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Polar codes can reach the Shannon limit for an unlimited code length over a discrete
memoryless channel. As an incomplete polarization process for short lengths, polar
coding (PC) performs worse. Configuring the PC in a parallel or serial turbo
arrangement is one way to solve this issue. The problem with turbo code is that it
overestimates the information sequences sent between the parallel decoders.
Consequently, a scaling factor (SF) is proposed to reduce this exaggeration, and the
multiplication by SF calculated from the statistical methods increases complexity and
processing time. This paper suggests a feedforward neural network (NN) with a single
neuron and one hidden layer to scale the overestimating values of extrinsic information
instead of multiplication by scaling factor to reduce the latency and improve the
performance quality for short-length codes. Stopping criteria such as signed difference
ratio (SDR) and sign change ratio (SCR) algorithms are used to avoid needless decoding
iterations. In comparison to the original systematic turbo polar code (STPC), the
proposed NN scaling method exhibits an enhancement of approximately 0.3 dB at
BER=10"° over AWGN noise channel. Furthermore, using stopping criteria with the
proposed scheme may lower the average number of iterations (ANI) by a factor of 0.3
compared to the previous works based on the correlation coefficient approach.
Furthermore, the initiation interval is reduced to one cycle using different optimization

techniques like pipelining and array-partitioning.

1. INTRODUCTION

Arikan utilizes the polarization effect to create polar codes
that can attain the symmetric channel capacity /(). The
fundamental concept of polar coding is the creation of a coding
scheme that allows for individual access to one of N polarized

channels, Wl\fi)and transmits data only via channels that have a

probability of error Z (WN(‘)) close to zero [1]. The PC has an
encoder and decoder with a recursive nature and minimal
complexity, making it appropriate for practical applications.
For this reason, PC has attracted the interest of many
researchers in the channel and source coding fields. It has also
been chosen for the 5G communication [2].

The practically PC-acceptable performance is achieved at a
long code length, while its performance deteriorates at a short
length due to incomplete polarization of the channels Wlél).
Therefore, several ways are mentioned in the literature to
improve PC performance and reduce complexity, such as the
pipelined architecture presented by Arikan [3]. Walaa
introduces serial and parallel concatenation of turbo polar-
convolutional codes to avoid short code length performance
issues [4, 5]. Zhang et al. [6] used the Belief Propagation (BP)
algorithm to improve PCs' performance in finite code length
by applying parallel systematic polar codes. Liu et al. [7] used
the BP with a soft successive cancellation list (SSCL) to
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achieve more enhancement. Liu et al. [8] and Qi et al. [9]
employed iterative weighted decoding and punctured turbo PC
to enhance PC performance. Hamad et al. [10] proposed a
scaling factor (SF) estimation method of STPC with an
effective early termination (ET) method based on the
estimation of the correlation coefficient (CC) between a-priori
(P{) and extrinsic information (EL). Deep learning (DL)
algorithms that demonstrate PC's exceptional channel
decoding efficiency are presented by Nachmani et al. [11] and
Gruber et al. [12]. As reported by Vaz et al. [13], DL methods
are investigated based on deep neural networks (DNN) for
decoding PCs and recurrent neural networks (RNN) for turbo
codes.

This research suggests a simple neural network (NN) with
one hidden layer and a single neuron as an alternative to
replace the previous SF estimation methods to enhance the
performance of polar code at finite code length, reduce
latency, and increase the throughput. Proposed ET schemes
are the SDR [14] and SCR [15] with the STPC decoding
method. The proposed scheme improves PC performance at a
finite length and reduces the decoding complexity. The main
contributions of this paper are summarized as follows:
® A simple feedforward neural network (NN) with one

hidden layer and a single neuron is proposed for scaling
purposes, training offline by sufficient data sequences to
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get the required weights and bias values to produce the
SF.

® The SCR and SDR are introduced with NN as early
termination mechanisms to reduce the average number
of iterations.

®  The silicon area and latency of the hardware design are
minimized by using different optimization techniques
like pipelining, loop-unrolling and array partition.

The paper outlines are as follows: Section 2 reviews STPC
encoding. Section 3 describes STPC decoding. The suggested
NN method is introduced in Section 4. Two ET mechanisms,
SCR and SDR, are presented in Section 5. The results of the
simulation are demonstrated in Section 6. The conclusion of
the proposed models is given in Section 7.

