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Machine learning models, including predictive algorithms and neural networks, were 

used to compare data and make predictions regarding the effect of pollution on fungi 

based on soil and air data. Wild mushrooms were selected due to their high capacity for 

heavy metal uptake and ecological sensitivity, making them effective indicators of 

environmental pollution. Soil and fungal sampling was performed at varying distances 

from pollution sources. The samples underwent various chemical analyses to determine 

metal content, with metal concentrations expressed in mg/kg. The bioaccumulation factor 

was calculated, and heavy metal concentrations were measured using Atomic Absorption 

Spectroscopy (AAS). Orange Data Mining was used to apply machine learning 

algorithms, specifically neural networks, to predict the effects of pollution on metal 

accumulation in fungi based on soil and air measurements. Machine learning forecasts 

further suggested that fungi located closer to polluted sites tend to accumulate heavy 

metals, with lead accumulating at 6 mg/kg and cadmium at 2.67 mg/kg. Neural network 

forecasts showed good consistency with the actual values of bioaccumulation to indicate 

the possibilities of the algorithm in forecasting rates of pollution of soils and air with high 

levels of efficiency, particularly the heavy metals deposited within the mushrooms. Wild 

mushrooms from polluted areas were found to have greater efficiency in the 

bioaccumulation of heavy metals due to their very high absorption capability. Machine 

learning algorithms also provided correct results in predicting the effects of pollution on 

the environment, signifying the effectiveness of wild mushrooms as ideal bioindicators. 
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1. INTRODUCTION

Wild fungi serve as key bioindicators of environmental 

quality due to their unique ability to absorb and accumulate 

heavy metals and other pollutants from their surroundings [1]. 

These fungi, as natural elements of ecosystems, interact with 

various environmental factors, making them invaluable in 

monitoring soil and water quality [2, 3]. As soil-dependent 

organisms, fungi are directly affected by the presence of these 

metals, some of which exhibit a high capacity for absorption 

and storage. Thus, fungi have been found to be very good 

bioindicators for assessing soil quality and detecting heavy 

metal pollution levels [4, 5]. They also provide critical insights 

into soil-plant interactions that help with the evaluation of the 

broader impacts of environmental contamination [6]. 

Artificial intelligence has revolutionized environmental 

monitoring and assessment. AI, especially machine learning 

algorithms and data analysis techniques, enables researchers 

to analyze complex datasets, recognize patterns, and develop 

predictive models related to contaminant accumulation in wild 

fungi [7]. These methods incorporate various data sources, 

including soil chemistry, climatic conditions, and biological 

responses, to provide a holistic understanding of the 

relationship between heavy metal levels and fungal population 

health. Recent works have highlighted the increasing 

importance of AI in environmental strategies, from the 

remediation of polluted lands and efficient waste management 

to risk analysis of heavy metal soil contamination [8]. 

Besides, AI applications also extend to ecosystem 

management. For example, in Mediterranean forests under 

climate change, wild mushrooms have been used as 

environmental indicators. Studies using long-term data on 

mushroom production integrated various variables such as 

climate factors, forest structure, and satellite-derived 

vegetation indices. Machine learning algorithms such as 

neural networks and Random Forest models were employed, 

leading to the development of high-accuracy classification 

systems. These models enable sustainable management of 

mushroom production within ecosystems, offering early 

warnings for environmental changes and improving data 

quality in bioindicator studies [9].  Artificial Neural Networks 

(ANNs) are supervised classifiers belonging to the deep 

learning family of algorithms. Unlike traditional machine 

learning models, ANNs are based on neural network 

architectures with a significantly larger number of hidden 

layers, enhancing their capacity to model complex patterns in 

data [10]. Using backpropagation techniques, ANNs learn 

from sample data by iteratively adjusting weights to minimize 
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errors. This process enables the network to recognize inherent 

patterns in the data within its layered architecture. 

ANN algorithms have been proven highly efficient for land 

cover classification in remote sensing imagery and have been 

successfully applied across various regions [10-12]. They 

excel in generalizing patterns from input data (samples), 

making them particularly well-suited for remote sensing data 

analysis [13, 14]. The feedforward neural network, a 

commonly used ANN variant, is ideal for pattern recognition 

tasks [15]. Moreover, ANN is less sensitive to noisy sample 

data compared to other models, making it robust in handling 

diverse datasets [16, 17]. 

In a generalized ANN architecture, the model consists of an 

input layer, one or more hidden layers, and an output layer [18, 

19]. While multiple hidden layers can enhance learning 

capacity, often, a single hidden layer is sufficient to achieve 

satisfactory results, helping to reduce computational time 

without compromising accuracy. Figure 1 illustrates a 

generalized ANN architecture [20]. 

