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This paper proposes an innovative approach integrating vibration mode analysis and 
artificial intelligence (AI) algorithms to improve defect detection in composite materials. 
Recognizing the limitations of traditional NDT techniques in complex environments, this 
research demonstrates how the integration of AI, including CNNs and unsupervised 
learning techniques, enables more accurate and faster identification of structural 
anomalies. Experimental results confirm a significant improvement in performance, 
particularly in terms of accuracy and reliability, compared with conventional methods. 
By exploring applications in critical sectors such as aeronautics and renewable energies, 
this article highlights the future prospects of this methodological combination and 
proposes research directions to enhance the robustness of fault detection systems. 
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1. INTRODUCTION

The splendid houses of composite substances, together with
light-weight, excessive tensile strength, and adaptability, lead 
them to crucial in an extensive variety of commercial sectors. 
In aeronautics, using composite substances extensively 
reduces plane weight, main to more strength performance and 
decrease emissions whilst retaining the structural integrity 
required for safety. Wind turbine blades product of composite 
substances display more suitable sturdiness and long-time 
period overall performance in renewable strength structures, 
as they could face up to severe environmental situations. 
Similarly, the car enterprise advantages from those substances 
to fabricate light-weight but strong vehicles, enhancing gas 
performance and passenger safety. In excessive-overall 
performance sports, composite gadget along with bicycles and 
rackets combines lightness and strength, presenting athletes an 
aggressive edge. Recent research has additionally highlighted 
the improvement of bio composites with more suitable 
mechanical houses, along with PMMA-primarily based totally 
composites mixed with polyamide and polyvinylpyrrolidone, 
that have promising packages in superior cloth design [1]. 

Despite those advantages, composite substances face large 
demanding situations because of inner defects along with 
delaminations, cracks, porosities, and inclusions. These 
anomalies, frequently invisible to the bare eye, can 
significantly compromise structural integrity and cause 
catastrophic disasters in vital packages. For example, 
undetected delamination in aircraft additives can bring about 
in-flight failure, whilst defects in wind turbine blades can 

degrade overall performance or necessitate highly-priced 
repairs. Studies have proven that the conduct of composites 
below low-speed effect and fatigue situations is vital for 
making sure sturdiness, mainly in traumatic commercial 
packages [2]. Ensuring the reliability, protection, and 
sturdiness of composite structures calls for early and correct 
detection of such defects. 

Conventional non-unfavorable testing (NDT) strategies, 
along with ultrasonic inspection, radiography, and infrared 
thermography, frequently war to hit upon diffused or 
complicated anomalies in the heterogeneous systems of 
composites. These strategies are regularly hindered via way of 
means of constraints associated with environmental situations, 
structural geometry, or illness size. Consequently, 
revolutionary processes are urgently had to cope with those 
boundaries and meet the growing needs of cutting-edge 
industries. 

Artificial intelligence (AI) blended with superior NDT 
techniques has emerged as a promising technique to those 
demanding situations. AI excels in processing big volumes of 
complicated records and figuring out diffused styles that 
traditional strategies may miss. For instance, superior 
algorithms like convolutional neural networks (CNNs) can't 
handily pick out microscopic anomalies in X-ray pictures 
however additionally are expecting illness propagation in 
actual time. Additionally, unsupervised gaining knowledge of 
techniques, along with clustering, permit the identity of 
unknown defects without requiring pre-classified records. 
These technological improvements now no longer handiest 
beautify detection accuracy however additionally enhance 
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operational performance via way of means of lowering fees 
and inspection times. 

This article delves into the synergy among vibration mode 
evaluation and synthetic intelligence algorithms for illness 
detection in composite substances. It evaluates the overall 
performance of those included strategies in comparison to 
traditional strategies, highlights their applicability in vital 
sectors like aerospace and renewable strength, and proposes 
guidelines for destiny studies to cope with chronic demanding 
situations on this field. 

 
 

2. COMPOSITE MATERIALS AND COMMON 
DEFECTS 
 
2.1 Characteristics of composite materials 

 
Composite materials possess outstanding properties, 

combining different phases such as a reinforcement material 
(typically high-strength fibers like carbon, glass, or aramid) 
and a polymer resin matrix. This combination results in 
materials with significantly better mechanical properties than 
traditional ones. These include lightweight structures that 
reduce overall mass while maintaining strength, as well as 
high tensile and compressive strengths, making them essential 
in modern industry.  

The utilization is witnessed across various industries owing 
to their flexibility. Composites, for example, appeal to the 
aviation sector for their weight loss capability while also 
increasing the strength of the aircraft structural points very 
vital for the vehicle. Parveez et al. [3] carried out the detailed 
study of the scenario of the composite materials being utilized 
for the aircraft structures where their value was the highest 
highlighted. In the argument by Wu [4], the highest and the 
very first value of the use of the carbon-fiber composites is the 
consideration that the structures and the aerodynamics of the 
aircraft improve, something very fundamental for the 
conservation of energy through less consumption and the 
enhancement of the efficiency of the craft. 

In the renewable energy sector, significant progress has 
been made in defect detection for composite wind turbine 
blades, leveraging advanced AI techniques and non-
destructive testing (NDT) methods. For instance, one study 
proposes a semi-supervised anomaly detection method that 
identifies surface defects using drone-captured images, 
enhancing inspection accuracy and efficiency [5]. Another 
research project focuses on predicting fatigue damage in 
composite blades under uncertain wind loads through 
stochastic degradation models, enabling proactive 
maintenance and improved reliability [6]. Furthermore, an 
innovative perception system based on polarized 
computational imaging offers automatic defect detection in 
composite laminates, significantly improving the precision of 
blade inspections [7]. These advances are critical for 
enhancing the reliability, lifespan, and performance of wind 
turbine blades in renewable energy systems. 

In high-demand sectors such as automotive and sports 
equipment, the application of high-performance fiber-
reinforced polymer composites continues to expand, as 
highlighted by Alam et al. [8]. These materials combine 
lightweight characteristics with exceptional strength, making 
them ideal for creating durable, high-performance structures. 
The study indicates potential applications in diverse sectors, 
including the medical field, thanks to enhanced processability 

and performance [9]. 
These advancements enhance the capabilities of composite 

materials, improving efficiency, performance, and safety 
across various sectors such as aerospace, renewable energy, 
automotive, and sports. 

 
2.2 Types of composite materials and their characteristics 

 
Typology of Defects: Composite materials, renowned for 

their advanced performance attributes, are susceptible to a 
variety of defects that can compromise their structural 
integrity and functionality. Understanding these defects is 
essential for effective quality control and maintenance (see 
Figure 1). 

Delamination: Delamination is a critical defect where 
layers within a composite material separate due to poor 
bonding or impact damage. This can result in a significant 
reduction in the load-bearing capacity of the material. 
According to the article "Mécanique de la rupture des 
composites: délaminage et fissuration" [10], delamination 
often occurs due to the inherent properties of composite 
interfaces and is a major concern in structural applications. 
Detecting delamination early is crucial for preventing failures 
in aerospace and automotive applications [11]. Additionally, 
Sobri et al. [12] explored the advancements in carbon fiber 
reinforced polymers (CFRP), emphasizing improvements in 
manufacturing processes and material properties. 