2. STPC ENCODING

This study proposes an STPC comprising two parallel
systematic polar encoders [16]. The STPC encoding process
structure is illustrated in Figure 1. Encoder i uses a generator
matrix Gy to produce the codeword x;, where, i=1 or 2 in the
same way as any linear code. The generator matrix consists of
rows of linearly independent bases. Assume that the input to
the PC encoder is given by the sequenceu;, = [uy, Uy, ..., Uyl,
where u € {0,1}. The output of a non-systematic PC encoder
was defined by Eq. (1):

x, = u,Gy = w(ByFE") (1)

where, By is a permutation matrix of bit-reversal in the binary
field format F,, and @n is the nth Kronecker product. The first

kernel is given by F®! = H (1)] The data sequence is split

into two parts (uyr, Uygey for F < {1,--,N} and F° =
{1,---,N}/F, where, N denotes the constituent code length so
that the first part u; » represent the free data bits, while the
second part u; ¢, refer to the frozen bits. The chosen of F
data is based on the Bhattacharyya bound approximation
model [1]. Therefore, it is possible to rewrite Eq. (1) as [16,
17]:

X7 = U gGry + Uy pcGreg 2
Xy, 5¢ = Uy pGrpe + Uy peGpepe 3

Ggryc denotes to Gy submatrix with columns and rows
indexes of F¢ and F, respectively. In systematic code, the
vector u, xe is assigned to zero, and x; = uy . Using Eq. (2)
and Eq. (3), the parity bits x; zc is given by:

Xy p¢ = X1 7(Gpr) " Grpe “4)

The first encoder takes the information vector u; as input,
while the second encoder receives the Uy, which is an
interleaved version of uy, to create the STPC parallel structure,
as shown in Figure 1. The output of the STPC c =
{xlf,xl,?c, xzyfc} represents the overall codeword at the
multiplexer output, which is constructed from systematic bits
x, 7 and the parity bits x; zc generated by encoder i with a
total rate Ry = K/Ny where, Ny refers to the total code
length, and K is the data length Ny =2N —K . The
transmitted coded bits are modulated using a binary shift-

keying (BPSK) signal. The noisy data from the channel is
shown in Eq. (5). Here, wy is Gaussian noise that is spread out
randomly and has a mean of zero and a variance of
0% =N,/2,s, = 1— 2cy, where, s can take a value of -1 or
+1[10].

Ty = Sk + Wy (5)
u -
£ > %
1,F e
SPC1 2 5[BPSKs«k
v lejzc ,.t:
T—»{SPC2|—> =
| un-(k) xZ,IT—'C E

Figure 1. STPC encoder structure

3. STPC DECODING

The STPC iterative decoding structure is shown in Figure 2
[16]. The decoding procedure involves the following steps:

A.  The demultiplexing process splits a message into
three parts: the systematic part, denoted as ry;, and the two
parity check sequences, 1y, and r,;, which are related to
SPC1 and SPC2 encoders, respectively.

B. The SCAN-1 decoder receives a priori information
P{ . and sequences 7y, and 7y, to produce the a-posteriori
sequence A{ ;. To create extrinsic information &£ ., which is
delivered to SCAN-2, the redundant systematic r; , and a prior
information P{ , , need to be extracted from A{ , as shown in
Eq. (6) [10]:

2
— Tk — Pl (6)
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The intrinsic information 7f, is calculated as follows:
To reduce the correlation between
&l and 7f ., the extrinsic is multiplied by a scaling factor
represented by the symbol SFi < 1, which is calculated by
training a simple neural network on a dataset as mentioned in
Section 4. The prior information ?zf,k for SCAN-2 is generated
for each iteration and is represented by Eq. (7):

t _ 2 t
Jik = 52 sk + Py -

fpzt,k = Sf,n(k) (7N

where, a =SF1x &}, and the symbol m refers to the
interleaving process.
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Figure 2. Decoding of the STPC



C.  The second decoder, SCAN-2, utilizes 1y s, 15, and
P; . to generate the log-likelihood ratios (LLRs) A5 for the
free data bits. The prior sequence P is obtained from &5,
using Eq. (8):

:Plt,k = g;,,n-l(k) (3)
Here, =~ refer to the de-interleaver, and 5, = SF2 x

&} . Step (B) and step (C) are iterated even maximum value
of iterations I,,,,, i achieved, or some termination technique
is used to stop the iteration.

