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The growing demand for passenger vessels has been paralleled by increased accidents, 

resulting in significant economic, human, and environmental losses. Accidents on 

passenger ships often stem from complex factors, including technical, operational, and 

human elements. Therefore, a detailed analysis is essential for understanding these factors 

and improving safety management. While various traditional risk analysis methods exist, 

the Bayesian Network (BN) offers unique advantages in modelling the probabilistic 

relationships between risk factors and accident outcomes. This study aims to analyse the 

accident severity level of passenger vessels in Indonesia by employing a Tree Augmented 

Naïve Bayesian Network (TAN-BN) to assess 46 passenger ship accidents in Indonesia 

using 17 identified Risk Influencing Factors (RIFs) focused on ship internal factors. 

Sensitivity analysis using mutual information and True Risk Influence (TRI) methods 

identified “Ship Operation” and “Accident Type” as the most significant RIFs, where the 

ship during passage is the most severe ship operation, and the ship sinking accident is the 

most catastrophic accident type. Scenario analysis revealed that very serious accidents 

often occur in transit, with human factors, particularly violation errors, playing a critical 

role. This study can leverage the decision-making process for stakeholders to reduce the 

severity of accidents in passenger vessels. 
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1. INTRODUCTION

Passenger ships are one of the global sea transportation 

systems that play a crucial role. With the ability to carry 

hundreds or even thousands of passengers simultaneously, 

these ships are the backbone for inter-island, cross-country, 

and cross-continental travel. Passenger ships are also a vital 

means of transportation in areas that are difficult to reach by 

other modes of transportation, such as in archipelagic 

countries or remote areas, especially in archipelagic countries 

such as Indonesia [1]. With the increasing need for passenger 

ships in parallel with technological developments over the past 

25 years, accidents resulting in losses and loss of life have also 

increased. Thus, accidents involving passenger ships have 

become a significant concern in the maritime industry [2]. 

Passenger ship accidents have a significant impact globally, 

including economic losses, fatalities, material losses, and 

environmental damage [3]. These impacts include rescue 

costs, disruption of maritime trade, compensation for victims, 

casualties, damage to ships and cargo, and marine pollution 

due to oil spills and other hazardous materials [4-6]. 

Passenger ship accidents are frequent because the large 

number of passengers increases the fatality risk. Also, because 

these ships often operate on fixed routes and congested ports, 

the chance of collision or running aground is higher [7, 8]. In 

addition, the lack of compliance with safety standards on some 

passenger ships, especially in developing countries, also 

contributes to the high accident rate [4, 9]. Studies mention 

that passenger ship accidents are influenced by various 

complex factors, including technical, operational, and human 

factors [10, 11]. Technical factors include ship design, 

maintenance conditions, and compliance with safety 

regulations that are often inconsistent, especially in 

developing countries [12]. From an operational perspective, 

congested shipping routes and adverse weather conditions also 

increase the risk of accidents, such as collisions and running 

aground [13]. Human factors, such as poor decision-making, 

lack of situational awareness, and crew fatigue, also play a 

significant role in most maritime accidents [14-16]. 

Risk analysis is essential in preventing and mitigating risks 

in the marine transportation sector. The study on risk analysis 

aims to identify, evaluate, and manage ship operational risks 
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to improve safety management and reduce potential incidents 

[17]. Various methods have been developed and used in 

research related to passenger ship accident risk analysis, such 

as Fault Tree Analysis (FTA), which is a method to identify 

combinations of failures that can cause accidents through logic 

tree diagrams, allowing for in-depth analysis of the causal 

factors and their relationships [18]. The FTA method is also 

used in studies to find the root causes of many marine 

accidents, including collisions [19] and Ro-pax ship accident 

scenarios [20]. Risk evaluation on passenger ships has also 

been explored and determined using the Failure Modes Effect 

and Analysis (FMEA) methodology. FMEA can provide an 

overview of the problem that occurred and the severity of the 

consequences and detection. The FMEA method produces a 

level of risk by using a Risk Priority Number (RPN). The 

Failure and Mode Effects Critical Analysis (FMECA) method 

is also one of the traditional risk analysis methods widely used 

in risk assessment and reliability analysis. Nevertheless, there 

are several constraints regarding the difference in the 

parameter importation and the subjective scale of RPN [21]. 

Numerous studies on utilising the safety-III-based risk 

assessment in the maritime sector have been conducted 

globally, which include qualitative and quantitative risk 

assessments [22]. Qualitative assessments offer in-depth 

insights by analysing small data samples. Commonly used risk 

assessment methods include the Functional Resonance 

Analysis Method (FRAM) and the Human Factors Analysis 

and Classification System (HFACS) [23]. Uğurlu et al. [24] 

uses the HFACS method to investigate and classify the human 

factor in maritime accidents. Salihoglu et al. and Yu et al 

applied the FRAM method to assess the risk of shipping 

operations qualitatively [25, 26]. Other methods for analysing 

marine accidents, such as the System Theoretical Accident 

Model (STAMP) [27, 28] have also been used for risk 

analysis. Qualitative assessment methods cannot measure risk 

and are often criticised for their reliability and validity [2]. To 

overcome those problems, researchers have used QRA to 

quantitatively measure the causal relationship between marine 

accidents and relevant influencing factors to overcome this 

weakness. Another QRA model used for maritime risk 

analysis is the Bayesian Network (BN) [29, 30]. Compared 

with the various QRA methods used in maritime transportation 

risk assessment, BN demonstrates a unique advantage with its 

strong model capabilities on data tolerance, two-way risk 

diagnosis, and predictive analysis [31]. Compared to FTA, BN 

can handle multi-status and multi-output variables. In 

addition, compared to other QRA methods, BN has 

demonstrated its capacity to model and accommodate human 

and organisational factors along with other risk-influencing 

factors (RIFs) [32]. 