Cracks: There are a number of reasons for the development 
of cracks which are mechanical stress, thermal cycles, or 
impact events causing potential structural degradation. The 
article then goes on with a detailed study of the mechanics of 
cracking in composites, enumerating which ones are the most 
common and how the stresses that appear either in use or in 
the production process can become the reasons of the 
structural defect [10]. The techniques like digital image 
correlation and acoustic emission are in the stage of 
development that will allow us to better detect and analyze 
cracks in composites.  

 
Table 1. Key characteristics and applications of composite 

materials 
 

Material Type Key Characteristics Applications 
Carbon Fiber-

Reinforced 
Polymer (CFRP) 

Lightweight, high tensile 
and compressive strength, 

thermal resistance 

Aerospace, 
automotive, sports 

equipment 
Glass Fiber-
Reinforced 

Polymer (GFRP) 

Cost-effective, good impact 
resistance, chemical stability 

Construction, 
piping, automotive 

Natural Fiber 
Composites 

Renewable, biodegradable, 
moderate strength 

Automotive 
interiors, 

construction panels 
Hybrid 

Composites 
Tailored properties by 

combining different fibers 
Military, transport, 
renewable energy 

 
Table 1 presents the key characteristics and applications of 

composite materials, highlighting their advantages in various 
industries. 

Inclusions: Inclusions are foreign particles or contaminants 
that become embedded within the composite matrix during 
manufacturing. These inclusions create stress concentrations 
that can weaken the material. Identifying inclusions often 
involves using advanced imaging techniques, such as scanning 
electron microscopy (SEM) and X-ray computed tomography 
(CT). 
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Figure 1. Common manufacturing defect in composites [12] 
 
Porosities: Porosities, or voids within the composite matrix, 

are a common defect resulting from incomplete resin 
infiltration or gas entrapment during the curing process. These 
voids can significantly reduce the material's mechanical 
properties and overall performance. According to recent 
studies, porosities can lead to reduced tensile strength and 
stiffness, making their detection critical for ensuring the 
quality of composite materials. 

Impact Damage: Impact damage can involve a range of 
defects, including matrix cracking, fiber breakage, and 
delamination. This type of damage is caused by external forces 
and can lead to a significant reduction in the material's 
structural integrity. Advanced non-destructive testing methods, 
including laser scanning and acoustic emission, are used to 
assess the extent of impact damage. 

Fiber Misalignment: When the fibers of reinforcement are 
misplaced not in the right direction, fiber misalignment takes 
place. The defect can make the mechanical performance of a 
composite in risk, which can mean that the strength and 
stiffness of it are compromised. The evaluation of fiber 
misalignment typically involves methods such as X-ray 
diffraction and ultrasonic inspection. 

Matrix Cracking: Matrix cracking involves cracks 
forming in the resin matrix due to excessive stress or thermal 
expansion. These cracks can propagate and compromise the 
composite’s load-carrying capacity. Matrix cracking is often 
studied using microscopy and acoustic emission techniques to 
understand its impact on material performance. 

Resin Rich Zones: Resin rich zones occur when there is an 
excess of resin in certain areas of the composite, leading to 
uneven mechanical properties and potential delamination. 
These zones can be detected using advanced imaging 
techniques, including infrared thermography and laser 
scanning. 

Impact of Defects 
Defects in composite materials can have profound effects 

on their mechanical properties and overall lifespan, impacting 
their performance in critical applications. 

Delamination: Delamination severely affects the load-
bearing capacity of composite materials. It creates weak planes 
within the material, leading to reduced shear strength and 
potential structural failure. The presence of delamination can 
significantly decrease the material's ability to withstand loads, 
particularly in aerospace and automotive applications where 
structural integrity is paramount. Studies show that 
delamination can lead to a marked decrease in tensile strength 
and stiffness, often requiring costly repairs or replacements 
[13]. 

Cracks: Cracks in composite materials, whether due to 
mechanical stress or impact, can propagate and lead to 
catastrophic failures if left unaddressed. Cracks reduce the 

material's ability to handle stress, affecting its fatigue life and 
overall durability. The propagation of cracks can lead to 
increased maintenance costs and reduced service life, as the 
material may no longer meet the required performance 
standards [14]. 

Inclusions: The presence of inclusions can compromise the 
material's structural integrity, leading to premature failure 
under operational loads. Inclusions within the composite 
matrix are the reason for the creation of stress concentrations 
which may, in turn, cause localized failures. These intruders 
of foreign origin may, to a great extent, change the uniform 
distribution of stress and strain in the structure. This can again 
result in decreased the mechanical functions and potential 
weak spots [15]. 

Porosities: Porosities, or voids, in the composite matrix can 
significantly weaken the material by reducing its density and 
mechanical strength. These voids can act as stress 
concentrators, leading to reduced tensile strength, stiffness, 
and impact resistance. Studies indicate that even small levels 
of porosity can substantially affect the material's performance, 
potentially leading to a reduced lifespan and higher 
susceptibility to environmental damage [16, 17]. 

Impact Damage: Impact damage, including matrix 
cracking and fiber breakage, affects the material's ability to 
bear loads and resist further damage. Impact-induced defects 
can compromise the material's structural integrity, leading to 
decreased performance and increased maintenance needs. The 
extent of impact damage often dictates the necessity for repairs 
or replacements, which can be costly and time-consuming. 

Fiber Misalignment: Fiber misalignment reduces the 
composite's mechanical performance by disrupting the 
intended load distribution. This misalignment can lead to a 
decrease in tensile and compressive strength, affecting the 
overall stability and load-bearing capacity of the material. 
Misalignment often results in reduced performance and 
increased risk of failure under load [9]. 

Matrix Cracking: Matrix cracking affects the material’s 
load-carrying capacity by compromising the integrity of the 
resin matrix. These cracks can propagate and lead to further 
degradation of the material's mechanical properties, reducing 
its overall durability and lifespan. Effective monitoring and 
repair are necessary to manage the impact of matrix cracking 
on composite materials [18]. 

Resin Rich Zones: Resin rich zones can lead to non-
uniform mechanical properties within the composite, affecting 
its overall performance. These areas can have reduced strength 
and increased susceptibility to delamination, impacting the 
material's reliability and service life. Detecting and managing 
resin rich zones is crucial for maintaining the material's 
intended performance [19]. 

Overall, defects in composite materials can significantly 
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impact their mechanical properties and service life. Early 
detection, accurate assessment, and effective repair strategies 
are essential for ensuring the reliability and longevity of 
composite structures. 

 
 

3. NON-DESTRUCTIVE TESTING (NDT) 
TECHNIQUES 
 
3.1 General overview of Non-Destructive Testing (NDT) 

 
Non-Destructive Testing (NDT) plays a crucial role in the 

inspection and evaluation of composite materials, ensuring 
their structural integrity and reliability without causing 
damage. Various NDT methods are employed to detect and 

characterize defects, each offering unique advantages 
depending on the type of composite material and the specific 
application. 

Ultrasonic Testing (UT): Ultrasonic testing is one of the 
most widely used NDT methods for inspecting composite 
materials. The method is highly effective for evaluating the 
thickness of composite layers and identifying flaws that are not 
visible on the surface (see Figure 2) [20]. 