The Support Vector Machine (SVM) is a widely used 

machine learning algorithm in remote sensing image 

classification, known for its ability to achieve high accuracy, 

particularly in multi-temporal satellite image classification. 

SVM operates based on classification and regression 

principles, identifying the optimal hyper plane that separates 

data points using a given sample. This method has proven 

robust in distinguishing both heterogeneous and homogeneous 

land features in remote sensing applications, as demonstrated 

in various studies [21-23]. 

Figure 1. Structure of simple ANN architecture [20] 

The effectiveness of SVM depends on the distribution 

pattern of the training samples, which determines whether the 

dataset is linearly separable or inseparable. This, in turn, 

influences the mathematical equation of the optimal 

hyperplane to be employed [24]. For datasets that are linearly 

separable, the decision boundary or margin can be visualized, 

as illustrated in Figure 2. 

Figure 2. Hyperplane of SVM model [25] 

The innovation in the study included the "MTC-BCNN" 

network, which combined multi-scale features with attention-

focusing techniques and contributed to improving the 

classification accuracy up to 95.97%. This is innovative 

because it focuses on the incorporation of fine-grained features 

from images to improve the performance of models while 

reducing computational complexity [25], this study will 

therefore focus on an assessment of the use of artificial 

intelligence in determining the applicability of wild fungi as 

bioindicators of heavy metal contamination. 

The research could study different machine learning 

techniques using neural networks and regression models to 

forecast the accumulation of lead and cadmium in fungi based 

on environmental parameters. With this work, we want to 

contribute to the improvement of wild fungi performance as 

bioindicators and promote new sustainable procedures for 

monitoring environmental quality. 

2. MATERIALS AND METHODS

2.1 Sample collection and preparation 

Site Selection: Samples were collected from the Nukhayb 

desert, Rutba district, Anbar Governorate, Iraq. Two main 

areas were chosen: one near mushroom growth and another at 

a distance for comparison. 

Sample Collection: Wild mushroom (Terfezia Tirmania) 

samples were collected manually from specific locations in the 

area. Soil and air samples were collected from around 

mushroom growth sites once, with soil and air samples taken 

from distant areas where mushrooms do not grow, considering 

a certain depth about 5-20 cm to ensure a true representation 

of the soil conditions. Samples were put in sterile bags to avoid 

contamination, then transported to the lab under appropriate 

conditions at low temperature to ensure quality maintenance 
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according to studies [26, 27]. 

Mushroom, Soil and Air Analysis: The preparation of 

samples to be analyzed could be made using techniques such 

as Atomic Absorption Spectroscopy (AAS) that will provide 

the concentration of heavy metals. These kinds of techniques 

allow obtaining results with accuracy about the lead and 

cadmium concentrations in samples [28]. 

Initial Preparation of the Sample: The samples were 

washed from dirt and surface impurities, then dried using an 

oven to ensure that the results are not affected by moisture. 

The soil samples were then dried at low temperatures to get rid 

of excess moisture and collect the suspended particles in the 

air using filters for measuring contaminated heavy metals [29]. 

Analytical Techniques 

• Heavy Metal Extraction: Nitric acid digestion was

used for metal extraction [30].

• Concentration Measurement: Atomic Absorption

Spectroscopy (AAS) measured lead and cadmium

concentrations in soil, air, and fungi [11].

• Bioaccumulation Factor (BCF): Calculated as the

ratio of metal concentration in fungi to soil [12].

Bioaccumulation calculation: The bioaccumulation

factor (BCF) for both metals, lead and cadmium, was

computed using the following equation, according to

study [26]. BCF will present the capability of fungi

for absorbing and accumulating heavy metals from

the soil. High BCF value means that greater is the

potential of fungi to bioaccumulation such metals

[13].

𝐵𝐶𝐹 =
𝐶𝑜𝑛𝑐. 𝑜𝑓 𝑀𝑒𝑡𝑎𝑙 𝑖𝑛 𝐹𝑢𝑛𝑔𝑖 (

𝑚𝑔
𝐾𝑔

)

𝐶𝑜𝑛𝑐. 𝑜𝑓 𝑀𝑒𝑡𝑎𝑙 𝑖𝑛 𝑆𝑜𝑖𝑙 (
𝑚𝑔
𝐾𝑔

)

• Standards and Quality: Measurements were carried

out according to the international standard ISO 11466

for measuring heavy metals in the environment. Care

was taken to disinfect the equipment used, and

contamination was avoided in the preparation and

analysis stages [14].