In the QRA for passenger vessels, it is crucial to look for the 

most significant factors contributing to the accident and 

identify the factors that most affect the overall risk. Seemingly 

minor factors may have a significant impact under certain 

conditions and can affect safety unexpectedly. Therefore, in-

depth studies are needed to understand how various factors 

interact with each other and affect accident risk. One of the 

effective methods used in this analysis is the Bayesian 

Network, which allows probabilistic modelling of causal 

relationships between these factors, thus aiding in more 

informed decision-making to improve the safety of passenger 

ships. Until now, the use of Bayesian Networks (BN), 

particularly risk analysis for passenger ships, is still limited 

and has not been widely applied. BN has excellent potential to 

provide deep insights into the interaction between risk factors 

and improve safety in the maritime industry [30]. Studies 

using Bayesian Network (BN) for passenger ships are 

growing, especially in data-driven risk analysis, to prevent 

subjectivity and gaps arising from subjective data in Bayesian 

Network (BN) modelling [3]. Studies on ship accidents using 

the Bayesian Network (BN) on a data-driven approach have 

been carried out by improving the approach for creating data-

driven Bayesian Network (BN) risk models, which can 

precisely forecast the risk of maritime accidents, making the 

model suitable for accident mitigation [33]. The study shows 

that data-driven BN is one of the most potent methods for 

managing safety and reducing maritime accidents. Several 

algorithms are used in data-driven approaches, including 

NBN, ABN, K2 algorithm, and Tree-Augmented Naïve Bayes 

(TAN) [32], applying NBN to build network models to explore 

the interconnections between risk factors and measure the 

consequences of various maritime accidents and assume that 

the influencing factors are independent, which does not 

accurately reflect the complexity of actual maritime accidents. 

ABN model, selected over the NBN model for analysing 

critical risks related to RIFs affecting maritime accident 

severity, is complex and requires manual adjustment of 

unreasonable causal relationships [34]. Zhou et al. [35] stated 

that the TAN method outperforms NBN by combining the 

effectiveness and simplicity of NBN with enhanced result 

accuracy, making it a more competitive and precise option 

among data-driven network construction methods [35-37]. 

Marine transport accidents, especially on passenger vessels, 

pose a major global challenge with serious safety and 

economic consequences [38]. The TAN method integrated 

with the Bayesian Network (BN) has been widely used to map 

accident data globally, but its use on smaller data scales has 

not been fully explored. In certain situations, obtaining 

detailed data from passenger ship accidents can be highly 

challenging despite critical data being the primary input for 

accident analysis. Furthermore, to the best of the author’s 

knowledge, applying the TAN-BN method to specific ship 

types, particularly passenger vessels, remains unexplored. 

This study addresses several research questions, including:  

1) What is the performance of the TAN-BN model for 

mapping the severity of maritime accidents with a smaller 

amount of data? Is there any difference between the more 

significant number of studies? 

2) How can the TAN-BN model be applied to certain ship 

conditions, especially passenger ships? 

3) What are the RIFs that have the most influence on 

passenger ship accidents? 

Based on the question, this study aims to assess whether the 

TAN-BN model can effectively map passenger vessel accident 

data even with limited data and identify the key factors that 

most affect the accident’s severity. In addition, the study will 

highlight some Risk-influencing factors (RIFs) that have not 

been emphasised in previous analyses, providing deeper 

insights into risks and their mitigation. This approach offers 

better insight into understanding risk and supports more 

informed decision-making in efforts to improve maritime 

safety. This study is expected to be an essential contribution to 

the literature on analysing passenger ship accident risk and 

applying the BN method in the maritime industry. 
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2. METHODOLOGY 

 

2.1 General methodology of this study 

 

Figure 1 shows the overall framework for this study, which 

comprises three main steps: Data collection, BN modelling, 

and validation and analysis. A detailed explanation of each 

step will be stated in the section below. 

 

 
 

Figure 1. The framework of this study 

 

2.2 Bayesian Network 

 

Bayesian Networks (BN), first introduced by Pearl in 1998 

[39] are typically represented as Directed Acyclic Graphs 

(DAGs) consisting of nodes and directed edges that connect 

them [40]. Due to their strong capabilities to analyse the 

relation between factors, BNs are widely employed as a risk 

assessment tool in maritime safety research [41]. They 

integrate probabilistic values with graphical structures to 

represent relationships between variables [42]. BN structures 

can be configured using a subjective approach from expert 

judgment and are data-driven to generate causal relationships 

between variables or nodes.  

The primary output for the BN was represented as the 

posterior probability, which calculated the likelihood of event 

“x” occurring when other related events also occurred. 

Subsequently, this process could also be referred to as the 

conditional probability. The posterior probability could be 

calculated by Eq. (1): 

 

P(Ri|S) =
P(Ri)P(S|Ri)

P(S)
, i = 1,2,3,4, … , j  (1) 

 

where, P(Ri|S) was the posterior probability, P(S|Ri) was the 

conditional probability of S when Ri has been obtained, P(Ri) 

represented the prior probability of the case, and P(S) was the 

probability of S. 

 

2.3 Tree Augmented Naïve- Bayesian Network 

 

TAN enhances the Bayesian Network by expanding its 

structure and maintaining the learning ability of BNs while 

avoiding the complexity of analysing complete Bayesian 

Networks [43]. Wang et al. conducted a study that adopts TAN 

to develop a TAN-BN model for analysing the factors 

influencing accident severity [44]. The study used extensive 

statistical data to create a complete CPT, enabling the BN to 

effectively model stochastic processes, manage nonlinear 

relationships, and perform reasoning under incomplete, 

imprecise, or uncertain information conditions. 