Radiography (X-ray and Computed Tomography): 
Radiographic testing uses X-rays or gamma rays to penetrate 
the composite material and capture images of its internal 
structure. X-ray computed tomography (CT) provides 3D 
imaging, allowing for detailed visualization and analysis of 
internal defects (see Figure 3) [22]. 

 

 
 

Figure 2. A diagram that displays the test screen and compression probe of the ultrasonic testing unit (UT) [14, 21] 
 

 

 
 

Figure 3. Schematic radiograph of a typical composite with 
typical flaws [23] 

 
Thermography: Infrared thermography is a non-contact 

NDT method that detects temperature variations on the surface 
of the composite material. These variations are often caused 
by internal defects, such as delamination or impact damage, 
which disrupt the material`s thermal conductivity (see Figure 
4) [24]. 

Acoustic Emission (AE): Acoustic emission testing 
monitors the sound waves generated by the release of energy 
from within the material, typically during loading or stress. 
These sound waves are indicative of crack growth, fiber 
breakage, or delamination. AE is a sensitive method for 
detecting dynamic changes in the material and can provide 
real-time monitoring of defect progression. It is often used in 
structural health monitoring of composite components in 

service (see Figure 5) [26]. 
 

 
 

Figure 4. Active infrared thermography [25] 
 

 
 

Figure 5. Schematic representation of a typical AE system 
[27] 
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Shearography: Shearography provides a full-field 
inspection, making it suitable for large composite structures 
and complex geometries. It is commonly used in the aerospace 
and automotive industries for quality control and maintenance 
inspections (see Figure 6) [28]. 

Resonant Frequency Testing: The natural vibration 
frequencies of a composite structure are measured through 
resonant frequency testing. Defects such as delamination, 
cracks, or material degradation can be indicated by changes in 
these frequencies. For a comprehensive assessment, this 
method is often used in conjunction with other NDT methods 
to assess material properties that change globally [30]. 

Magnetic Resonance Imaging (MRI): Even though this is 
not standardly performed, MRI scan has been developed to 
check the state of all the magnetic types of the materials. With 
the help of this imaging technique, the internal architecture can 
be seen in great detail, and thus, the imperfections, such as 
voids, inclusions, and fiber orientation, can be discovered. 
Composite materials which MRI can be used for in the R&D 
area are also done in a detailed way [31]. 
 
3.2 Vibration mode analysis for defect detection 

 
The structural vibration characteristics can be examined 

using vibration mode analysis, which is a powerful technique 
for detecting defects in composite materials. Natural 
frequencies and mode shapes are the focus of this method's 
study. 

 

 
 

Figure 6. Schematic representation of a shearography test 
[22, 29] 

 
3.3 Theoretical principles 

 
• Vibration Modes and Natural Frequencies 

The vibration of an elastic structure can be described by the 
following differential equation, derived from the principles of 
structural dynamics: The fundamental Eq. (1) governing these 
vibrations is: 

 
𝜕𝜕2𝑢𝑢(𝑥𝑥, 𝑡𝑡)
𝜕𝜕2𝑡𝑡

+ 𝜔𝜔2𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 0 (1) 

 
where, 

• 𝑢𝑢(𝑥𝑥, 𝑡𝑡) is the displacement as a function of position x 
and time t. 

• 𝜔𝜔 represents the natural frequency of the structure 
[32]. 

This equation is based on the fundamental laws of dynamics 
and the constitutive relations between internal forces and 
deformations. 

• Dynamic Equilibrium and Mass and Stiffness 
Matrices 

Defects in composite materials, such as cracks or 
delaminations, alter the mechanical properties of the structure, 
thereby affecting its natural frequencies. This modification can 
be modeled by the following Eq. (2): 

 
𝑀𝑀𝑥̈𝑥 + 𝐶𝐶𝑥̇𝑥 + 𝐾𝐾𝐾𝐾 = 𝐹𝐹(𝑡𝑡) (2) 

 
where, 

• M: Mass matrix (positive definite). 
• C: Damping matrix. 
• K: Stiffness matrix. 
• x: Displacement vector 
• F(t): External force vector. 

 
For free vibrations (no external forces, 𝐹𝐹(𝑡𝑡) = 0 ) and 

undamped systems (𝐶𝐶 = 0), the Eq. (3) simplifies to [33]: 
 

𝑀𝑀𝑥̈𝑥 + 𝐾𝐾𝐾𝐾 = 0 (3) 
 
• Solving Free Vibrations: Eigenvalues and 

Eigenvectors 
Assuming a harmonic solution of the form 𝑥𝑥(𝑡𝑡) =

𝜙𝜙sin (𝜔𝜔𝜔𝜔) where 𝜙𝜙 is the mode shape vector, we obtain Eq. (4) 
[34]: 

 
[𝐾𝐾 − 𝜔𝜔2𝑀𝑀]𝜙𝜙 = 0 (4) 

 
This is an eigenvalue problem where, 
• ω2: Eigenvalues, corresponding to the squares of the 

natural frequencies. 
• ϕ: Eigenvectors, representing the associated mode 

shapes. 
The natural frequencies are found by solving Eq. (5): 
 

det (𝐾𝐾 − 𝜔𝜔2𝑀𝑀) = 0 (5) 
 
The mode shapes (𝜙𝜙) are calculated for each eigenvalue. 

This equation is used to compute natural frequencies and mode 
shapes based on material properties and structural geometry. 

• Effects of Defects on Vibratory Modes 
Defects, such as cracks or delaminations, alter the physical 

properties of the structure: 
• The stiffness matrix (𝐊𝐊) is locally reduced due to the 

defect, 
• These modifications affect the natural frequencies 

(ω) and mode shapes (ϕ). 
 
For a defective structure, the Eq. (6) becomes: 
 

(𝐾𝐾𝑑𝑑 − 𝜔𝜔𝑑𝑑
2𝑀𝑀)ϕd = 0 (6) 

 
where, 𝐾𝐾𝑑𝑑  and 𝜔𝜔𝑑𝑑  represent the stiffness matrix and natural 
frequencies modified by the defect. Differences between 𝜔𝜔 
and 𝜔𝜔𝑑𝑑 , and between 𝜙𝜙  and 𝜙𝜙𝑑𝑑 , provide insights into the 
location and severity of the defect. 

• Finite Element Simulation (FEM) 
To model the vibrations of composite structures, the finite 

element method (FEM) is employed. The procedure involves: 
1) Constructing the global mass 𝑀𝑀  and stiffness 𝐾𝐾 

matrices from local element contributions. 
2) Solving (𝐾𝐾 − 𝜔𝜔2𝑀𝑀)𝜙𝜙 = 0  to compute natural 

frequencies and mode shapes. 
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3) Introducing defects (e.g., cracks, delaminations) into 
the model and recalculating the dynamic parameters 
to observe changes. 

• Experimental Validation and Data Analysis 
The experimentally measured natural frequencies 𝜔𝜔𝑒𝑒𝑒𝑒𝑒𝑒 and 

theoretical values 𝜔𝜔𝑡𝑡ℎ  are compared using the following 
metric Eq. (7): 

 
Δ𝜔𝜔 =

𝜔𝜔𝑒𝑒𝑒𝑒𝑒𝑒 − 𝜔𝜔𝑡𝑡ℎ

𝜔𝜔𝑡𝑡ℎ
∗ 100% (7) 

 
Significant variations indicated the presence of defects. 
 