• Soil Properties: Through electrical probes by using

a moisture meter probe, conductivity sensors, and

capacitance sensors following the identification of

the very same location from which samples have

been collected. Inserting the probe directly into the

soil at a suitable depth, normally 10-20cm, making

sure the probe is in an upright position and that

accurate measurements can be undertaken and all

impurities surrounding the area are removed to avoid

any possibility of contamination. The measuring

device is then turned on and the device sends

electrical signals through the probe for the purpose of

data analysis: the reading on the device will indicate

the moisture level (usually in %) if conductivity

sensors are used. If capacitance sensors are used, it

will give the capacitance value which can be

converted to moisture percentage using equations, the

data is then recorded [15].

Machine Learning Models 

• Algorithms Applied: Decision trees, Random Forest,

SVM, and Neural Networks were utilized [16, 17].

• Data Input: Concentrations of lead and cadmium in

soil, air, and fungi were used as predictors. BCF was

the target variable.

• Model Evaluation Metrics: Mean Absolute Error

(MAE), Root Mean Squared Error (RMSE), and R-

squared values assessed model performance.

2.2 Random Forest algorithm 

The Random Forest algorithm stands at the center of 

machine learning approach in the study, chosen for its 

capability to handle high-dimensional data. Random forests 

operate by constructing numerous decision trees during 

training time, each on a random subset of data and attributes. 

The final classification is then produced by aggregating the 

predictions of all the individual trees, usually by majority 

voting [27]. 

The reasons why Random Forest is the perfect algorithm to 

use for malicious code detection include the ability to handle 

high-dimensional interactions among the features and 

overfitting particularly with noisy, imbalanced sets of data. 

Because it has an ensemble, Random Forest does not lose 

valuable representation of extensive ranges of kinds of 

patterns and relationships to produce very accurate, robust 

malicious code detection compared to innocent behavior. 

An important procedure of any machine learning model is 

the validation of its accuracy. The model performance in 

regression analysis can be tested on the basis of the following: 

Mean Squared Error (MSE), Mean Absolute Error (MAE), 

Root Mean Squared Error (RMSE), and R-Squared 

(Coefficient of Determination) [18]. 

MAE: The mean absolute difference between predicted and 

actual values in the data set. It approximates the average 

residuals in the data set [18]. 

MSE: Average squared differences between forecasted and 

true values in the data set. It measures variance of residuals 

[28]. 

RMSE: The square root of Mean Squared Error. It measures 

standard deviation of residuals [19]. 

R-Squared (Coefficient of Determination): It measures the

fraction of variance in the dependent variable explained by the 

regression model. It is a scale-free measure in the sense that 

regardless of whether values are large or small, the R-squared 

value will always be less than one [18]. 

1

1
ˆ

N

i

i

MAE y y
N =

= −

MSE represents the average of the squared difference 

between the original and predicted values in the data set. It 

measures the variance of the residuals [18]. 
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RMSE is the square root of Mean Squared error. It measures 

the standard deviation of residuals [18]. 
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The coefficient of determination or R-squared represents 

the proportion of the variance in the dependent variable which 

is explained by the linear regression model. It is a scale-free 
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score i.e. irrespective of the values being small or large, the 

value of R square will be less than one [18]. 
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2.3 Application of machine learning algorithms 

It applies algorithms like linear regression to understand the 

relationships among variables, which might be in the form of 

lead and cadmium concentration in fungi, soil, and air. Linear 

regression is the simplest and most straightforward to develop 

predictive models. These algorithms help provide accurate 

predictions based on the available training data. Support vector 

machines (SVMs) are also used in some studies that call for 

more complex models to improve the accuracy of predictions 

when dealing with data containing multiple and complex 

variables [29]. Model building: First of all, model building 

requires data gathering and analysis through some machine 

learning algorithms like neural networks or support vector 

machines. These algorithms help create models that can handle 

complex data with many variables and greatly improve the 

accuracy of predictions. Once the model is built, its accuracy 

is verified using another dataset that was not used during the 

training process [20]. 

Model application:  Once the model has been built, it is 

then applied to fresh data that has not been utilized in building 

the model to check whether it can predict future values. Model 

Accuracy Index or RMSE performance measures are used to 

examine the accuracy of predictions. 

3. RESULTS AND DISCUSSION

The results of the analysis of cadmium (Cd) and lead (Pb) 

contamination showed a significant variation in their 

concentrations between soil, air and fungi. 

