’s are presented 

in Table 6. The BER is increased to the nearly 60 times with 

BER of 6.1×10-2 for proposed ADMIM method over 

OCDBOX for 64×64 antennas. It is also observed from Table 

6 that ADMIM based detector offer 3.1297, 2.7724, 2.7346, 

2.698 times improvement in SER over Neuman, CG, GS, and 

OCDBOX based approximation and box based MIMO 

detectors respectively.  

 

7.3 Iterative Monte Carlo evaluation under RCO adaption 

 

The paper considered the conventional detectors as MF and 

MMSE detectors. The approximate inversion based detection 

(AID) which uses approximation algorithms like Neumann-

series approximation, Gauss-Seidel, and conjugate-gradient 

approaches. Thus in this experiment, the number of BS 

antennas is reduced and the respectively the number of users 

is also considered to be reduced which corresponds to the 

reduced constellation order of the M-QAM system. This RCO 

concept is adopted for performance improvement. 

 

Table 6. Minimum BER for various MD’s for 64QAM and large 64×64 antennas at 30dB 

 
Method Neuman CG GS OCDBOX ADMIN 

BER 5.0×10-1 2.9×10-1 2.8×10-1 2.7×10-1 6.1×10-2 

SER 9.84375×10-1 8.7189×10-1 8.601×10-1 8.486×10-1 3.14522×10-1 
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Figure 7. BER of Massive MIMO detectors for 64QAM and 

large 64 user units 

 

The BER of 8 different M-MIMO detectors are compared 

for the RCO concept for 16 QAM in Figure 8 it can be 

observed that for this case the ADMIN method detector out 

performs over other methods. Nearly the BER of the order of 

10-4 is achieved from the infinity norm detector. The 32×16 

antenna architecture is adopted for the MIMO under 

evaluation in this experiment. The best performance of BER 

in Figure 8 is offered for the SIMO system. It is obvious due 

to less size of channel, but for the MIMO size, the ADMIN 

detector has edge over others. 

 

 
 

Figure 8. BER of M-MIMO detectors for 32 receive 

antennas and 16 UT with RCO set to 16 QAM modulations 

 

7.3.1 Iterative MC simulation 

The concept is extended to the Monte Carlo (MC) 

simulation the number of iterations is increased to 100 times. 

And the energy scaling is set to 1 but the ADMIN loop count 

is set to 5 instead of 3. It is observed that the proposed 

modifications have made the significant improvement in the 

optimal performance of the MIMO detections. 

The results of M-MIMO detectors for 16 receiver antennas 

and 16 UE are evaluated and plotted the BER performance 

based on different RCO as shown in Figure 9. It can be 

observed that RCO with BPSK and QPSK offers the minimum 

BER performance but at the lower SNR values. For the 

performance of reduced order (RCO) modulations BER of the 

order of 10-4 is achieved with the QPSK at the 25dB SNR 

range. 

It is also clear from Figure 9 that at the relatively higher 

SNR range the 16 QAM gives the nearly 10 times good 

performance than 64 QAM and is proposed to be preferred 

beyond 5dB SNR. 

 

 
 

Figure 9. Result of M-MIMO detectors for 16 receive 

antennas and 16 UT BER performance based on different 

RCO 

 

 
 

Figure 10. Impact of RCO based modulation over the 

Massive MIMO performance for 64 BS antennas and 16 UEs 

for different order modulations 

 

As another experiment the impact of RCO based 

modulation over the Massive MIMO performance for 64 BS 

antennas and 16 UEs for different order modulations are 

evaluated in Figure 10 it can be observed that with the 

proposed iterative approach still increasing the antenna size 

may offer the BER of the order of 10-4 or QPSK at 21 dB SNR 

only with 4dB better SNR performance than the previous case 

of 16 antennas. 

 

7.4 Optimal iterative hybrid massive MIMO detection 

 

The proposed method of MD has used the hybrid 
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combination of the MMSE and the ADMIN based iterative 

detector. The combination may offer improved BER 

performance. The number of MC iterations is set to 10000 and 

the admin loop count is set to 5. In this experiment, the massive 

MIMO size is selected to be 64 BS antennas with 64 users. 

Thus the channel is of H size of 64×64. 