D. The output decoded sequence i, represents the hard
decision of the de-interleaved a-posteriori sequence cfl;n_l(k)

as despite in Eq. (9):
-
k 0,

4. THE PROPOSED SF ESTIMATION METHOD

<0
elsewhere

t
‘Az,n‘l(k) (9)

The proposed method implicitly calculates the scaling
factors SF1 and SF2 using the NN technique. The optimal
weights and biases are estimated from the offline training of
the NN using a large dataset of optimally scaled extrinsic
information obtained from the study conducted by Hamad et
al. [10]. The neural networks are optimally implemented,
allowing for high throughput and less utilization of resources
and power. The scaled LLR sequence £ is calculated by the
proposed system using a single hidden layer and one neuron,
as depicted in Figure 3. The equations that describe the NN are
given by Eq. (10) and introduced by Havstom and Heuts [18]:

z = TanSig (&L, w; + b;) (10a)

gt’k = LinAct(z w, + b,) (10b)

4
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Figure 3. Neural network training
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Table 1. Result of the training process

wi (Input bi (Output  w, (Output B, (Output

Weight) Weight) Weight) Weight)  ¥™"
0.042 -0.0011 23.8036 0.0251 -1
Xmax! Xminl Xmax Xmin Ymax
16.96 -17.7940 11.8720 -12.4560 1

Note: Ymin, Xmax> Xmins Xmaxl> Xminl, Ymax are input and target normalization

parameters.

5}5 = (FmaxYmin) g)z_l'xminl)/(Xmaxl'xminl) + Vumin-
v

&L =1iw*EL+ bi.

b= (2./(1+eC 2 - 1)* lw + bo.
v
?E= (Xmax'xmin)*( g}i 'Ymin)/(ymax'Ymin) +Xm'm-

Figure 4. Scaling process by neural network

In the proposed scheme, the activation function type is the
Tansigmoid (TanSig) for the hidden layer, and a linear
activation function (LinAct) for the output layer. The neuron's
biases of input and output layers are b; and b,, whereas w; and
w, are the weights of hidden and output layers, respectively.
The correlation coefficient method was programmed, and then
the scaling factor was calculated based on the statistical
equations mentioned by Hamad et al. [10], which gave optimal
values. Accordingly, the values of extrinsic information
before ¢, and after E, scaling are stored to be used later in
the training of NN. The proposed NN is training offline with a
total of 64 x 103 values of £g) as input and £ as the desired
target, as shown in Figure 3. The optimal values of weights
and bias are listed in Table 1. Figure 4 illustrates the scaling
process steps of the extrinsic information values for each scan
decoder.

5. PROPOSED EARLY TERMINATING

The reliability of soft inputs and output data in conventional
decoding improves with increasing iteration numbers.
Unfortunately, as the number of iterations rises, the
computationally complex and time-consuming processes
expand [19]. The decoder performs decoding successfully
before reaching the preset maximum number of iterations
(Imax) for many decoding sessions, particularly at a high
signal-to-noise power ratio [19]. Therefore, early termination
utilization provides a practical approach to reducing
computation and latency. This work uses the SDR and SCR as
ET techniques to terminate extra decoding iterations in
STPC NN decoding.

The stopping condition of the SCR depends on computing
the sign changes C(t) of €5, (1) from iteration (t — 1) to t
iteration. The SCR rule states that for each iteration:

{if C(t) <=10"° X kp, end the iteration 1

else, continue until I, an



where, kp is frame size. To retain the sign values of
Eﬁ_k (1) from the previous iteration, the SCR approach
requires a storage device, hence its complexity. This issue led
to the suggestion of a different strategy known as SDR, in
which for each iteration t, let D(t) represent the number of
sign differences between €5, (1) and €f , (2). The condition
of termination is given by Eq. (12):

{if D(t) <0.5x 1073 X kp, end the iteration 12

else, continue until L, (12)

To measure how well the current stopping criteria work, a

benchmark ET technique called the "Genie stopping rule" is

simulated [20]. Genie assumes that the decoder is believed to

have complete knowledge about the communicated bits and
finishes decoding if the rule in Eq. (13) is satisfied:

{if i, = uy, for all k bits, end the iteration
else, continue until I,

(13)

The simulated steps of the SDR and SCR algorithms are
summarized in Figure 5.