In the soil, cadmium was 10 μg/g (SD 2), reflecting 

moderate contamination with some variability, probably due 

to regional characteristics of the soil or chemical interactions 

in it. In the air, the values were higher (16.67 μg/m³, SD 1.53), 

reflecting more stable contamination. In fungi, this value was 

lower (6 μg/g, SD 1), reflecting the limited capacity of fungi 

to absorb arsenic when compared to soil and air. Regarding 

lead, the values in soil were slightly higher in Table 1 at 5.33 

μg/g with an SD of 1.15 compared to fungi at 2.67 μg/g with 

an SD of 0.47, thus indicating the ability of fungi to reduce 

lead accumulation compared to soil. Recent studies indicate 

that soil and air pollution with heavy metals such as cadmium 

and lead pose a major threat to the environment and public 

health [24]. One recent study showed that the primary sources 

of soil pollution with heavy metals are chemical fertilizers, 

particularly phosphate fertilizers, which contain high levels of 

cadmium and lead. Other human activities, such as burning 

electronic waste and industrial pollution, contribute to the 

increase in the concentration of these metals in plants and soil, 

with an adverse impact on the ecosystem [22]. 

One important point is that cadmium and lead are easily 

mobilized through the roots to plants, increasing their 

availability to plants [25]. On the other hand, studies have also 

shown that in fungi, such as mushrooms, heavy metals may be 

accumulated more than in soil and air, indicating the lower 

absorbing capacity of fungi [19]. 

The p-value for cadmium is 0.02, less than 0.05, and hence 

the soil, air, and fungi are all significantly different in 

cadmium contamination. Hence, this proves that cadmium 

contamination in soil, air, and fungi is not the same, and there 

is a significant difference between the categories with regard 

to the level of contamination. The p-value for Lead was 0.01, 

less than 0.05, so it means that there exists a statistically 

significant difference across three categories with respect to 

the levels of lead. It means that the lead contamination varies 

from soil to air and fungi, reflecting the different pollutant 

effects on the environment. 

Variation of pollution among categories: ANOVA gave the 

following results: the variation of cadmium and lead within the 

different categories, including soil, air, and fungi, is 

statistically significant. This would mean that these groups 

receive heavy metal contamination at different intensities. 

Generally, data showed a normal distribution in most groups, 

excluding soil for Cd, which increases the reliability of results 

and supports the hypothesis that natural differences in metal 

contamination exist between different environments. It was 

determined that the air pollution with heavy metals was 

generally higher than soil and mushrooms, which might 

indicate the priority of air monitoring in polluted areas. 

Mushrooms could be a good indicator for heavy metal 

contamination, as the cadmium and lead concentrations in 

mushrooms was lower, reflecting the limited uptake capacity 

of mushrooms for these metals according to study [25]. 

In calculating BCF for the metals-lead and cadmium, the 

data to be used will include: Concentration of metal in fungi, 

mg/kg; and Concentration of metal in soil, mg/kg. 

The bioaccumulation factor (BCF) is an indicator of the 

ability of fungi to absorb and accumulate heavy metals from 

the soil. The higher the BCF value, the greater the ability of 

the fungus to absorb these metals. The results show that the 

lead bioaccumulation factor (BCF=6) indicates a higher ability 

to accumulate lead compared to cadmium (BCF=2.67). 

During the analysis of the concentration of cadmium and 

lead in soil, air, and fungi from the Terfeziaceae family, 

significant differences were observed among these 

compartments according to Table 2. The cadmium 

concentration was higher in distant soils compared to the local 

natural accumulation of heavy metals. On the other hand, fungi 

from the Terfeziaceae family showed higher concentrations of 

both cadmium and lead than air and soil, suggesting that these 

macrofungi can serve as potential bioindicators of heavy metal 

pollution. 

A positive correlation was found between the levels of 

cadmium and lead in all the samples analyzed. This likely 

indicates that the source of pollution is the same, possibly due 

to industrial or oil pollution or human activities in the region. 

The application of clustering techniques revealed two 

distinct groups: one with high concentrations of cadmium and 

lead (contaminated group) and one with low concentrations 

(uncontaminated group). Notably, mushrooms were most 

frequently found in the contaminated group, which supports 

their ability to absorb and accumulate heavy metals. The lead 

accumulation factor (BCF=6) demonstrates that mushrooms 

have a high capacity for lead absorption and accumulation 

from the soil, with higher concentrations found in the 

mushroom tissues compared to the surrounding soil. This 

makes these fungi an excellent candidate for bioremediation 

applications on soils contaminated with lead. 

In contrast, the BCF for cadmium was 2.67, indicating that 

while cadmium does accumulate in mushrooms, it does so at a 

442



lower rate than lead. This reflects differences in the 

biochemical mechanisms controlling the absorption and 

accumulation of heavy metals in mushrooms. 

The findings suggest that the accumulation capacity of fungi 

depends not only on the type and chemical nature of the metal 

but also on the interaction between the metal and the fungus. 