Additionally, mode shapes can be compared using the 

Modal Assurance Criterion (MAC) Eq. (8): 
 

𝑀𝑀𝑀𝑀𝑀𝑀 =
|𝜙𝜙𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇 𝜙𝜙𝑡𝑡ℎ|2

�𝜙𝜙𝑒𝑒𝑒𝑒𝑒𝑒�
2‖𝜙𝜙𝑡𝑡ℎ‖2

 (8) 

 
where, 𝑀𝑀𝑀𝑀𝑀𝑀  measures the similarity between experimental 
and theoretical mode shapes. A low correlation suggests 
alterations due to defects. 

 
3.4 Measurement methods 

 
• Excitation and Detection 

Excitation: The structure can be excited using methods such 
as impact testing (hammer test) or harmonic vibrations (shaker 
test). 

Detection: Accelerometers or strain gauges measure 
vibrational responses. The recorded signals are analyzed to 
identify natural frequencies and vibration modes [35]. 

• Data Analysis 
Fourier Transform (FT): FT is used to convert time-domain 

signals into the frequency domain to identify peaks 
corresponding to natural frequencies. This transformation is 
crucial for analyzing vibrational data [36]. 

Modal Analysis: This technique determines the modal 
shapes and resonance frequencies. Differences between 
experimental results and theoretical predictions can indicate 

defects. Modal analysis compares measured modal 
characteristics with theoretical predictions [37]. 

• Advanced Techniques 
Experimental Modal Analysis (EMA): Comparing 

experimental results with theoretical simulations is the basis 
of an advanced technique for evaluating modal characteristics. 
Observing discrepancies in mode shapes and frequencies is 
used in this method to detect defects [38]. 

Thermographic Imaging: Thermal anomalies associated 
with structural defects can be detected when it is combined 
with vibration analysis [39].  
 
3.5 Comparative overview and analysis of non-destructive 
testing (NDT) techniques 

 
A type of strategies are applied for disorder detection in 

composite substances, every imparting particular benefits and 
barriers tailor-made to particular applications. Vibration Mode 
Analysis is a way that detects defects through reading herbal 
frequencies and mode shapes of a structure, correctly figuring 
out cracks and delaminations in laminated composite panels. 
This approach is distinctly touchy to structural adjustments, 
non-invasive, and appropriate for complicated geometries, 
aleven though it calls for precise modeling and is touchy to 
boundary situations and noise [40-42]. 

Ultrasound Testing, which makes use of high-frequency 
sound waves to come across inner flaws or thickness versions, 
is extensively implemented in examining wind turbine blades 
and plane components. It boasts immoderate accuracy, deep 
penetration, and real-time effects but requires a hint medium 
and is restricted thru manner of approach of ground roughness 
and geometry [43-47]. 

Infrared Thermography detects subsurface imperfections 
through looking at warmth fluctuations on a cloth’s floor as a 
result of thermal emissions. It is a non-touch, speedy 
inspection technique that covers massive areas, making it 
appropriate for figuring out delaminations in car composites. 
However, it has confined penetration intensity and is laid low 
with ambient temperature and floor emissivity [48-50]. 

 
Table 2. Comparative overview and analysis of non-destructive testing (NDT) techniques 

 
Technique Principle Main Applications Advantages Limitations Relevant 

Studies 

Vibration Mode 
Analysis 

Detects defects by analyzing the 
natural frequencies and mode 
shapes of a structure, based on 
changes in vibration patterns. 

Detection of cracks and 
delaminations in 

laminated composite 
panels 

High sensitivity to 
structural changes, non-

invasive, suitable for 
complex geometries. 

Requires detailed 
modeling, sensitive to 

boundary conditions and 
noise. 

[40-42] 

Ultrasound 
Testing 

Detects internal flaws or thickness 
variations in a material by using 

high-frequency sound waves. 

Inspection of wind turbine 
blades, aircraft 

components 

High accuracy, deep 
penetration, real-time 

results. 

Requires contact medium, 
limited by surface 

roughness and geometry. 
[43, 44] 

Infrared 
Thermography 

Observes heat fluctuations on the 
surface of a material to spot 

subsurface imperfections based on 
thermal emissions. 

Identification of 
delaminations in 

automotive composites 

Non-contact, fast 
inspection, covers large 

areas. 

Limited penetration depth, 
affected by ambient 

temperature and surface 
emissivity. 

[45-47] 

Radiography 
(X-ray) 

X-rays are employed to create 
internal images of a material, 

which reveal density variations 
that indicate defects. 

Detection of porosities 
and cracks in aerospace 

structures 

High resolution, able to 
detect internal defects, 

widely used. 

Safety concerns with 
radiation, limited by 
material thickness. 

[48-50] 

Magnetic 
Particle Testing 

Detects defects on both sides and 
near-sides of ferromagnetic 

materials by utilizing magnetic 
fields. 

Surface defect detection in 
ferromagnetic materials 

for pipelines 

Highly sensitive to surface 
defects, easy to apply, cost-

effective. 

Limited to ferromagnetic 
materials, shallow 

penetration. 
[51] 

Eddy Current 
Testing 

Detects defects in conductive 
materials by inducing eddy 

Corrosion and crack 
detection in conductive 

Non-contact, effective for 
detecting surface cracks 

Limited to conductive 
materials, sensitivity [51-56] 
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currents using electromagnetic 
fields. 

alloys (e.g., aircraft and 
automotive parts) 

and corrosion. decreases with depth. 

Acoustic 
Emission 
Testing 

Specifies transient elastic waves 
that are triggered by sudden 

structural changes, such as crack 
formation and growth. 

Real-time monitoring of 
structural health in bridges 

and industrial pipelines 

Sensitive to active defects, 
real-time monitoring, can 

cover large areas. 

Requires continuous 
monitoring, can be 

affected by environmental 
noise. 

[57-62] 

Dye Penetrant 
Testing 

Displays surface defects on non-
porous materials by using a visible 

or fluorescent dye. 

Surface crack detection in 
metal components 

Simple and inexpensive, 
effective for surface 

cracks. 

Limited to surface defects, 
requires pre-cleaning, not 

suitable for porous 
materials. 

[63, 64] 

  

 
 

Figure 7. Graphic mind map representing a classification of techniques adapted to different types of materials 
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Radiography (X-ray) employs X-rays to generate inner 
photographs of substances, revealing density versions 
indicative of defects including porosities and cracks in 
aerospace structures. This technique affords high-decision 
imaging and is extensively used, however it comes with 
protection issues associated with radiation and barriers 
because of cloth thickness [48-50]. 

Magnetic Particle Testing makes use of magnetic fields to 
come across floor and near-floor defects in ferromagnetic 
substances, including the ones utilized in pipelines. It is 
distinctly touchy to floor defects, cost-powerful, and clean to 
apply, however it's miles confined to ferromagnetic substances 
and gives shallow penetration [51]. 

Eddy Current Testing induces eddy currents via 
electromagnetic fields to come across defects in conductive 
substances, including corrosion and cracks in plane and car 
parts. This non-touch technique is powerful for floor cracks 
and corrosion detection however is confined to conductive 
substances, and its sensitivity decreases with intensity [51-56]. 