The joint probability distribution formula defined in BN is 

expressed in Eq. (2) [45]: 

 

P(R1, … Rn, S) = P(S) · ∏ P(Ri|S)n
i=1   (2) 

 

If each RIF variable Ri has only one parent node in addition 

to the class variable S, the DAG forms a tree structure. A 

function υ is then defined on set R to ensure no loops occur in 

the tree structure. The condition for υ to define a tree on R is 

that there must be exactly one i such that υ(i) = 0, meaning 

each variable has only one unique parent, and there is no 

sequence i1, …, ik such that υ(ij) = ij+1,1 ≤ j < k, and υ(ik) = i1, 

ensuring the structure remains acyclic. In this case, υ defines a 

tree network, and when υ(i) > 0, ∏Ri = {S, Rυ(i)}, while when 

υ(i) = 0, ∏Ri = {S}. Therefore, during the TAN structure 

model’s learning and inference process, the main task is to find 

a tree within the model and define the function υ on set R to 

maximise its log-likelihood value. Additionally, the TAN 

structure employs conditional mutual information calculations 

between variables during learning and reasoning, with the 

mutual information calculation shown in Eq. (3): 

 

IP(Ri, Rj|S) = ∑ P(rii, rji, Si)log
P(rii,rij|Si)

P(rii|Si)P(rij|Si)rii,rji,Si
  (3) 

 

where, IP represents conditional mutual information, rii refers 

to the ith state of Ri in the RIF, rji refers to the ith state of Rj in 

the RIF, and Si represents the ith severity level of the accident 

[46]. 

 

2.4 Data and RIFs selection 

 

2.4.1 Data collection 

The data used in this study were the results of investigations 

conducted by Indonesia’s National Transportation Safety 

Committee (NTSC). The investigation of accident reports 

from NTSC included an in-depth technical and social 

investigation. In marine transport safety, NTSC explored 

accidents such as sinking, fire-explosion, collision, and 

grounding, including ships with over 100 GT for passenger 

ships and more than 500 GT for cargo ships.  

This study used 46 passenger vessel accidents to generate 

the TAN-BN model. The scope of the passenger ship accident 

data used is passenger ships with the type of Ferries, Ro-Ro, 

or Ro-Pax size of more than 500 GT and with steel material. 

These criteria are based on the fact that passenger ships with 

these sizes and materials have the most significant number in 

Indonesia, and the focus from stakeholders, such as regulators 

and marine insurance companies, is the passenger vessels with 

the hull material steel and larger sizes. 

 

2.4.2 Accident severity 

In several studies, each country determines the severity 

classes of accidents. As the primary source of accident data, 

Indonesia does not have such a categorisation system. 

Therefore, the standard used is based on the International 

Maritime Organization (IMO), the International Maritime 

governing body, with three accident classifications: “Very 

serious”, “Serious”, and “Less serious”. The details of each 

category are explained below [47]: 

·Very serious casualties (VS): There are fatalities and 
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people disappear, major environmental damage, significant oil 

spills, severe damage to the hull, or loss of a ship; 

· Serious casualties (S): There are injuries, minor 

environmental damage, or damage to the hull; 

·Less serious casualties (LS): There are no injuries, no 

environmental damage, or minor hull damage. 

 

2.4.3 Selecting the RIFs 

The RIFs selection process was conducted by conducting a 

literature review of relevant studies with the search keywords 

of “TAN Bayesian” OR “Data-Driven Bayesian” OR “marine 

accident severity”. A total of 16 relevant studies were selected, 

and a summary of the RIFs is shown in Figure 2. From the 

selected studies, the “Accident Time” and “Ship Type” are the 

most used RIFs with 15, followed by the Ship’s Gross 

Tonnage, “Ship’s age”, “Voyage Segment”, and “Accident 

Type” with 14,13,12,11 times, respectively. Thus, this study 

will adopt the RIFs that have a high number of appearances in 

the studied literature. Nevertheless, since this study will 

emphasise the ship’s internal factors and human-related error, 

the environment RIFs will not be included in the model.  

Previous studies showed that some models used human 

factors as general terms. Although some studies use detailed 

RIFs for human errors such as operational errors, violation 

errors, education, and ship manning, the number is still below 

the generalised human factors. This also happens for vessel 

condition and equipment; most of the studies do not provide 

details on the ship’s condition; there are only two RIFs in the 

studied literature, namely vessel condition and equipment. 

Therefore, in this model, the two RIFs regarding structural 

condition will be detailed by adding “structural errors” and 

“design errors”. While on the ship’s equipment, several RIFs 

were added, such as “safety equipment” and “firefighting 

equipment and navigation”, to analyse their effect against the 

severity of passenger vessel accidents, as one of the main 

contributions of this study. However, some RIFs, such as 

ergonomics and lookout, will also not be included because 

these two RIFs were never mentioned in the NTSC accident 

investigations report. The detailed definitions of RIFs in this 

study are explained in Table 1. 

 

 
 

Figure 2. The identified RIFs from numerous related research papers 

 

Table 1. The detailed explanation of 17 RIFs for accident severity 

 
No. Main Factors RIFs Definitions States 

1. Accident Accident Type The type of the accident. 

collision/contact, 

stranding/grounding, fire/explosion, 

capsize/sinking, other 

2.  Accident Time The time when the accident happened. 
0000-0400, 0400-0800, 0800-1200, 

1200-1600, 1600-2000,2000-2400 

3.  Ship Operation 
The state of the vessel when the accident 

occurred. 

Anchor, loading, passage (transit), 

manoeuvre, pilotage 

4. Human 
Seafarer’s education 

and certificate 

The education of crewmember is not suitable 

for the position; The education of crewmember 

is suitable for the position. 

Incomplete and invalid; 

Complete and valid 

5.  Ships manning 
The number of crews is insufficient based on 

STCW; The number of crews is sufficient. 
Inadequate; adequate 

6.  Operational error 

Unsafe acts, decision errors, situational 

awareness errors, manoeuvring errors, and 

calculation errors happen. 

No operational error to the accident. 

Yes; no 

7.  Violation error 

Procedure error, exceeding speed, not 

complying with regulation. 

No violation error to the accident. 

Yes, no 
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No. Main Factors RIFs Definitions States 

8. Ship’s Data Ships certificates 

Class certificate, flag state, port authority 

permission, stability book, drawing. 

Documents and certificates are completed. 