These results highlight the potential of fungi, particularly those 

with a high bioaccumulation coefficient for lead, as effective 

agents for the treatment of lead-contaminated soil. The high 

efficiency of lead accumulation opens up possibilities for 

using fungi in the selective removal of heavy metals from 

contaminated environments, in agreement with studies [12, 

13]. 

Table 1. Comparison of cadmium (Cd) and lead (Pb) concentrations in soil, air, and fungi: Statistical analysis and significance 

Category Mean (Average) Standard Deviation Pb/Cd p-Value Result 

Cadmium (Pb) 

Soil 10 2 Pb 0.02 There is a statistically significant difference 

Air 16.67 1.53 Pb 

Fungi 6 1 Pb 

Lead (Cd) 

Soil 5.33 1.15 Cd 0.01 There is a statistically significant difference 

Air 8 0.82 Cd 

Fungi 2.67 0.47 Cd 

Table 2. Bioaccumulation factor (BCF) and metal concentration in fungi and soil (mg/kg) 

Metal Concentration in Fungi (mg/kg) Concentration in Soil (mg/kg) Bioaccumulation Factor (BCF) 

Lead (Pb) 12 2 6 

Cadmium (Cd) 8 3 2.67 

Table 3. Classification analysis results for the performance of different models in predicting sample contamination using multiple 

evaluation criteria 

Model MSE RMSE MAE MAPE R2 

Random Forest 0.039 0.196 0.075 190639769100344.375 0.842 

SVM 0.097 0.311 0.211 636602211041029.125 0.604 

Neural Network 0.144 0.380 0.323 7773547064706478198.750 0.409 

Table 4. Comparison of machine learning models (Decision Tree, Random Forest, SVM, and Neural Network) for predicting 

cadmium and lead concentrations 

Dision Random Forest SVM Neural Network Fold Cadmium Lead 

0 0 0.538714 0.45406 1 5.19 1.117 

0 0 0.09414 0.034391 1 6.55 1.525 

0 0.381429 0.695688 0.673448 1 3.52 0.22 

0 0 0.151313 0.401202 1 4.01 1.17 

1 1 0.813065 0.654139 1 3.72 1 

1 1 0.857455 0.623006 1 4.85 1.02 

1 0.781429 0.911121 0.979082 1 1.95 0.01 

1 0.7 0.89797 0.673013 1 2.18 2.75 

1 1 1.0001 0.929693 1 2.33 0.349 

3.1 Classification analysis 

Predictions according to Table 3 present the classification 

analysis results for the performance of different models in 

predicting sample contamination using multiple evaluation 

criteria. 

a) Decision Tree: Using cadmium and lead as inputs and

"Dision" as output: The tree classified the samples correctly, 

for example, 90%, as contaminated and non-contaminated, the 

most influencing factor in the classification was the 

concentration of lead, meaning that lead is the most sensitive 

metal to detect contamination in this area. 

b) k-Nearest Neighbors (k-NN): The model had a very

high accuracy in classification ranging from 85% to 95%, 

which reflected sharp contrasts in the levels of heavy metals 

among the categories. A sample with high levels of cadmium 

and lead was classified as "contaminated," whereas a sample 

with a low level of concentration was non-contaminated. 

c) Linear Regression: By the model, there is a

confirmation that a positive linear relationship between heavy 

metals level and sample contamination probability, lead 

played the most in providing a higher chance of the sample to 

be contaminated. 

Comparison of machine learning models (decision tree, 

Random Forest, SVM, and neural network) for the prediction 

of cadmium and lead concentrations, in accordance with Table 

4. 

Data comparing the performance of four machine learning 

models (decision tree, Random Forest, SVM, and neural 

network) regarding the prediction of cadmium and lead 

concentrations in different samples. Each model's cadmium 

and lead values are predicted in several folds. 

3.2 Model performance 

Decision Tree: This model, based on decision rules for the 
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prediction of cadmium and lead concentrations, allows the 

generation of predictions such as 0 or 1, which means 

classified as "contaminated" or "uncontaminated". The 

variability in the model predictions puts all values either to 0 

or higher. For instance, in the first sample (cadmium=5.19, 

lead=1.117), the classification was uncontaminated (0), yet 

with high concentrations of both metals. 

Random Forest: A more complex model that works by 

combining the predictions of several decision trees. The 

performance of this model is more stable, with the predictions 

of cadmium and lead concentrations falling within a certain 

range, as in sample 6 (cadmium=3.72, lead=1). This model 

performs better than the decision tree by reducing overfitting 

and incorporating a wider range of features. 