Acoustic Emission Testing video display units temporary 
elastic waves brought about through structural adjustments 
like crack formation and growth. It is touchy to energetic 
defects, helps real-time tracking, and might cowl massive 
areas, making it best for structural fitness tracking of bridges 
and commercial pipelines. However, it calls for non-stop 
tracking and may be laid low with environmental noise [57-
61]. 

Dye Penetrant Testing, a easy and cheaper technique, is 
powerful for detecting floor cracks on non-porous substances 
the usage of a seen or fluorescent dye. While cost-green and 
clean to apply, it's miles confined to floor defects, calls for pre-
cleaning, and is improper for porous substances [63, 64]. 

By understanding the principles, applications, advantages, 
and limitations of these techniques, researchers and 
practitioners can choose the most appropriate method or 
combination of methods for specific industrial applications. 
The preceding Table 2 has been designed to simplify and 
clarify the advantages, making them easier to understand and 
apply. 

 
3.6 Taxonomy of Non-Destructive Testing (NDT) for 
materials 

 
The diagram Figure 7 represents a comprehensive mental 

map illustrating various non-destructive testing (NDT) 
techniques applicable to a wide range of materials, including 
metals, composites, polymers, wood, glass, ceramics, smart 
materials, and other specialized materials. This classification 
visually organizes NDT methods to enable quick identification 
of the most suitable techniques for each material category, 
tailored to their unique properties and defect detection needs. 

Composite materials, in particular, demand specialized 
NDT approaches due to their intricate structures, often 
composed of laminated layers or embedded fibers. These 
complexities necessitate the use of advanced techniques to 
ensure accurate detection of defects and maintain material 
integrity in critical applications. Among the key methods, 
three-dimensional tomography and radiography stand out for 
their ability to identify internal volume defects such as 
porosities and inclusions. These techniques provide high-
resolution, detailed imaging that is indispensable for analyzing 
the internal structure of layered composites. 

Infrared thermography, leveraging heat to detect surface-
level anomalies, is another essential method. It excels in 

identifying delaminations and cracks quickly and efficiently 
over large areas, making it especially valuable in industries 
such as aerospace and automotive. Acoustic emission analysis 
further complements this suite by monitoring real-time sound 
waves generated by defects under stress. This technique is 
particularly effective for detecting micro-cracks or early 
failure initiation, enabling preventive measures to avoid 
catastrophic failures. 

Vibration analysis, meanwhile, assesses changes in stiffness 
and structural integrity by evaluating the material's vibratory 
responses. This method is highly sensitive to variations in 
structural properties, making it a critical tool for diagnosing 
defects in laminated and hybrid composite systems. Each of 
these NDT techniques offers distinct advantages, including 
varying detection depths, resolutions, and sensitivities, 
making them suitable for different types of composite material 
applications. 

By combining multiple NDT methods, a comprehensive and 
accurate fault diagnosis can be achieved. This multi-technique 
approach not only enhances detection reliability but also 
provides a deeper understanding of material behavior under 
different conditions. The visual framework presented in the 
diagram serves as a valuable reference for selecting optimal 
NDT techniques based on material type, defect nature, and 
inspection requirements, supporting advancements in quality 
assurance and structural health monitoring across diverse 
industries. 
 
 
4. APPLYING ARTIFICIAL INTELLIGENCE IN NDT  
 
4.1 Introduction to AI in NDT 

 
The integration of synthetic intelligence (AI) in non-adverse 

testing (NDT) has emerged as a transformative technology, 
improving disorder detection and cloth characterization. AI 
permits the processing of massive datasets gathered from 
diverse NDT techniques, inclusive of vibration mode analysis, 
ultrasonics, and infrared thermography. Machine learning 
(ML) and deep learning (DL) algorithms significantly improve 
the accuracy of anomaly detection, defect propagation 
prediction, and real-time optimization of inspection processes 
[58-61]. 

AI's primary advantages include its ability to identify 
complex patterns and automate defect detection tasks that 
traditional methods struggle to address. For instance, 
Convolutional Neural Networks (CNNs) utilize convolutional 
layers to extract hierarchical features from radiographic 
images, enabling the identification of microscopic defects with 
improved accuracy and reduced false-negative rates. This 
leads to improved inspection reliability and precision. 
Additionally, AI systems trained on vibrational data employ 
unsupervised clustering algorithms, such as DBSCAN, to 
group similar defect patterns, even in noisy datasets, 
facilitating the classification of defect types and streamlining 
the evaluation of composite materials [65-67]. 

Moreover, supervised learning algorithms, including neural 
networks, automate ultrasonic signal analysis by mapping 
signal features to defect types, enabling continuous, real-time 
inspections without human intervention [68-70]. To detect 
unknown anomalies, unsupervised learning techniques like 
clustering (e.g., k-Means, DBSCAN) proactively identify 
defect patterns by segmenting high-dimensional data into 
meaningful clusters, addressing challenges posed by noisy or 
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unlabeled data [71-73]. This synergy between supervised and 
unsupervised approaches demonstrates the transformative 
potential of AI in enhancing NDT processes. 
 
4.2 The algorithms used 

 
 Artificial intelligence is turning into extra vital withinside 

the detection of defects in composite materials. The 
improvement of state-of-the-art techniques for figuring out 
and classifying anomalies has been made viable via way of 
means of current advances in computing and records 
processing. AI algorithms which can be primarily based totally 
on neural networks, deep learning, and sign processing 
strategies can offer effective answers for illness detection with 
progressed precision and efficiency. 

Review the main AI algorithms applied in defect detection, 
such as neural networks, deep learning, and signal processing 
methods. Convolutional Neural Networks (CNNs) are 
commonly used for defect recognition in composite material 
images by leveraging their ability to capture complex spatial 
features [74]. They have recently been extended with 
techniques like attention mechanisms, which enhance feature 
localization, improving the precision in defect detection tasks 
[75]. Similarly, Long Short-Term Memory (LSTM), a type of 
recurrent neural network, is effective for defect detection in 
time series by enabling the modeling of data sequences [76]. 
Enhanced LSTM models, such as Bi-LSTM, have been used 
to capture bidirectional dependencies, further refining defect 
prediction [77]. Capsule Networks (CapsNet) represent an 
advance in enhancing neural networks' ability to recognize 
spatial relationships between features [78]. 

Regarding signal processing methods, the Fourier 
Transform remains a fundamental tool for frequency domain 
signal analysis, widely used for identifying recurring defects 
[79]. Wavelet Transform, on the other hand, is effective for 
detecting defects localized in both time and frequency, which 
is crucial for analyzing non-stationary signals [80]. Recent 
research incorporates adaptive wavelet transform for better 
noise reduction and defect resolution [81]. 

Random Forests (RF) are distinguished for their versatility 
and the possibility of handling datasets with plenty of variables, 
which is why developers often choose them for creating 
automated systems for defect detection [82]. Gradient 
Boosting Machines (GBM) give a better performance by 
amalgamating several weak models to get a stronger model 
that increases the detection accuracy [83]. XGBoost, which is 
a variant of GBM, is one of the most demanded software for 
defect classification as a result of its speed and the exactness 
of the performance with large datasets [84]. 