Initialize
values from
SCAN Decoder
(ED&(PL)

!

D(t) = £, - P,

L |

Initialize values from|
SCAN Decoder:
(&), (€
c(t)=0

|
Y

c(t) = c(t) + |&, — &7

fD(t) <=5+10"%« kp

iteration=Ima3

-1 _
gl=gl
update

c(6)<=1%10"+kp

(b)

Figure 5. Early terminations criteria: (a) SDR; (b) SCR

6. SIMULATION RESULTS

In this study, MATLAB R2020b was utilized to compare
the performance of proposed techniques against decoding
methods [4, 10]. The STPC-NN-SDR and STPC-NN-SCR
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codes were tested by examining their bit error rate (BER) and
frame error rate (FER) performance over AWGN. The specific
parameters of the proposed STPC systems are detailed in
Table 2.

Table 2. Proposed parameter values

Parameter Value
The frame size of NN training 64
The data length of STPC (K) 64, 128
Rate of constituent PC 112
STPC rate 1/3,1/2
Number of NN frame training 1000
Modulation type BPSK
The PC construction method Bhattacharya
Constituent decoders type SCAN

Maximum iteration Imax 6
Minimum block errors 100
AWGN, ¥ (0,02),
02 =1/(2Rr Ep/N,)
1,000,000
50,000

Channel type

Maximum number of block samples
Minimum number of block samples

101

= [4] STPC-FIXED-SF-BER
[ = Proposed-STPC-NN-BER
-£xOriginal-STPC-BER
-£%[10] STPC-CC-BER
5 | ~%¥-[4] STPC-FIXED-SF-FER
% Proposed-STPC-NN-FER
-¥-Original-STPC-FER
~3%-[10] STPC-CC-FER
|

BER & FER

=
o
IS

35 4
Eb/No(dB)

(2)

2.5 3
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0.15d8|

-
(=
&

35 4
Eb/No(dB)

(b)
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Figure 6. BER performance of different STPC schemes with
Imax =0, rate 1/3: (a) K=64; (b) K=128

6.1 Simulation results with fixed iterations

This section presents the results of simulated STPC systems
with six decoding iterations. A performance comparison in
terms of BER and FER against Ej, /N, for the proposed STPC-
NN that employs a neural network, the STPC-Fixed-SF
presented by Alebady and Hamad [4] and STPC-CC scheme



utilizes an adaptive scaling factor offered by Hamad et al. [10],
depicted in Figure 6 for k=64 and 128, R=1/3, R=1/2
respectively. Additionally, the original STPC system without
SF is simulated as a reference to highlight the benefits of the
proposed weighted scheme. At BER and FER of 107>, the

STPC-NN shows a 0.3 dB and 0.25 dB enhancement, E .
respectively, over the original STPC without scaling factors. It i ° A STRCNNIo(MAX) BER
also slightly outperforms the STPC-CC and STPC-Fixed-SF % STPC-NN-Gine-BER \\*\
by approximately 0.05 dB. For the same parameter the STPC- o A STRCANN-SCRBER .
CC system with code length N=256 bit found that the STPC- ~#-STPC-NN-Io(MAX)-FER \. ;
NN exceed the STPC-CC by 0.15 dB at BER=107°. o TPCANSCREER
109 STPC-NN-SDR-FER | |
6.2 Complexity analysis result 2 ¢ Eb/N(E) ¢ 8
(a)

High-level synthesis (HLS Vitis 2022.1) was utilized to 107 T
assess the latency and utilization improvement of the proposed B,
scheme. All systems are designed based on the Genesys 2 W, "
board, which has a Kintex-7 Field Programmable Gate Array \: '''''''''''''''''
(FPGA) and a core part number XC7K325T-2FFG900C. | Ty e