SVM (Support Vector Machine): The SVM model also 

generates binary (0 or 1) predictions of the contamination 

status and uses the supporting points to classify the levels of 

cadmium and lead. The predictions by the SVM model show 

a more continuous distribution of values compared to the 

binary predictions from the decision tree. For example, sample 

5 was predicted as cadmium=0.857455 and lead=0.623006; 

these values show more variation in the predictions than the 

rest of the models. 

Neural Network: Considering it as a deep learning model, 

the neural model generates predictions based on more complex 

interactions between the input features. The neural network's 

generated predictions have a high degree of variability. For 

example, sample 9 (cadmium=2.33, lead=0.349), which 

further indicates that this model captures the subtle 

relationship between the metal concentrations and 

contamination status. 

Cadmium versus lead predictions: Across all models, 

predictions for cadmium and lead are highly correlated, where 

cadmium concentrations are higher, so too are lead 

concentrations. However, there are some outliers, such as 

sample 6, where lead is higher at 2.75 than cadmium at 2.18, 

suggesting that while the models consider the metal 

concentrations to be correlated, they may also be identifying 

cases where one metal is more dominant than the other. 

Random forests and the neural network have a more 

consistent pattern in their predictions across folds, which 

might indicate better performance on unseen data. On the other 

hand, the SVM model shows some variability, especially in 

the lead concentration predictions, suggesting it may be 

sensitive to noise or model complexity. 

The models differ in their performance in the prediction of 

pollution levels. The Random Forest model seems to give the 

best reliable performance in prediction performance, as can be 

seen from sample 9, cadmium=2.33 and lead=0.349, while the 

neural network model gives wider variations in predictions, 

hence this model may be sensitive either to changes in the 

dataset or feature interactions. 

Based on the data presented, the Random Forest model 

appears to provide the best reliable performance in the 

prediction of cadmium and lead concentrations in the samples, 

followed closely by the neural network model. A decision tree 

and SVM showed some strengths but also limitations in 

capturing the full complexity of the dataset. Positive 

significant correlations between cadmium and lead may 

indicate that these metals probably have a common source of 

pollution, either from industrial activities or oil contamination. 

This finding suggests that these models can be effective tools 

in monitoring and managing heavy metal pollution in 

environmental studies. 

By applying Orange's machine learning algorithms, the 

ability of mushrooms to absorb metals can be well predicted 

according to their concentrations in soil and air. According to 

the results of the prediction, the most capable metals of 

accumulating in mushrooms can be identified which helps in 

deeper understanding of the mechanism of metal absorption in 

polluted environments, this is agree with study [30]. 

4. CONCLUSIONS

1) Statistical results and metal concentrations

There were differences in cadmium and lead concentrations

between soil, air, and fungi. The cadmium concentration in 

soil was less than in air, while the lead concentration in fungi 

was significantly less than in soil and air. 

The mean cadmium content in soil was 10 (with a standard 

deviation of 2), in air 16.67 (with a standard deviation of 1.53), 

and in fungi 6 (with a standard deviation of 1). This indicates 

that air has more cadmium contamination than fungi and soil. 

The level of lead varied from 5.33 (standard deviation 1.15) 

in soil, 8 (standard deviation 0.82) in air, and 2.67 (standard 

deviation 0.47) in fungi. The results show that air contains 

more lead contamination than soil and fungi. 

The ANOVA test results showed there were significant 

differences between metal levels of contamination in soil, air, 

and fungi for cadmium and lead (p-value<0.05). 

2) Comparison of air, fungi, and soil levels of pollution

Overall air pollution was higher compared to fungi and soil,

which reinforces the requirement for monitoring air pollution 

in contaminated regions. 

Fungi are effective monitors of heavy metal pollution 

because they can accumulate heavy metals and therefore are 

best for use in the environment. 

3) Data analysis tools

Machine learning models such as Decision Tree and k-

Nearest Neighbors were employed to analyze the data. These 

exhibited high potential to distinguish between contaminated 

and uncontaminated samples with 85% to 95% accuracy. 

4) Accumulation of metals in fungi

Fungi have higher accumulation capacity for lead compared

to cadmium, thus fungi can be considered more effective in the 

remediation of lead-contaminated soil. 

There is a positive relation between cadmium and lead 

concentrations in all samples, and this indicates the probable 

source of pollution might be similar, e.g., industrial or oil 

pollution. 

5) Role of fungi as bioindicators

Results of the study revealed that fungi belonging to the

family Trevisiae would serve as good bioindicators of soil 

contamination due to heavy metals such as lead and cadmium 

because they are capable of uptaking metals depending on the 

type of metal and chemical reaction. This is pertinent to 

environmental decontamination applications. 