Incomplete and invalid; 

Complete and valid 

9.  Ship’s Age The age of the ship since it was first built. 
0-10 years, 10-20 years, 20-30 years, 

more than 30 

10.  Gross Tonnage The gross tonnage of the vessel. < 500t, 500t-3000t, > 3000t 

11.  Engine Power 
The total capacity of the main engine of the 

vessel. 
< 750kW, 750-3000 kW, > 3000 kW 

12. 
Vessel Condition 

and Equipment 
Structural Condition 

Watertight condition, opening, is there any 

corrosion or leak. 

Good structural condition or nothing to do 

with the accident. 

Bad; good 

13.  Design Error 
Design error, modification without approval; 

No design error. 
Yes;no 

14.  Safety Equipment 

Terrible condition of lifejacket, EPIRB, 

Liferaft. 

Good condition of safety equipment. 

Inadequate; adequate 

15.  

Fire Fighting and 

Navigation 

Equipment 

The terrible condition of firefighting and 

navigation equipment. 

Good condition of firefighting and navigation 

equipment. 

Inadequate; adequate 

16. Management 
Regulation and 

Procedure 

The procedure or regulation does not exist, or 

the procedures have not been applied. 

Procedures are in place and well-implemented. 

Inadequate; adequate 

17.  Training and Drill 

Training and Drills are not conducted 

regularly. 

Training and Drills are conducted regularly. 

Inadequate; adequate 

 

2.5 Bayesian Network modelling with Tree Augmented 

Naïve for passenger vessels 

 

After determining the RIFs within the BN model for 

passenger vessels, the TAN modelling was conducted based 

on mutual information among several RIFs. RIFs with the 

closest mutual information are connected by a DAG. In this 

model, the target is “Accident Severity” at the centre of the 

model. The determination of the model based on mutual 

information using equation x was conducted within the 

NETICA Norsys program with the simulation of “Learning 

TAN Structure”. The initial model was analysed and discussed 

with several experts with expertise in maritime safety. 

Changes made in the model include: 

Disconnect several unrelated DAGs from “Safety 

Equipment” and “FF and Navigation Equipment” 

Add the DAG between “Ship Operation” and “Accident 

Type” 

Add the DAG between “Accident Type” and “Accident 

Time” 

Refine the relationship between human-related error 

The input of conditional probability is an important feature 

in BN modelling. The Conditional Probability Table (CPT) 

was utilised to input the probability based on its condition. 

Table 2 shows the CPT for the “Training and Drill” RIFs. 

 

Table 2. Conditional probability table for “Training and 

Drill” RIFs 

 
Accident 

Severity 

Very 

Serious 
Serious 

Less 

Serious 

Operational 

Error 
yes no yes no yes no 

Inadequate 

training 
45.45 0 44.44 33.33 11.11 0 

Adequate 

training 
54.55 100 55.56 66.67 88.89 100 

 

 

2.6 Validation method 

 

Model validation is a crucial step in the result analysis 

phase. Axiom-based verification is commonly applied in 

Bayesian Networks (BN), and in this study, three axioms were 

utilised to evaluate the model’s robustness [48]. The model 

was tested in NETICA software by changing the probability of 

the RIFs node against the “Accident Severity” node. The 

TAN-BN model must fulfil the three axiom rules to guarantee 

its reliability. 

Axiom 1: If the prior probability of any RIFs is slightly 

increased or decreased, the posterior probability of the target 

node should correspondingly increase or decrease. 

Axiom 2: The increase in posterior probability should be 

constant, and no fluctuation in value should be allowed. 

Axiom 3: The overall effect of probability changes in a set 

of x parameters should not be less than the cumulative effect 

of probability changes within a subset y (where y ∈ x). 

 

2.7 Sensitivity analysis 

 

In this study, sensitivity analysis is conducted using a 

combination of mutual information, joint probability 

distributions, and the True Risk Influence (TRI) method to 

identify and quantify RIFs to passenger vessel accident 

severity. 

 

2.7.1 Mutual information 

Mutual information, quantifying the degree of 

interdependence between variables, is widely utilised as a 

criterion for feature selection and transformation in machine 

learning applications [49]. In this study, the mutual 

information value between the risk variables in the RIFs and 

“accident severity,” treated as the target variable, can be 

determined to evaluate their relationship. The specific 

calculation procedure is outlined in Eq. (4), where S denotes 

accident severity, ri represents the ith RIF variable, rij 

corresponds to the jth state of the ith RIF, and I(S, ri) indicates 
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the mutual information between accident severity and the ith 

RIF: 

 

I(S, ri) =  − ∑ P(S, rij)log
P(S,rij)

P(S)P(rij)S,i   (4) 

 

2.7.2 Joint probability 

The TAN-BN model assigns probability values to the 

different states of the associated RIFs. By holding the other 

RIF variables constant, the probability distributions for the 

various states of the class variable or target nodes can be 

determined. The joint probability values for all RIF states sum 

to 1. Eq. (5) outlines the detailed calculation process, where S 

denotes accident severity, and Rij represents the jth state of the 

ith RIF: 

 

P(S, Rij) = P(S) · P( Rij|S) (5) 

 

2.7.3 True risk influence 

True Risk Influence (TRI), a novel sensitivity analysis 

method proposed by Alyami et al., is employed to assess the 

impact of RIFs [50]. RIFs with substantial influence are 

identified during sensitivity analysis using mutual information 

values. Subsequently, the TAN-BN model is applied to 

compute the high-risk influence (HRI) and low-risk influence 

(LRI) values for these RIFs. The TRI value, representing the 

average of HRI and LRI, is then calculated to quantify the 

extent of each variable’s influence on accident severity. The 

TRI can be obtained by Eq. (6): 

 

TRI =
HRI+LRI

2
  (6) 

3. RESULTS 

 

3.1 BN-TAN modelling 

 

Figure 3 depicts the posterior probability of the TAN-BN 

model of passenger vessel accidents in Indonesia. Half of the 

accidents are considered very serious, followed by serious 

accidents (26.1%) and less serious accidents (23.9%). 