For the clustering mechanism, we use k-Means which apart 
from its simplicity turns out to be the most effective way of 
grouping non-labeled data through the identification of similar 
defects [85]. DBSCAN (Density-Based Spatial Clustering of 
Applications with Noise) can effectively be used for detecting 
the defect structures in noisy data without prior knowledge of 
the clusters number [86]. Improvements in DBSCAN, for 
example, hierarchical DBSCAN, have been able to achieve a 
higher success rate in the identification of vulnerabilities in the 
noisy environments [87]. 

To make it easier to find defects, dimensionality reduction 
algorithms, such as Principal Component Analysis (PCA), are 
often employed to simplify multidimensional data analysis 
[88]. t-SNE is a particularly effective method for visualizing 
complex data, making it easier to detect defect clusters [89]. 

Recently, UMAP (Uniform Manifold Approximation and 
Projection) has gained attention for its efficiency in preserving 
local and global structures in defect visualization. 

Autoencoders use unsupervised learning to compare the 
input and its reconstruction for anomaly detection and they are 
among the most impressive ways to detect unlabeled faults 
[90]. Besides, Generative Adversarial Networks (GANs) are 
mainly used for not only the generation of synthetic data but 
also for the detection of defects by the generation of very good 
counterexamples [91]. 

Reinforcement Learning (RL) methods, such as Q-Learning, 
allow learning optimal policies for defect detection by 
interacting with a dynamic environment [92]. Deep Q-
Networks (DQN), which combine Q-Learning and deep neural 
networks, are particularly effective for systems where data 
evolves over time [93]. Advanced RL frameworks, such as 
multi-agent reinforcement learning, have shown potential in 
collaborative defect detection. 

Semi-Supervised Learning uses methods like Label 
Propagation, which relies on a small set of labeled data to label 
unlabeled data, which is especially useful when manual 
labeling is costly [94]. Co-Training leverages multiple views 
of the data to train distinct models, thus enhancing the 
robustness of defect detection systems in heterogeneous 
datasets [95]. 

Bayesian Techniques such as Bayesian Networks (BN) 
model probabilistic relationships between variables to predict 
the presence of defects, which is particularly useful in 
uncertain environments [96]. Gaussian Processes (GPs), as a 
non-parametric method, provide flexible modeling of potential 
anomalies in materials [97]. 

Finally, Transfer Learning is increasingly used to adapt pre-
trained models to new defect detection tasks. Fine-Tuning 
Deep Networks allows adjusting an existing model for a new 
application, reducing the need for large amounts of specific 
data [98]. Domain Adaptation is crucial for generalizing a 
model across different domains, making defect detection 
systems more robust against variations in experimental 
conditions [99]. 

 
4.3 Case study of different algorithms 

 
As shown in Table 3, different algorithms exhibit varying 

levels of accuracy and efficiency in detecting defects in 
composite materials. 

 
4.4 Performance analysis of classification models in fault 
detection 

 
In the context of defect detection in composite materials, 

Cheng et al. [71] conducted an in-depth evaluation of the 
performance of various classification algorithms based on 
neural networks [100] (see Table 4). The study highlighted 
models such as CNN, GhostCNN, ECACNN, Unet, 
deepCrack, MCuePushU, and ECAGhostCNN, comparing 
their classification accuracy and average execution time per 
image. The results reveal that the ECAGhostCNN model 
provides a remarkable balance between accuracy (93.75%) 
and speed (10.53ms), outperforming standard models like 
CNN (71.25% and 19.98ms) and GhostCNN (77.5% and 
10.07ms). While MCuePushU achieves the highest accuracy 
(98.52%), its average execution time (549ms) limits its use in 
real-time applications. Furthermore, models like Unet 
(90.21%) and deepCrack (93.15%) demonstrate notable 
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robustness, but their higher computation times make them less 
suitable for scenarios requiring rapid responses. These results 
highlight the importance of a trade-off between accuracy and 

efficiency, with the ECAGhostCNN model standing out as an 
optimal solution for practical real-time defect detection 
applications. 

 
Table 3. Case studies of different algorithms for composite defect detection 

 
Case Study 
Context / 

Application 
Description 

Experimental 
Setup Data Collection Processing 

Methods 
Algorithm 
Advantage Disadvantages Applicable 

Scenarios Ref 

Defect detection 
in composite 

materials using 
Convolutional 

Neural Networks 
(CNNs) 

High-resolution 
radiographic 

imaging systems; 
composite panels 

subjected to 
simulated stress 

conditions to 
induce defects. 

Industrial-
grade 

radiographic 
equipment; 

standardized 
exposure settings; 

pre-processed 
images for noise 

reduction. 

Transfer 
learning with 

CNNs; 
hierarchical feature 

extraction from 
10,000 labeled 

samples. 

High accuracy 
in hierarchical 

feature extraction; 
ability to detect 

subtle defects like 
voids and cracks. 

Requires large 
labeled datasets; 
computationally 

intensive. 

Ideal for 
surface and 

internal defect 
detection in 
aerospace 

composites using 
imaging data. 

[72] 

Vibration 
analysis in wind 

turbine blade 
composites using 
Support Vector 

Machines (SVM) 
and PCA 

Test rig 
simulating 
operational 
conditions; 

accelerometers 
mounted on blades 

to measure 
vibration 

responses. 

Signals 
recorded at 10 

kHz over multiple 
cycles; raw data 

filtered to remove 
high-frequency 

noise. 

SVM and PCA 
integration for 

defect 
classification with 

high accuracy. 

Robust to high-
dimensional data; 

reduces 
computational 

complexity 
through PCA. 

Sensitive to 
parameter tuning; less 

effective with non-
linear patterns. 

Effective for 
fault detection in 
high-dimensional 
vibration datasets 

in renewable 
energy 

applications. 

[91] 

Real-time 
monitoring of 

composite 
structures in bridges 

using Fourier and 
Wavelet Transforms 

Monitoring 
systems with 
piezoelectric 

sensors installed on 
bridge girders. 

Data logged 
over six months; 
signal anomalies 

flagged for 
analysis. 

Fourier and 
Wavelet 

Transforms for 
signal 

decomposition; 
noise reduction 
algorithms to 

enhance defect 
clarity. 

Effective in 
analyzing non-

stationary signals; 
decomposes data 

into time-
frequency 

components for 
detailed analysis. 

Computationally 
intensive; requires 
careful parameter 

optimization. 

Suitable for 
long-term 

structural health 
monitoring of 

bridges and large 
infrastructures. 

[92] 

Detection of 
complex defect 

patterns in 
composite materials 

using Capsule 
Networks 
(CapsNet) 

Laboratory 
experiments on 

composite 
laminates with 

artificially 
introduced defects 

(delaminations, 
inclusions). 

Optical and 
thermal imaging 

systems; 
controlled 

lighting and 
temperature 
conditions. 

Augmented 
datasets used to 

improve 
robustness; spatial 
feature recognition 

with CapsNet. 

Captures 
spatial hierarchies 
in defect features; 

resilient to 
varying 

orientations of 
input data. 

Limited adoption; 
computationally 

demanding for large 
datasets. 