The simulation is carried out for the ADMIN based iterative 

detector only but for four modulation methods. As BPSK, 

QPSK, 16 QAM and 64 QAM. 

It is observed from Figure 11 that seven for the higher 

MIMO dimensions and large user density the proposed 

method with QPSK modulation offers significant BER 

performance and that to at lower SNR values of 26dB. The 

minimum BER of the 7.4×10-7 is achieved for the proposed 

MIMO detector. This is a significant improvement over the 

existing validation results by the order of nearly 500 times. 

The results of the proposed hybrid detectors with the impact 

of RCO based optimal iterative Hybrid ADMIN detector over 

the massive MIMO performance for 128 BS antennas and 128 

users, for different modulations are shown in Figure 12. The 

BER of the order of the 7.6×10-7 is offered at the 4 dB lesser 

then the 64×64 antenna case for QPSK. A similar simulation 

is run to evaluate the BER performance of the Hybrid ADMIN 

detector for massive MIMO with 256 BS antennas and 256 

users for different modulations as shown in Figure 13. 

The statistical comparison of Figures 9 to 13 for BER with 

MC simulation for different modulations for the proposed 

modified ADMIM detector is given in Table 7. 

 

  
  

Figure 11. Impact of RCO based optimal iterative Hybrid 

ADMIN detector over the massive MIMO performance for 64 

BS antennas and different order modulations 

Figure 12. Results of the BER based on optimal iterative 

Hybrid ADMIN detector for massive MIMO with 128 BS 

antennas and 128 users for different modulations 

  
  

Figure 13. Results of the BER for Hybrid ADMIN detector 

for massive MIMO with 256 BS antennas and 256 users for 

different modulations 

Figure 14. BER for Hybrid ADMIN detector for massive 

MIMO with 80 BS antennas and 120 users 

 

Table 7. Statistical comparison of BER/SER for MC simulation based various RCO modulations 

 

Method Parameters 
16×16 MIMO 

Itr=1000 

64×16 MIMO 

Itr=1000 

64×64 MIMO 

Itr=10000 

128×128 MIMO 

Itr=10000 

256×256 MIMO 

Itr=10000 
t-test 

BER 

BPSK 1×10-4 at 24dB 1.5×10-4 at 18dB 2×10-6 at 24dB 1.8×10-5 at 20dB 8×10-5 at 20dB 7×10-5 

QPSK 1×10-4 at 24.8dB 1×10-4 at 21dB 7×10-7 at 26dB 3.1×10-7 at 22dB 7×10-5at 20dB 5.4×10-5 

16QAM 6.1×10-4 at 40dB 2×10-4 at 40dB 7.1×10-5 at 40dB 4×10-6 at 40dB 6.4×10-7at 40dB 1.8×10-4 

64QAM 5.8×10-3 at 40dB 1.2×10-2 at 40dB 1×10-2 at 40dB 7.2×10-3 at 40dB 8.2×10-3 at 40dB 8.6×10-3 

SER 

BPSK 5.99×10-4 at 24dB 9.8×10-4 at 18dB 11.9×10-6 at 24dB 1.07×10-2at20dB 47.9×10-5at 20dB 42×10-5 

QPSK 5.6×10-4 at 24.8dB 5.6×10-4 at 21dB 42×10-7 at 26dB 18.4×10-7at22dB 42.4×10-5at 20dB 32.4×10-5 

16QAM 36×10-4 at 40dB 11.9×10-4at40dB 42×10-5 at 40dB 23.8×10-6at40dB 38.4×10-7at 40dB 10.8×10-4 

64QAM 34.3×10-3 at40dB 7.2×10-2 at 40dB 5.8×10-2 at 40dB 4.24×10-2 at40dB 49.2×10-3at 40dB 51.6×10-3 
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It can be observed from Figure 13 that at the worst case of 

massive MIMO dimension of 256×256 the QPSK offers 

minimum BER at 20 dB value which is 2dB less. And it is also 

clear that as the massive MIMO dimensions improved the 16 

QAM performances have significantly achieved the better 

BER of the order of 10-7 but at the slightly higher SNR range. 

The statistical performance is evaluated for the MC based 

modified ADMIM detector for different modulation orders for 

different MIMO sizes as given in Table 7. In this paper, it is 

proposed to increase the MC iterative count as the MIMO size 

is increased. The iter=10000 is used for simulations. 