Regarding the Accident type, the highest proportion of 

accidents is fire and explosion, with 41.3%, followed by 

capsize and sinking, with 23.9%. In terms of ship operation, 

more than 60% of the accidents involving passenger vessels 

occur when the ship is in transit (passage) between locations, 

followed by during manoeuvre with 15.2% and pilotage in 

anchorage area with 13.0%. The gross tonnage of the ship 

involved in accidents is most likely for ships more than 3000 

GT (45.9%), and the age of the ships in the accident is more 

than 30 years (50.1%). 

Regarding the time of the accident, the most frequent 

accident happened during 16:00-20:00 with 30.4%, followed 

by the 04:00-08:00 period with 17.4%. The percentage of 

human error in passenger vessels is exceptionally high, with 

the “Operational Error” of 87.1% and the “Violation Error” of 

69.6, which should be analysed further in the sensitivity 

analysis. Management aspects are also crucial in the accidents 

of passenger vessels, with 58.7% of the accidents having 

inadequate regulations and procedures, and 34.8% of the cases 

were caused by irregular training and drills as an 

implementation of the safety management system. 

 

 

 
 

Figure 3. The posterior probability of the TAN-BN model 
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3.2 Sensitivity analysis of the most influencing RIFs 

 

3.2.1 Mutual information 

Table 3 explains the mutual information and entropy 

reduction of RIFs into the “Accident Severity” node. The 

results indicated that the accident type is the RIF with the 

highest mutual information, where the higher mutual 

information denotes the higher influence on the target node. 

The mutual information analysis was conducted within the 

NETICA Norsys Bayesian program. According to the result, 

the average of the mutual information value is 0.134. 

Therefore, the RIFs that have more value than average were 

selected for further analysis of sensitivity analysis (stated in 

bold). From Table 3, the decreasing ranking from the most 

influential factors that contribute to the “Accident Severity” 

are Accident Type> Ship Operation> Gross Tonnage> 

Accident Time> Violation Error> Engine Power. 

 

Table 3. Mutual information between “Accident Severity” 

and RIFs 

 

Variable 
Mutual 

Information 

Entropy 

Reduction 

Variance 

of Beliefs 

Accident Type 0.3791 25.3 0.078875 

Ship Operation 0.34101 22.7 0.063537 

Gross Tonnage 0.29371 19.6 0.020827 

Accident Time 0.25844 17.2 0.038155 

Violation Error 0.19226 12.8 0.03274 

Engine Power 0.18577 12.4 0.014288 

Ships Age 0.13698 9.14 0.029241 

Ships Certificates 0.11002 7.34 0.017561 

FF and Navigation 0.0989 6.6 0.010782 

Safety Equipment 0.0829 5.53 0.007347 

Training and Drill 0.07752 5.17 0.007634 

Operational Error 0.05216 3.48 0.007664 

Design error 0.02387 1.59 0.006078 

Seafarer’s Education 

and Certificates 
0.01996 1.33 0.001428 

Regulation or 

Procedure 
0.01342 0.895 0.002775 

Structural Condition 0.01168 0.779 0.002764 

Ships Manning 0.00824 0.549 0.001898 

 

 

3.2.2 Joint probability 

After obtaining the six significant RIFs to the “Accident 

severity” node from the mutual information calculation, the 

following analysis will calculate each state’s joint probability 

distribution and variable of the RIFs on the accident severity. 

The normalisation value is applied to certify the correctness of 

probability distribution. The updated probability was obtained 

by setting the probability of a specific state within the RIFs by 

100% and keeping other probabilities intact. For instance, in 

the “Accident Type” RIFs, the probability of “Capsize and 

sinking” was set to 100%, and the probability for a very 

serious accident state increased to 81.8%. Table 4 shows the 

complete calculations for every state. The bold font denotes 

the highest and lowest values within a specific accident 

severity state. 

 

3.2.3 True risk influence 

The values of HRI and LRI must be obtained first for every 

RIF and every Accident Type’s state to calculate the TRI. The 

difference in the highest probability value between the states 

and the original value can calculate the value of HRI. 

Take the calculation of the HRI of “Accident Type” to the 

very serious accident (VS) as an example. It is found that the 

probability value of VS in the first column of Table 4 is the 

state which has the sinking or capsizing, with a probability of 

81.8%, and the lowest probability is another accident with 0%. 

The HRI is the difference between the highest probability and 

the original value (50%), which is 31.8. The LRI is the 

difference between the lowest probability and the original 

value of 50. Then, the average HRI and LRI for the “Accident 

Type” for very serious accidents is 28.4, as shown in the first 

column of Table 5. The same method was applied to every RIF 

for each severity state, as shown in Table 5.  

 

Table 4. Joint probability (100%) of “Accident Severity” 

from each state of RIFs 

 
 VS S LS 

Original Value 50 26.1 23.9 

Accident Type    

Collision /Contact 33.33 33.33 33.34 

grounding stranding 16.7 0 83.3 

fire/explosion 52.6 36.8 10.5 

capsize sinking 81.8 18.2 0 

other 0 0 100 

Ship Operation    

Anchor 0 100 0 

Loading 0 75 25 

Passage 67.9 21.4 10.7 

manoeuvre 28.6 28.6 42.9 

Pilotage 33.3 0 66.7 

Gross Tonnage    

less500gt 49.3 26 24.7 

500t-3000t 57.6 42.4 0 

more3000t 42.6 10 47.4 

Accident Time    

0000-0400 57.1 42.9 0 

0400-0800 87.5 0 12.5 

0800-1200 50 25 25 

1200-1600 66.7 16.7 16.7 

1600-2000 21.4 35.7 42.9 

2000-2400 42.9 28.6 28.6 

Violation Error    

yes 62.3 28.3 9.37 

no 21.8 21 57.2 

Engine Power    

less750kW 49.3 26 24.7 

750kW-3000kW 52.8 42.4 4.8 

more3000kW 47.4 10 42.6 

 

The results show that the average TRI value of “Ship 

Operation” is the highest at 39.1, followed by “Accident Type” 

at 32.27 and “Violation Error” at 15.94. By the average of the 

TRI, the order of the influence of RIFs on the accident severity 

has changed into Ship Operation>Accident Type>Violation 

Error>Gross Tonnage>Accident Time>Engine Power.  