Ideal for 
detecting 

complex, multi-
layered defects in 

composite 
laminates. 

[92] 

Unsupervised 
detection of defects 

in composite 
materials using K-
means clustering 

Non-uniform 
pressure applied on 
composite sheets to 

simulate defects; 
vibration sensors 

placed on test 
samples. 

50,000 
unlabeled 

vibration samples 
under varying 

conditions. 

Fine-tuned K-
means clustering 
to optimize inter-
cluster distances 

and identify defect 
clusters. 

Identifies 
hidden patterns in 

unlabeled data; 
effective for noisy 

datasets. 

Assumes 
predefined cluster 
numbers; struggles 
with non-spherical 

clusters. 

Effective for 
initial exploration 

of unlabeled 
datasets in 

vibration-based 
defect detection. 

[94] 

Structural health 
monitoring systems 

using Artificial 
Neural Networks 

(ANNs) 

SHM systems 
installed on aircraft 

components 
(fuselage, wings) to 

detect fatigue-
related defects. 

Ultrasonic 
testing data 

collected using 
phased array 

probes; time-of-
flight data 
recorder. 

Non-linear 
pattern detection in 
ultrasonic signals 

with ANNs; 
dataset includes 
5,000 labeled 

instances. 

Flexible in 
modeling 

complex non-
linear 

relationships; 
improves 

sensitivity to 
subtle ultrasonic 

anomalies 

Requires extensive 
computational 

resources; 
performance depends 

on labeled data 
quality. 

Suitable for 
fatigue defect 
detection in 
aerospace 
structural 

components using 
ultrasonic data. 

[95] 

Defect detection 
in composite 

materials through 
vibration signal 
analysis using 

Sequential Neural 
Networks (SNNs) 

Vibrational test 
bench simulating 

real-world 
operational 

conditions; sensors 
mounted to collect 

vibration data. 

Vibrational 
signals captured 

at high frequency; 
pre-processed to 
remove outliers 

and reduce noise. 

Sequential 
Neural Networks 
trained to analyze 

temporal 
dependencies in 

vibration patterns 
and detect 
anomalies. 

Excellent in 
modeling 

temporal data; 
improves real-

time defect 
detection in 

dynamic 
environments. 

High training time; 
requires large 

amounts of sequential 
data. 

Ideal for real-
time anomaly 
detection in 

dynamic 
operational 

conditions of 
composite 
materials. 

[96] 
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Table 4. Performance analysis of classification models in fault detection [100] 
 

Model Name Classification Accuracy (%) Average Runtime Key Strengths Key Limitations 
CNN 71,25 19,98 Simplicity, relative speed Limited accuracy 

GhostCNN 77,5 10,07 Good speed Average accuracy 
CNN + PP 66,2 87 - Low overall performance 
ECACNN 88,75 21,3 Good accuracy Slightly high execution time 

Unet 90,21 166,7 High accuracy High computation time 
deepCrack 93,15 141 Good accuracy High execution time 

MCuePushU 98,52 549 Best accuracy Very high execution time 
ECAGhostCNN 93,75 10,53 Excellent accuracy/time trade-off - 

 
 
5. SYNTHESIS OF CURRENT KNOWLEDGE 

 
5.1 Summary of advances 

 
In current years, huge development has been made 

withinside the subject of disorder detection in composite 
materials, drastically thru using non-detrimental testing (NDT) 
and synthetic intelligence (AI). Recent literature highlights the 
growing integration of NDT techniques, including ultrasonic 
analysis, infrared thermography, and electromagnetic methods, 
with AI algorithms to beautify the accuracy and performance 
of disorder detection. 

Recent traits display a fashion in the direction of the 
software of convolutional neural networks (CNNs), recurrent 
neural networks (RNNs), and pill networks (CapsNet) to 
investigate complicated records from NDT inspections. These 
algorithms permit for multi-scale function extraction and 
modeling of temporal dependencies, that are critical for 
figuring out diffused defects in composite structures. 

Unsupervised gadget mastering methods, including K-way 
clustering, have additionally received recognition for anomaly 
detection without the want for classified records, allowing 
early disorder identity in eventualities with confined records. 
Additionally, random forests (RF) and help vector machines 
(SVM) stay extensively used for his or her robustness in 
coping with noisy and imbalanced records. 

Recent sources, such as Calvo et al. [96] on carbon fiber 
composites, provide an in-depth perspective on advancements 
in NDT techniques and their integration with AI for industrial 
applications. Recent chapters in collective works, such as 
"Advances in Composite Materials for Aerospace 
Applications", emphasize the importance of these 
technologies in improving the reliability and safety of 
composite structures used in critical sectors like aerospace and 
automotive [97]. 

Finally, the study by Calvo et al. [96] highlight the use of 
sequential networks for vibration analysis, demonstrating the 
effectiveness of sequential neural architectures for real-time 
anomaly detection in composite materials. This convergence 
of NDT and AI technologies represents a key trend in the 
industry, with applications that continue to evolve and expand 
into new domains. 
 
5.2 Gaps in research 

 
Although tremendous advances were made withinside the 

discipline of illness detection in composite substances the use 
of non-damaging testing (NDT) strategies and device 
mastering algorithms, numerous gaps stay in modern-day 
research. NDT strategies inclusive of ultrasound, infrared 
thermography, and electromagnetic strategies preserve to 
stand obstacles in precision and in detecting diffused or small 
defects. These strategies can occasionally produce fake 

positives or negatives, in particular in complicated 
environments or systems with difficult geometries. 

Just the same, the collaboration of non-destructive testing 
data with machine learning algorithms still progresses, some 
of the issues having to with letting the machines to be clever 
with a limited resource of a given type of training data. As an 
example, a survey by Saberironaghi et al. [98] brings an 
insight into deep learning- based approaches, highlighting 
specific aspects of the situation like model complications and 
the demand for huge, labeled datasets. In the related research 
sector, Wei et al. [99] also contribute to the point by discussing 
the more kneaded constraints and difficulties of the machine 
learning models such as the one regarding overfitting and the 
other one of weak generalization. Comparable to the above 
study, Jo et al. [100] have conducted a detailed review of the 
research where deep learning-based methods are used. Here, 
the authors are persistently mentioning the complicated 
situation regarding model complexity and the need for the 
large, annotated datasets. Ghaleh et al. [101] focus on the real-
life issues that occur while machine learning is put into action 
in the industrial sector, and Dikmen et al. [102] offer a recent 
overview of obstacles and associated possibilities, including 
matters like the variability of defects and on top of that the 
difficulty of assembling representative datasets. The 
increasing gaps which have been brought about by a 
continuous increased capability to have faults prediction and 
detection problems in vital industrial activities will be the ones 
that need an urgent intervention by being redesigned and 
improved the current ones to make them more reliable and 
efficient. 
 