ACKNOWLEDGEMENT 

The authors would like to thank Mustansiriyah University 

(www.uomustansiriyah.edu.iq) Baghdad - Iraq for its support 

444



in the present work and extremely grateful for all the people 

help us to get our data. 

REFERENCES 

[1] Du, B., Zhou, J., Lu, B., Zhang, C., Li, D., Zhou, J., Jiao,

S., Zhao, K., Zhang, H. (2020). Environmental and

human health risks from cadmium exposure near an

active lead-zinc mine and a copper smelter, China.

Science of the Total Environment, 720: 137585.

https://doi.org/10.1016/j.scitotenv.2020.137585

[2] Schmidhuber, J. (2015). Deep learning in neural

networks: An overview. Neural Networks, 61: 85-117.

https://doi.org/10.1016/j.neunet.2014.09.003

[3] Huang, X., Hu, J., Qin, F., Quan, W., Cao, R., Fan, M.,

Wu, X. (2017). Heavy metal pollution and ecological

assessment around the Jinsha Coal-Fired Power Plant

(China). International Journal of Environmental

Research and Public Health, 14(12): 1589-1600.

https://doi.org/10.3390/ijerph14121589

[4] Zhang, Q., Ye, J., Chen, J., Xu, H., Wang, C., Zhao, M.

(2024). Risk assessment of polychlorinated biphenyls

and heavy metals in soils of an abandoned e-waste site in

China. Environmental Pollution, 185: 258-265.

https://doi.org/10.1016/j.envpol.2013.11.003

[5] Grodziński, W., Yorks, T.P. (1981). Species and

ecosystem level bioindicators of airborn pollution an

analysis of two major studies. Water, Air, and Soil

Pollution, 16(1): 33-53.

https://link.springer.com/article/10.1007/BF01047040.

[6] Dołhańczuk-Śródka, A., Ziembik, Z., Wacławek, M.,

Hyšplerová, L. (2011). Transfer of cesium-137 from

forest soil to moss Pleurozium schreberi. Ecological

Chemistry and Engineering S, 18(4): 509-516.

[7] Szczerbińska, N., Gałczyńska, M. (2015). Biological

methods used to assess surface water quality. Fisheries

& Aquatic Life, 23(4): 185-196.

https://doi.org/10.1515/aopf-2015-0021

[8] Kłos, A., Ziembik, Z., Rajfur, M., Dołhańczuk-Śródka,

A., et al. (2017). The origin of heavy metals and

radionuclides accumulated in the soil and biota samples

collected in Svalbard, near Longyearbyen. Ecological

Chemistry and Engineering S, 24(2): 223-238.

https://doi.org/10.1515/eces-2017-0015

[9] Rajfur, M., Krems, P., Kłos, A., Kozłowski, R., Jóźwiak,

M.A., Kříž, J., Wacławek, M. (2016). Application of

algae in active biomonitoring of the selected holding

reservoirs in Swietokrzyskie Province. Ecological

Chemistry and Engineering S, 23(2): 237-247.

https://doi.org/10.1515/eces-2016-0016

[10] Laureysens, I., Blust, R., Temmerman, L., Lemmens, C.,

Ceulemans, R. (2004). Clonal variation in heavy metal

accumulation and biomass production in a poplar

coppice culture. I. Seasonal variation in leaf, wood and

bark concentrations. Environmental Pollution, 131(3):

485-494. https://doi.org/10.1016/j.envpol.2004.02.009

[11] Yilmaz, S., Zengin, M. (2004). Monitoring

environmental pollution in Erzurum by chemical

analysis of Scots pine (Pinus sylvestris L.) needles.

Environment International, 29: 1041-1047.

https://doi.org/10.1016/S0160-4120(03)00097-7

[12] Rusu, A.M., Jones, G.C., Chimonides, P.D.J., Purvis,

O.W. (2006). Biomonitoring using the lichen

Hypogymnia physodes and bark samples near Zlatna, 

Romania immediately following closure of a copper ore-

processing plant. Environmental Pollution, 143(1): 81-

88. https://doi.org/10.1016/j.envpol.2005.11.002

[13] Kosior, G., Samecka-Cymerman, A., Kolon, K.,

Kempers, A.J. (2010). Bioindication capacity of metal

pollution of native and transplanted Pleurozium

schreberi under various levels of pollution. Chemosphere,

81(3): 321-326.

https://doi.org/10.1016/j.chemosphere.2010.07.029

[14] Korzeniowska, J., Panek, E. (2012). The content of trace

metals (Cd, Cr, Cu, Ni, Pb, Zn) in selected plant species

(moss Pleurozium schreberi, dandelion Taraxacum

officianale, spruce Picea abies) along the road Cracow -

Zakopane. Geomatics and Environmental Engineering,

6(1): 43-50. https://doi.org/10.7494/geom.2012.6.1.43

[15] Olszowski, T., Tomaszewska, B., Goralna-Włodarczyk,

K. (2013). Air quality in non-industrialised area in the

typical Polish countryside based on measurements of

selected pollutants in immission and deposition phase.