It is concluded that using the adaptive concept of RCO 

along with MC simulation can significantly minimize the NER 

at massive MIMO sizes of 64×64, 128×128, and 256×256. The 

best MIMO performance with RCO-MC is achieved for QPSK 

as 3.1×10-7 at 22dB for 128×128 and 7×10-7 at 26dB for 64×64 

antennas. It is also observed from Table 7 that as the size of 

MIMO increases more signal is assumed over the channel thus 

minimum BER is achieved at lower SNR values. 

A final experiment has plotted the BER for Hybrid ADMIN 

detector for massive MIMO with 80 BS antennas and 120 

users in Figure 14. However, in practice, the order of two is 

recommended for better performance as MIMO antenna sizes. 

 

7.4.1 Comprehensive performance comparison 

A more comprehensive methods considered under the 

literature review are compared based on the minimum BER 

performance achieved by them. The comparisons of BER for 

seven MIMO detectors including proposed method case are 

tabulated in the Table 8. It can be clearly observed that 

proposed MC simulation based RCO ADMIM method with 

QPSK modulation offers the best minimum performance for 

64×64 antennas 7×10-7 at 26 dB only and for 128×128 systems 

3.1×10-7 at 22 dB as best performance. 

 

Table 8. Comprehensive comparison of MIMO detectors with proposed method 

 

Methods 

Parameters  

SOR MD with 

128×16 MIMO 

Divya et al. [14] 

BOXBCD 16 

QAM 100×100 

MIMO 

Quan et al. [1] 

OSIC MD 

with 16 QAM 

4x4 MIMO 

Praveena et 

al. [13] 

CD-SOR 

128×32 MIMO 

64QAM 

Labed and 
Aounallah [23] 

Neumann Series 

Iterative 256×32 

MIMO 

Shao and Zu 

[30] 

Proposed 

MC-RCO-

QPSK with 

64×64 MIMO 

Proposed MC-

RCO-QPSK 

with 128×128 

MIMO 

Min BER 
1×10-4 

at 21dB 

1.5×10-5 

at 28dB 

1×10-5 

at 16dB 

6.1×10-5 

at 20dB 

7.5 ×10-5 

at 30dB 

7×10-7 

at 26dB 

3.1×10-7 

at 22dB 

 

7.5 Evaluation of the channel capacity 

 

 
 

 
 

Figure 15. Channel capacity of the massive MIMO system 

The channel capacity is primarily the measure of the range 

of information to be sent over the any communication channel. 

The capacity in terms of CSI is calculated and defined here as 

in Eq. (28): 

 

𝐶𝑀𝐼𝑀𝑂 = ∑ 𝐶(𝐾) + 𝑙𝑜𝑔2(1 + 𝑆𝑁𝑅(𝐾) ∗
𝐿𝑆𝑁𝑅
𝑘=1

𝑛𝑜𝑟𝑚(𝐻)2)  
(28) 

 

where, for k=1 the 𝐶(𝐾) + 𝑖𝑠 𝑠𝑒𝑡 𝑡𝑜 0 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑙𝑦, the capacity 

of the massive MIMO channels are evaluated for the different 

size of MIMO antennas. The Channel size is varied to 16×16, 

32×32, 64×64, 128×128 and 256×256 for the capacity 

measurement experiment. Figure 15 has plotted the capacity 

comparison and improvement using the massive MIMO of the 

system. It can be observed that as the size of H increases the 

capacity of system increases. 

The justification of Figure 15 for the channel capacity 

valuation is given in Table 9 for the maximum offered capacity 

at 40dB SNR range. It is clear from the Figure that increasing 

mMIMO size may exponentially increase the channel capacity 

of the communication systems. A comparison of the maximum 

capacity and improvement for MIMO sizes is given in Table 

9. The exponential increase with the size of MIMO is observed 

in Table 9.  