5.3 Opportunities for future research 

 
One significant research needs to be tackled will be the non-

destructive testing (NDT) of these materials. One way to go 
about is to work on developing some other non- destructive 
testing (NDT) methods that enable control with more accuracy. 
Similar research can be directed at improving the techniques 
already used to make these nondestructive investigations more 
precise or inventing brand new technologies that can cover the 
unnoticeable or small cracks. Not only that, the development 
of artificial intelligence (AI) algorithms integrating with the 
NDT data would be a step towards AI-m4b. The upcoming 
research could focus on the creation of new algorithms that 
require fewer perfect data and are able to generalize effectively 
to different kinds of defects and material conditions. The study 
may also focus on generating diversified and representative 
datasets that are a must for training high-precision models. 
Also, trying advanced data fusion methods, which allow the 
outcomes of different NDT techniques, as well as AI, to be 
combined and thus result in more precise and comprehensive 
defect assessments may be a fruitful way out. On the other 
hand, the use of transfer learning and semi- supervised 
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learning methods can be helpful when the limitations are 
connected with the lack of data and its low quality. In the end, 
the ability to come up with reliable and accurate diagnostic 
solutions for dealing with noisy and incomplete data is 
paramount for obtaining accurate results to the defect 
detection methods. 
 
6. FUTURE PROSPECTS AND RECOMMENDATIONS 
 
6.1 Emerging trends 

 
Recent improvements in disorder detection for composite 

substances screen numerous key rising trends. A enormous 
fashion is the combination of synthetic intelligence (AI) with 
clever sensors to decorate disorder detection and monitoring. 
Chen et al. [93] highlight the benefits of AI-integrated smart 
sensors in advancing defect detection capabilities by providing 
more accurate and detailed monitoring of composite materials. 
This integration allows for real-time analysis and early 
detection of potential issues, improving the overall reliability 
of monitoring systems. Similarly, the study discusses how 
combining AI with smart sensors can further enhance defect 
detection accuracy, particularly by enabling adaptive and 
intelligent responses to detected anomalies [103, 104]. This 
approach not only increases the precision of defect detection 
but also offers the capability for predictive maintenance and 
early intervention. Another first-rate fashion is the usage of the 
Internet of Things (IoT) for real-time illness detection. Li et al. 
[105] offer a complete evaluate of ways IoT technology are 
reworking illness detection with the aid of using permitting 
non-stop tracking and records collection. IoT enables the 
mixing of sensor records with superior analytical tools, 
bearing in mind real-time evaluation and extra knowledgeable 
decision-making concerning the situation of composite 
materials. These trends underscore the growing importance of 
leveraging advanced technologies to improve the effectiveness 
and efficiency of defect detection in various industrial 
applications. 
 
6.2 Challenges to overcome 

 
Despite enormous development in automatic disorder 

detection systems, numerous demanding situations stay that 
want to be addressed to develop the sector further. One of the 
number one demanding situation is the nice and amount of 
information to be had for schooling gadget studying fashions. 
High-nice annotated information is important for schooling 
correct and dependable fashions, but acquiring such 
information is frequently hard and resource-intensive. For 
instance, Li et al. [105] emphasize the undertaking of 
obtaining large, various datasets essential for schooling deep 
studying fashions effectively. Another predominant 
undertaking is the combination of various technology and 
methodologies. Combining numerous non-detrimental testing 
(NDT) strategies with superior synthetic intelligence (AI) 
fashions frequently calls for complicated information fusion 
processes that may be hard to enforce and optimize. Chen et 
al. [93] presents the issues involved in integrating AI with 
smart sensors that even face problems with the data 
synchronization and the device interoperability. The 
processing of data from automated systems in real-time is the 
presentation of significant computational difficulties. Whereas 
ensuring that systems are not only capable of apprehending 
information but also of reacting to it contextually is a 

significant challenge. Niu et al. [104] articulate that it's real-
time processing that is the main spoiler of the overall 
efficiency of fault detection systems. Lastly, the effectiveness 
of autonomous systems is still affected by the strength and 
reliability of their operation in the real-world environments the 
mechanisms are adapted to. The question is how the systems 
are able to adapt to the changes in the material conditions and 
the peculiar operating environments without making them 
work inefficiently. For the mass for adoption can be possible 
only by constant work on the subjects as the research of data 
acquiring technological devices, systems integration, real-time 
processing and environmental adaptability. 
 
6.3 Recommendations for future research 

 
To advance the field of automated defect detection in 

composite materials, several key areas warrant further 
exploration. Firstly, improving data acquisition techniques is 
essential. Future studies have to recognition on growing 
superior techniques for gathering high-quality, annotated 
datasets which can be consultant of various real-international 
conditions. This may want to contain the usage of artificial 
facts technology or leveraging switch gaining knowledge of to 
mitigate the demanding situations related to confined facts 
availability, as cautioned through Li et al. [105]. Secondly, 
there may be a want to beautify the combination of AI with 
non-unfavorable testing (NDT) techniques. Research has to 
intention at optimizing facts fusion methodologies to mix a 
couple of NDT modalities effectively, thereby enhancing the 
general accuracy and reliability of disorder detection systems. 
Chen et al. [93] recommends exploring new algorithms and 
architectures that can better handle the complexities of multi-
modal data integration. Additionally, future research should 
prioritize the development of real-time processing capabilities. 
This includes not only improving computational efficiency but 
also ensuring that systems are robust enough to operate 
effectively in dynamic and unpredictable environments. Niu et 
al. [104] highlight the potential of edge computing and 
decentralized AI as promising approaches to achieve real-time 
processing in industrial settings. Finally, expanding the 
application scope of automated defect detection systems is 
crucial. Research ought to discover the usage of those 
structures in new commercial sectors, which includes 
aerospace, automotive, and renewable energy, in which the 
detection of cloth defects is important for protection and 
performance. This enlargement can also contain the 
combination of those structures with rising technology just 
like the Internet of Things (IoT) and superior robotics to allow 
greater complete and adaptive tracking solutions. The 
suggestions suggest a future where automated defect detection 
systems are not only more precise and efficient but also widely 
applicable across different industries. 

 
 

7. CONCLUSION 
 
This take a look at explored advances withinside the 

detection of defects in composite substances through 
integrating non-unfavorable testing (NDT) strategies and 
synthetic intelligence (AI). The originality of this paintings 
lies withinside the in-intensity evaluation of blended 
techniques for overcoming the restrictions of conventional 
illness detection approaches, in particular in complicated 
environments and for heterogeneous composite structures. By 
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highlighting the possibilities provided through superior 
algorithms, which includes convolutional neural networks 
(CNNs) and unsupervised getting to know approaches, this 
studies opens up new potentialities for faster, greater correct 
and dependable detection. 

However, numerous demanding situations remain, in 
particular with reference to records quality, the generalization 
of AI fashions and the control of complicated real-global 
environments. In this respect, this take a look at proposes 
numerous guidelines for destiny paintings. Firstly, the 
improvement of greater strong algorithms able to managing 
imperfect or noisy records is essential. Secondly, the 
introduction of greater numerous and consultant databases 
may be vital to enhancing the overall performance of getting 
to know fashions. Finally, the mixing of recent technologies, 
which includes clever sensors and the Internet of Things (IoT), 
may want to revolutionize real-time tracking and predictive 
renovation of composite structures. 

In conclusion, this paintings contributes to strengthening the 
expertise and skills of AI-greater NDT structures in crucial 
applications, substantially withinside the aerospace, car and 
renewable power industries. Further studies in those regions 
couldn't simplest enhance the protection and performance of 
composite structures, however additionally foster persevered 
innovation withinside the improvement of superior substances 
and sensing structures. 
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