 

Table 5. TRI of RIFs for all accident severity states 

 
RIFs True Risk Influence 

 VS S LS Average 

Accident Type 28.4 18.4 50 32.27 

Ship Operation 33.95 50 33.35 39.1 

Gross Tonnage 7.5 16.2 23.7 15.8 

Accident Time 16.52 10.72 10.72 12.66 

Violation Error 20.25 3.65 23.91 15.94 

Engine Power 2.7 16.2 18.9 12.6 
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Table 6. The most influencing RIFs for all accident severity 

state 

 
RIFs VS S LS 

Accident Type 2 2 1 

Ship Operation 1 1 2 

Gross Tonnage 5 3 4 

Accident Time 4 5 6 

Violation Error 3 6 3 

Engine Power 6 4 5 

 

From Table 6, it can be concluded that each accident’s 

severity has a different influence on RIFs. Classifying the TRI 

values is essential for increasing the accuracy and consistency 

of risk assessment and can yield insightful information. The 

“Ship Operation” is the most influencing RIF for very serious 

and serious accidents, whereas the “Accident Type” is the 

most sensitive RIF for less serious accidents. The “Violation 

Error” of the crewmember is the third influencing RIFs in very 

serious accidents, Where the influence of humans also plays a 

significant role in the accident’s severity.  

 

3.3 Model validation 

 

Model validation intends to test whether the TAN-BN 

model in this study confirms the nature of the accident and to 

check the model’s reliability. 

 

Table 7. Test of Axiom 1 and 2 on different accident severity 

grades 

 
RIFs Increase in Percentage 

Accident Type  5% 5% 5% 5% 5% 5% 

Ship Operation   5% 5% 5% 5% 5% 

Gross Tonnage    5% 5% 5% 5% 

Accident Time     5% 5% 5% 

Violation Error      5% 5% 

Engine Power       5% 

VS 50 53.3 56.8 57.7 60.8 64.3 64.7 

S 26.1 27 29.3 32.2 34.4 35.1 38.4 

LS 23.9 28.1 32.9 36.9 39.9 44.2 47.4 

 

The Axiom 1 and 2 test observes the model by estimating 

the change of different states of the parent to the child nodes. 

According to Axiom 1 and 2, if the prior probability of the 

parent nodes increases, the child nodes also increase along 

with the increase in probability (Axiom 1). Furthermore, the 

increase in the posterior probability value must be constant; 

the model should have no fluctuations. This analysis uses the 

six selected RIFs based on mutual information to check the 

model’s validity. The analysis was conducted for each severity 

state because the factors most affecting the RIFs in each 

accident severity state are different. For example, the original 

probability of a very serious accident is 50%. After that, the 

probability of the states within the “Accident Type” that have 

the most influence on the severity, i.e., sinking and capsize, 

was increased by 5%. Consequently, the probability of the 

most negligible influence on accident severity was reduced by 

5%, and the result shows that a very serious accident increases 

to 53.3%. The same method was applied to other RIFs and 

accident severity states, as shown in Table 7. 

Axiom 3 examined whether the combined effect of the 

parent node on the child surpassed its impact individually. In 

this TAN-BN model, the child nodes are the RIFs, and the 

main parent node is the “Accident Severity” and other RIFs. 

Therefore, all child nodes must be checked for compliance 

with axiom 3. As an example, the RIFs node of “Training and 

Drill” has a parent node of “Accident Severity” and 

“Operational Error”. When the negative states for “Accident 

Severity” and “Operational Error” were set to “Yes” (100%) 

individually, the posterior probability was 43.4% and 37.5%, 

respectively. Moreover, when two parent nodes were 

simultaneously set into a negative state, the probability 

increased to 45.5%, showing compliance with Axiom 3. The 

same calculation was performed for each child and parent node 

in the TAN-BN model, and all results met the requirements of 

Axiom 3.  

 

3.4 Scenario analysis 

 

3.4.1 Human-influenced error 

In this scenario, the nodes related to human effects, such as 

“Ships Manning”, “Seafarers Education and Certification”, 

“Operational Error”, “Violation Error”, and “Training and 

Drill”, were set into their negative states of 100%. The result 

shows that the state of very serious accidents within “Accident 

Severity” reaches 100%, meaning that human-related error 

significantly contributes to serious accidents, as shown in 

Figure 4. The most interesting finding is that when a human-

related error occurred, the probability of state accident time of 

04:00–08:00 AM was increased and the highest probability in 

the “Accident Type” node, where at that hour, the level of 

fatigue and awareness of the crew is low enough to cause a 

very serious accident. Regarding ship operations, the most 

serious accidents, influenced by human error, will occur 

during passage, with an 85.3% probability. As for the accident 

type, the two highest types that are heavily contributed by 

human influence are fire/explosion and capsize/sinking, with 

44.1% and 39.6% probability, respectively. 

 

3.4.2 Inadequate management 

This scenario involves the adverse conditions of ship 

management, such as inadequate “Regulation or Procedure”, 

and ship internal conditions, such as “FF and Navigation”, 

“Safety Equipment”, “Ship certificate”, “Structural 

Condition”, and “Design error” were set into their respective 

negative states with 100% probability. The apparent result is 

that the probability of a very serious accident reaches its 

maximum (100%), as shown in Figure 5 when the combination 

of adverse ship management and equipment happens, which 

concludes that the readiness of ship equipment, adequate ship 

maintenance, and compliance with regulation and procedure 

also essential to reduce the severity of accidents. Another 

evident finding in this scenario is that ships older than thirty 

are more vulnerable to severe accidents, with a 57.1% 

probability. This finding follows the natural conditions of 

machinery, structures, and equipment where the more 

prolonged the ship’s age, the quality of the structure, the 

ability of the engine, and other equipment also deteriorate. The 

exciting finding is that a very serious accident due to improper 

ship maintenance and condition will likely occur on a ship 

with GT 500t-3000t and Engine power of 750kW to 3000kW 

with 71.4% and 57.9% probability, respectively. 
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Figure 4. The combined effect of the human-related error on the passenger vessel 

 

 
 

Figure 5. The combined effect of ship management and equipment 
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3.4.3 Detailed sensitivity analysis of human error and ship 

management 

In the sensitivity analysis mentioned in Section 3.2, several 

RIFs were not included in the in-depth analysis due to the low 

mutual information. However, these RIFs could influence 

stakeholders to reduce the probability of accidents in 

passenger vessels since these RIFs are the controlled factors 

with proper training and maintenance of the ship equipment. 