 

Table 9. Comparison of the maximum capacity and 

improvement for MIMO sizes 

 

Parameter\Size 
For 

16×16 

For 

64×64 

For 

128×128 

For 

256×256 

Capacity 10.61 13.13 13.79 15.2443 

 

7.6 NOMA-MIMO evaluation 

 

The NOMA power allocation performance is measured and 

accessed in terms of Sum Rate (SR) of the NOMA-M-MIMO 

system in this section. In order to calculate the Sum rate 
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following initial estimates and coefficients are defined in the 

system. The gains of the channels for the two NOMA users are 

defined in terms of channels matrix 𝐻1 and 𝐻2 respectively as: 

 

𝑔1,2 = 𝑎𝑏𝑠 (𝐻1 ∶ 𝐻2)2 (29) 
 

The NOMA parameters used for SR calculations are defined 

in Table 10. Initially, the signal and noise power densities are 

defined as given in Table 10 the SR is calculated.  

The Algorithm for the Sum Rate SR calculation is given in 

Algorithm 3. The simple and systematic calculation process is 

clearly mentioned in the Algorithm. 

The BER performance of the two users NOMA combined 

with the Massive MIMO system for 64×16 systems are plotted 

in Figure 16. It is clear that there is tremendous room for 

improvement in the BER performance of such high-end 

information systems. 

The sum rates are calculated and evaluated to show the 

performance of the powered allocation in the NOMA system. 

Figure 17 represents the SR evaluation for the three different 

random distance vectors and the power allocation is adopted 

accordingly to produce the channel realization. 
 

Table 10. The NOMA parameters used for SR evaluation 
 

Parameter Range Relative Measures 

Target rate R1 Set to 1 -- 

Targeted % SINR 𝜖 (2𝑅1) − 1 -- 

Power range 𝑃𝑡 0-30 𝑝𝑡 = 10−3𝑑𝑏2𝑝𝑜𝑤(𝑃𝑡) 

Noise level 𝑁0 -114 𝑛0 = 10−3𝑑𝑏2𝑝𝑜𝑤(𝑁0) 

 

 
 

Figure 16. Result of the NOMA-MIMO detection with 

ADMIN performance for the 64×16 
 

 
 

Figure 17. Evaluations of the NOMA sum rates for the three 

different random distance vectors 

Algorithm 3. NOMA SR Calculation 

1. Loop over the power range 

    for u=1:1:𝐿𝑃𝑡
 

 

𝛽1=𝜖 . (no+pt(u)𝑔1𝑓). / (pt(u) 𝑔2𝑓(1+𝜖)) (30) 
 

β1(β1>1)=0; 

β2=1-β1; 

2. Sum rate of fair power allocation 
 

𝐶1 = 𝑙𝑜𝑔2(1 + 𝑝𝑡(𝑢) ∗ 𝛽1.∗ 𝑔𝑓./(𝑝𝑡(𝑢) ∗ 𝑎2.∗ 𝑔𝑓 +
𝑛𝑜)) 

(31) 

 

𝐶2 = 𝑙𝑜𝑔2(1 + 𝑝𝑡(𝑢) ∗ 𝛽1.∗ 𝑔𝑛./(𝑝𝑡(𝑢) ∗ 𝑎2.∗ 𝑔𝑛
+ 𝑛𝑜 

(32) 

 

3. Cumulative SR calculation 
 

𝐶_𝑠𝑢𝑚(𝑢) = 𝑚𝑒𝑎𝑛(𝐶1 + 𝐶2) (33) 
 

End 

End Algorithm 

 

 

8. DISCUSSION AND SCALABILITY 

 

The paper proposed to design the NOMA- Massive MIMO 

architecture using distance adaptive multi user power 

allocation and evaluated the effectiveness of tweaked initial 

estimate based ADMM-IND design. Proposed methodology 

offers energy efficient and fast convergence detector. 

Following major discussions are addressed after 

comprehensive simulations. 

▪ It has been noted that the majority of detectors, such as 

GS, CG, and NAS, did not provide good BER 

performance; however, infinity norm detector ADMIM 

provides the lowest BER and exhibits substantial 

comparative efficiency. Tweaking the initial estimate 

with RCO may improve the BER performance of existing 

AMDIM detectors. 

▪ It is noted that as size of M-MIMO channel increases the 

SNR performance decreases and it require higher SNR 

relatively to achieve optimal BER performance. 

▪ The M-MIMO is evaluated employing Monte Carlo (MC) 

simulation, where 10000 iterations are used. This 

approach improves the ADMIM detector performance 

significantly and is capable of achieving optimal BER. 

▪ Proposed approach adopts NOM user power allocation in 

ration of their distance. This approach is beneficial to 

improve optimal power utilization and saves network 

energy. 