Table 3 illustrates the design schemes with and without
applying pipeline using directive pragma offered by the HLS

= > . STPC-NN-Io(MAX)-BER| % ™.
Vitis platform. The optimized schemes enhance the time delay ’iswc-nn-soi(ne-sén &,
at the expense of increasing the required resources. | %+ STPC-NN-SCR-BER

3
S

BER & FER
s
L

STPC-NN-SDR-BER
105 | ~E}STPC-NN-lo(MAX)-FER

J . . | “E3-STPC-NN-Gine-FER '
Table 3. Delay and utilization analysis B} STPONN.SCR.FER \
%2

STPC-NN-SDR-FER

Proposed NN CC [10] " : e ‘ e
With (b)
Parameter  Without With Pipeline With
Pipeline  Pipeline +Array Pipeline Figure 7. STPC-NN results of K=64 with different ET: (a)
R=1/3; (b) R=1/2

Partitioning
6209 323 93 839

Latency
(cycles)
Interval 6210 324 1 840
(cycles)
BRAM_18K 0 0 0 0
DSP 15 55 2688 913
FF 1620 9702 243166 116034
LUT 2665 8827 255682 87628

BER &FER

H-#E-STPC-NN-lo(MAX)-BER
Table 3 reveals that the proposed NN scheme has reduced | STPC.NN-Gine-BER
. e . . | -#-STPC-NN-SCR-BER
latency, interval, and utilization of the pipeline tfechnlque 1051 % STPCNN.SDR BER
compared to CC. If the array partitioning pragma is added, -@-STPC-NN-Io(MAX)-FER
even 1 cycle (10 ns) can be reached in every scaling process b gy
with an N sequence of extrinsic information at the expense of STPC-NN-SDR-FER

increased resources. 28 ®

35
Eb/No(dB)

(2)

- STPC-NN-Io(MAX)-BER
—- STPC-NN-Gine-BER
3 STPC-NN-SCR-BER

Several simulation experiments were run to illustrate the S T e e
impact of ET on the proposed performance. Figures 7 and 8 '
demonstrate the proposed system (STPC-NN) using a neural
network with SDR (STPC-NN-SDR), SCR (STPC-NN-SCR),
and GINE (STPC-NN-Gine) ET techniques for K=64 and 128
with different turbo coding rates (1/2 and 1/3). The simulation
tests for various systems show a comparative performance.

Figure 9 compares the proposed system with the method
studied by Hamad et al. [10] regarding the average number of
iterations (ANI). The proposed schemes, STPC-NN-SDR and ‘
STPC-NN-SCR, reduce the required ANI compared to STPC- 10 -
CC-ET by approximately 70% and 41%, respectively. These EbiNo(dB)
ANI reductions without compromising performance suggest (b)
improved data throughput and lower latency.

6.3 Results of STPC with early termination 10°

@ STPC-NN-Gine-FER
..@-- STPC-NN-SCR-FER
STPC-NN-SDR-FER

z
.........
.......

3
/

BER&FER

=
&

104E

Figure 8. STPC-NN results with different ET at K=128: (a)
R=1/3; (b) R=1/2
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108 *
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25 3 35
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107 F B

108 | . | .
25 3 3.5 4

Eb/No(dB)

(b)

Figure 9. ANI of the suggested STPC with an early
termination: (a) K=64; (b) K=128

7. CONCLUSIONS

This research presents a new approach to tackle the
performance degradation of PCs at short lengths and alleviate
the overestimation issue when constructing them in a turbo
decoding scheme. The proposed solution involved a simple
neural network with one hidden layer and a single neuron,
which effectively replaces the conventional scaling
techniques, thereby reducing complexity, power consumption,
and processing delay in hardware implementation.
Furthermore, the employing of stopping criteria such as signed
difference ratio (SDR) and sign change ratio (SCR) algorithms
significantly improve the decoding efficiency of the proposed
scheme in terms of the average number of iterations (ANI) as
compared with the system adopted by Hamad et al. [10]. The
results suggest promising prospects for deploying neural
network-based scaling schemes and stopping criteria to
enhance PC communication systems' efficiency and
reliability. For future work, testing NN with different
parameters are interesting. Different ET mechanisms like
Cross-entropy or threshold static methods can be applied.
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