Therefore, a joint probability analysis was conducted on these 

RIFs except for Violation error because it has featured in the 

TRI analysis as one of the most influencing factors for 

accident severity.  

Table 8 shows the results of the joint probability analysis. 

In terms of human error, inadequate training and drills for 

seafarers are the most influential RIFs for very serious 

accidents, followed by the insufficient number of crew 

onboard. As mentioned in the ship’s safety management 

system, it is paramount to have scheduled training and drills 

because adequate training is the last barrier to reducing the 

severity of the accidents. For instance, if crews had been 

appropriately trained to execute the firefighting system, fire 

propagation could have been reduced, not causing more 

seriousness or casualties. The number of crew members can 

also affect individual workload. When a crew conducts a 

multitude of tasks simultaneously, it can increase the risk of 

fatigue and inaccurate work, which affects the accident’s 

severity level. 

 

Table 8. The joint probability of RIFs with Human and ship 

management 

 

RIFs -Human 

Error 

P (Very 

Serious 

Accident) 

(%) 

RIFs - Ship 

Management 

and Equipment 

P (Very 

Serious 

Accident) 

(%) 

Ships Manning 

(inadequate) 
60 

Firefighting and 

Navigation 

Equipment 

(inadequate) 

73.7 

Seafarers 

Certificate and 

Education 

(inadequate) 

52.8 

Regulation or 

Procedure 

(inadequate) 

55.6 

Operational 

Error 
54.9 Design Error 71.2 

Training and 

Drill 

(inadequate) 

62.5 
Structural 

Condition (bad) 
66.7 

  
Ship Certificates 

(inadequate) 
79.9 

  

Safety 

Equipment 

(inadequate) 

71.2 

 

For ship management and equipment, the most prevalent 

RIFs are inadequate ship certificates and documents, with a 

probability of 79.9% of very serious accidents. This condition 

often occurs in sinking cases, the most frequent accident for 

severe accidents in passenger vessels. It has been found that 

the vessel does not have the certified stability booklet, which 

is an important document for calculating the ship’s stability 

during loading conditions. In the absence of these documents, 

the calculations will be incorrect, resulting in the ship losing 

its buoyancy and stability. The second most influential RIF is 

the inadequate condition of Firefighting and Navigation 

equipment. Firefighting equipment plays a pivotal role in 

reducing the consequences of the fire or explosion accident or 

even responding to the fire so that the case only becomes a less 

serious marine incident. 

 

 

4. DISCUSSION AND IMPLICATIONS 

 

To answer the first research question, with a smaller amount 

of data compared to multiple sources, the TAN-BN model 

proposed in this study is capable of mapping the causal 

relationship between the accident severity and several causal 

factors for the passenger vessels in the Indonesian waters area. 

In this case, the data from the accident investigation already 

represents all the accidents for passenger vessels in Indonesia. 

Consequently, the proposed TAN-BN model can be used in 

certain more segmented cases, such as specific to certain ship 

types [51-53], or specific areas [37, 54].  

However, the limitation of the amount of data can certainly 

affect the model’s reliability. First, expert judgment is still 

needed to assess whether the model is generated automatically 

using the mutual information and maximum weight spanning 

tree approach based on data in accordance with the natural 

conditions in a passenger ship accident. Moreover, methods 

for validating TAN-BN models are limited, and this study only 

uses the Axiom theorem or model correctness. In contrast, 

predictive performance and model consistency verification 

methods cannot be used because they must use a percentage of 

the data as a reference. These two model validation techniques 

are difficult to conduct with limited data because data must be 

taken as a sample for the accuracy prediction model. However, 

the model correctness validation method is sufficient for 

validating the model based on its natural cause of maritime 

accidents. 

Regarding accident severity, the passenger vessels are most 

likely to have a very serious maritime accident. This result is 

similar to other studies with the TAN-BN model, such as the 

study by Cao et al. [45] and Cakir et al. [55], which stated that 

passenger vessel accidents tend to result in total loss of 

structural damage and fatality to passengers and 

crewmembers. Nevertheless, the severity result also differs 

from another study from Wang et al. [44] which stated that 

passenger vessels are most likely to have serious marine 

casualties. Moreover, a study from Zhou et al. [35] stated that 

passenger vessels will have less serious accidents than fishing 

vessels and dredgers since the two compared vessel types are 

more likely to not comply with international or regional rules 

and regulations. 

Regarding the accident type, the analysis has shown that in 

the passenger vessel, the accident type that is very sensitive to 

very serious accidents is sinking or capsizing. This result 

corroborates the study from Wang et al. [44] and Fan et al. 

[49], stating that sinking or capsizing often occurs in passenger 

vessels. These results are naturally appropriate because, in the 

event of a ship sinking accident, there is an inevitable loss of 

property, the ship sinks, and loss of life. On the other hand, 

this study also differs from other TAN-BN studies with the 

global perspective, which states that passenger vessels are 

more likely to have a collision accident [56-58] because the 

study collected data in several types of areas, such as canals or 

anchorage areas. 