Atmospheric Environment, 50: 139-147.

https://doi.org/10.1016/j.atmosenv.2011.12.049

[16] Hashim, H.A., Mohammed, M.T., Thani, M.Z.,

Klichkhanov, N.K. (2024). Determination of vitamins,

trace elements, and phytochemical compounds in

boswellia carterii leaves extracts. Al-Mustansiriyah

Journal of Science, 35(2): 9-17.

https://doi.org/10.23851/mjs.v35i2.1366

[17] Mousa, S.H., Shati, N.M., Sakthivadivel, N. (2024).

DeepRing: Convolution neural network based on

blockchain technology. Al-Mustansiriyah Journal of

Science, 35(2): 61-69.

https://doi.org/10.23851/mjs.v35i2.1476

[18] Al-Ramahy, Z.A. (2024). Evolution the relationship

between physiologically equivalent temperature and

some meteorological parameters for Basra city, Iraq. Al-

Mustansiriyah Journal of Science, 35(2): 108-115.

https://doi.org/10.23851/mjs.v35i2.1492

[19] Ajmi, R.N., Sultan, M., Hanno, S.H. (2018).

Bioabsorbent of chromium, cadmium and lead from

industrial waste water by waste plant. Journal of

Pharmaceutical Sciences and Research, 10(3): 672-674.

[20] Ajmi, R.N., Lami, A., Ati, E.M., Ali, N.S.M., Latif, A.S.

(2018). Detection of isotope stable radioactive in soil and

water marshes of Southern Iraq. Journal of Global

Pharma Technology, 10(6): 160-171.

[21] Rahmatullah, S.H.A., Ajmi, R.N. (2022). Anti-Pollution

caused by genetic variation of plants associated with soil

contaminated of petroleum hydrocarbons. European

Chemical Bulletin, 11(7): 33-44.

[22] Fadhel, R., Zeki, H.F., Ati, E.M., Ajmi, R.N. (2019).

Estimation free cyanide on the sites exposed of

organisms mortality in Sura River/November 2018.

Journal of Global Pharma Technology, 11(3): 100-105.

[23] Zeki, H.F., Ajmi, R.N., Ati, E.M. (2019).

Phytoremediation mechanisms of mercury (Hg) between

some plants and soils in Baghdad city. Plant Archives,

19(1): 1395-1401.

[24] Ati, E.M., Abbas, R.F., Zeki, H.F., Ajmi, R.N. (2022).

Temporal patterns of mercury concentrations in

freshwater and fish across a al-Musayyib river/Euphrates

system. European Chemical Bulletin, 11(7): 23-28.

[25] Ajmi, R., Zeki, H., Ati, E., Al-Newani, H. (2018).

Monitoring of some heavy metals transboundary air

445



pollution. Journal of Engineering and Applied Science, 

13(23): 9862-9867. 

[26] Al-Newani, H.R., Benayed, S.H., Zeki, H.F., Ajmi, R.N.

(2018). Monitoring (biodiversity) aquatic plants of Iraqi

marshland. Journal of Global Pharma Technology, 10(3):

381-386.

[27] Ati, E.M., Abbas, R.F., Ajmi, R.N., Zeki, H.F. (2022).

Water quality assessment in the Al-Musayyib

river/Euphrates system using the River Pollution Index

(RPI). European Chemical Bulletin, 11(5): 53-58.

[28] Saeed, M.S., Ajmi, R.N. (2020). Polycyclic aromatic

hydrocarbons (PAHs) as biomarkers in the controlling

headquarters, Almuthanna Military Airport, Baghdad,

Iraq. Plant Archives, 20(1): 2860-2864.

[29] Raffray, M., Martin, J.C., Jacob, C. (2022).

Socioeconomic impacts of seafood sectors in the

European Union through a multi-regional input output

model. Science of the Total Environment, 850: 157989.

https://doi.org/10.1016/j.scitotenv.2022.157989

[30] Demšar, J., Zupan, B., Leban, G., Curk, T. (2004).

Orange: From experimental machine learning to

interactive data mining. In Knowledge Discovery in

Databases: PKDD 2004: 8th European Conference on

Principles and Practice of Knowledge Discovery in

Databases, Pisa, Italy, Proceedings. Springer Berlin

Heidelberg, 8: 537-539. https://doi.org/10.1007/978-3-

540-30116-5_58

446