▪ As a limitation designing the integration of existing 

MIMO system with NOMA system is still an ill-posed 

problem. There is still significant chance of BER 

improvement. 

▪ The performance may be improved for the rectangular 

channel state matrix such as 8×4 the case with NOMA 

with multi-used MIMO system. 
 

 

9. CONCLUSION AND FUTURE WORKS 
 

The aim of this study is to construct an effective IND for 

huge MIMO systems by utilizing the alternate directions 

mechanism for multipliers (ADMM) oriented convex 

optimization. The method's quick speed or pace of 
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convergence is one of its main advantages. The purpose of the 

paper was to examine the error rates for various MIMO sizes 

and M-QAM constellation orders. An adaptive minimized 

constellation order (RCO) proposal is put out in response to an 

increase in massive MIMO channel size as well as user 

density. For seven MIMO detectors-matched filter (MF), 

MMSE, NAS, GS, CG, and suggested RCO-ADMIN detectors 

the effectiveness of box-based detectors is compared. 

The proposed adaptive NOMA with M-MIMO system is 

evaluated using d vector for BER performance. The BER of 

the order of 7.6×10-7 is offered at the 4 dB lesser than the 

64×64 antenna case using the proposed RCO with QPSK. But 

at the SNR range higher than 20dB mark it is proposed to 

employe the 16 QAM with a higher antenna dimension of 128 

or 256dB SNRs. The Channel size is varied to 16×16, 32×32, 

64×64, 128×128 and 256×256 for the capacity measurement 

experiment. It is concluded that increasing M-MIMO size may 

exponentially increase the channel capacity of the 

communication systems. For 16 times increase in size the 

capacity is improved 1.4 times approx. 

The hybrid combination of the MMSE and the ADMIN-

based iterative detector was employed in the suggested MD 

approach. Better BER performance could be achieved by the 

combination. The ADMIM loop count is set to 5, and the 

number of iterations is set to 10,000.  

The best performance of MC situation is achieved at 

128x128 MIMO as 3.1×10-7 BER at 22dB. It is concluded that 

as the MIMO size increases the SNR performance is 

decreases. It is concluded that proposed ADMIM-based 

detectors enhance SER by 3.1297, 2.7724, 2.7346, and 2.698 

times compared to Neuman, CG, GS, and OCDBOX-based 

approximation and box-based MIMO detectors, respectively. 

Overall it is concluded that using the proposed NOMA-M-

MIMO system may increase capacity, sum rate, and BER 

performance considering the significantly higher traffic in 

future beyond 6G communication. 

 

9.1 Practical implications and future works 

 

Practical implications of NOMA power allocation for 

beyond 6G more flexible and efficient systems are: 

▪ Traditional NOMA offers fixed systems while 

proposed adaptive NOMA modifies power allocation 

in real time according to user distance criteria. In 

addition to the distance factor considering the strong or 

weak channel based on strength improve the power 

allocation 

▪ Practical implications of utilizing the RCO may offer 

simplified design of the MIMO receiver and also 

provide lower BER at lower SNR too. For BS with 

limited power the RCO is viable for reliable 

communication. 

▪ The proposed ADMIM detector is particularly useful 

when there are actually fewer users compared to 

number of antennas on the receiving BS. Compared to 

traditional linear detectors, it performs better in these 

conditions. 

▪ Practically proposed method offers tweaking the 

ADMM initial response. It may improve convergence 

speed and also reduced latency in system, Accurate 

initial estimate makes it possible to converge at optimal 

solution. This may also improve power efficiency of 

the MIMO detectors. 

▪ Although choosing the single best for initial estimate is 

a difficult task. Choosing wrong initial estimate may 

slow down the convergence. 

 

9.2 Future scopes 

 

In the future there is significant scope of improvement in 

BER performance for NOMA-MIMO system. The 

optimization and deep learning methods can be used for better 

performance of the system. It is also possible to evaluate the 

performance of a larger number of NOMA users. It is 

suggested that simulation power and resource distribution be 

simulated in the future. There is room for improvement in the 

allocation of power while maintaining data privacy. In the 

future ADMM detector can also be combined with square 

detector or method of the lattice reduction to improve the 

performance especially for massive MIMO. 
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