In this model, the sensitivity analysis process uses three 

methods, namely mutual information, joint probability, and 

the true risk influence. From the mutual information sensitivity 

analysis, there are six most influencing RIFs, and based on the 
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entropy value, the ranking from the highest to the lowest are 

Accident Type>Ship Operation>Gross Tonnage>Accident 

Time> Violation Error> Engine Power. However, after the 

TRI calculations, the order has shifted to Ship Operation> 

Accident Type> Violation Error> Gross Tonnage> Accident 

Time> Engine Power. The difference between mutual 

information and TRI also happened in another TAN-BN 

model for maritime accident analysis [45]. This difference 

could happen because when calculating the TRI, all the states 

for the accident severity were analysed, and each state of RIFs 

influences different accident severity, which can cause 

changes to the average TRI value for each RIF. On the other 

hand, there are similarities in terms of the most influential 

RIFs according to the mutual information, which is the 

“Accident Type” with other studies such as [35, 45, 51, 53, 

55], which concludes that the “Accident type” is the most 

significant RIFs to the accident severity. 

The selection of RIFs in this TAN-BN model prioritises the 

internal conditions of the ship, as well as the influence of 

human error on accidents. The purpose of selecting RIFs is so 

that stakeholders or marine insurance parties can see which 

factors from the ship side can be controlled and mitigated by 

risk control measures. From the human-related factors, 

“Violation Error” is the most influential RIF for very serious 

accidents and ranked 3rd in the final ranking of RIFs by TRI. 

The ranking improvements of violation errors happen because, 

in Indonesia, the common violations often occur in maritime 

practice due to lack of supervision, such as allowing more 

cargo or passengers to be loaded exceeding the standard 

regulation and using electronic devices that non-marine uses 

that can cause electric short circuits. Ship equipment and 

management factors also contribute to the severity of the 

accidents. According to scenario 2, if the RIFs are related to 

improper ship management and terrible condition of the ship’s 

equipment, the probability of very serious accidents reaches 

its maximum value. 

The primary results of the TAN-BN model, including 

sensitivity and scenario analyses, provide valuable insights for 

stakeholders such as regulators and decision-makers in 

addressing urgent issues based on severity levels. For 

example, ship sinking and capsizing are the most critical 

accident types, often leading to severe outcomes. As a result, 

regulators and shipping management should prioritise 

mitigating hazards and risks associated with these types of 

incidents. Additionally, the analysis highlights “Accident 

Time” as a significant factor, with the highest probability of 

severe accidents occurring between 04:00 and 08:00 AM. This 

finding underscores the need for enhanced safety measures 

during this watch period. 

 

 

5. CONCLUSIONS 

 

A comprehensive analysis emphasising certain types of 

ships and water areas is needed to analyse and identify 

maritime accidents. Passenger vessels are the ship type that 

requires this detailed analysis to create regulations, policies, 

and survey forms targeted for the passenger vessels, with the 

final intention to reduce the risk and accident level. 

In this study, risk modelling using TAN-BN was carried out 

on 46 passenger ship accident data in Indonesia obtained from 

the NTSC investigation results. Compared with other research 

papers, 17 RIFs from these data are used in the model. The 

intention of selecting RIFs is to analyse factors from internal 

ship and human factors so that stakeholders can use them 

directly to make mitigative plans. So that external factors such 

as weather, season, and visibility are not integrated into the 

model. 

TAN-BN modelling was used with the mutual information 

method in NETICA norsys software, with adjustments based 

on expert judgments. After that, the model was validated using 

the three-axiom method, and the model satisfied the 

requirements for all the axioms. The result of the posterior 

probability of the model is that half of the accident cases are 

very serious accidents, with 60.9% occurring in the passage 

and 41.3% of the accident type being fire and explosion. With 

these results, it can be concluded that for the passenger vessel, 

the critical condition that must be considered regarding 

maritime safety is when the ship is in transit. There are often 

conditions where the crew ignores safety during duty hours. 

Consequently, it is necessary to increase safety during the 

ship’s passage. 

Sensitivity analysis determined the states in RIFs that 

influence accident severity most. 

The method used was mutual information to analyse the 

dependence between variables, with the result that “Accident 

Type” and “Ship Operation” were the two RIFs with the 

highest values. However, after further analysis of TRI, the 

highest average value on accident severity is ship operation 

with a value of 39.91, followed by accident type in the second 

position with 32.72, and Violation Error in the third. 

Other findings from the sensitivity and scenario analysis 

are:  

• Passenger vessels experience very serious accidents 

more often. The most influential types of accidents 

are sinking and capsizing, and they occur during 

passage or when the ship is in transit. 

• In less severe accidents, the type of accidents on 

passenger ships that are more likely to happen is 

grounding. Ship operations that cause less serious 

accidents are during the pilotage process. Regarding 

accident time, less serious accidents tend to occur at 

16.00-20.00, while serious accidents are most likely 

at 00.00-04.00. 

• The age of the ship that has the most influence on 

very serious accidents is more than 30 years, and this 

is also in line with the results where the condition of 

the structure, equipment, and outdated ship 

documents needs to be updated and handled by 

classifications. 

• The size of the passenger ship that has the most 

influence on very serious accidents is the size 500 - 

3000 GT, while the less serious accidents are more 

likely to occur on ships of size 3000 GT and above.  

• Human factors are quite influential, with the most 

considerable influence being violation error, 

followed by lack of training and ship manning. This 

is also in correspondence with the most sensitive 

accident time, which is 04.00-08.00. 

This study identified several conditions within the RIFs that 

can lead to accidents with extremely high severity levels on 

passenger ships. To enhance maritime safety, particularly for 

passenger vessels, it is essential to implement preventive and 

mitigative measures addressing RIF failures. As demonstrated 

in the scenario analysis, improvements in equipment 

reliability, human performance, and effective shipping 

management can significantly reduce the likelihood of severe 

accidents. 
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The main limitation of this study is the low number of data 

compared to other studies. To compensate for the lack of data 

in the modelling process, expert judgment and another 

numerical method should be applied to strengthen and 

improve the model’s reliability. Furthermore, future research 

should prioritise the most critical aspects of the “Accident 

Type” and “Ship Operation” RIFs. Employing a Dynamic 

Bayesian Network to analyse severity trends over time can 

yield valuable insights and predictive models for the severity 

of passenger vessel accidents in relation to these RIFs. 
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