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Polar codes can reach the Shannon limit for an unlimited code length over a discrete 

memoryless channel. As an incomplete polarization process for short lengths, polar 

coding (PC) performs worse. Configuring the PC in a parallel or serial turbo 

arrangement is one way to solve this issue. The problem with turbo code is that it 

overestimates the information sequences sent between the parallel decoders. 

Consequently, a scaling factor (SF) is proposed to reduce this exaggeration, and the 

multiplication by SF calculated from the statistical methods increases complexity and 

processing time. This paper suggests a feedforward neural network (NN) with a single 

neuron and one hidden layer to scale the overestimating values of extrinsic information 

instead of multiplication by scaling factor to reduce the latency and improve the 

performance quality for short-length codes. Stopping criteria such as signed difference 

ratio (SDR) and sign change ratio (SCR) algorithms are used to avoid needless decoding 

iterations. In comparison to the original systematic turbo polar code (STPC), the 

proposed NN scaling method exhibits an enhancement of approximately 0.3 dB at 

BER=10-5 over AWGN noise channel. Furthermore, using stopping criteria with the 

proposed scheme may lower the average number of iterations (ANI) by a factor of 0.3 

compared to the previous works based on the correlation coefficient approach. 

Furthermore, the initiation interval is reduced to one cycle using different optimization 

techniques like pipelining and array-partitioning. 
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1. INTRODUCTION

Arikan utilizes the polarization effect to create polar codes 

that can attain the symmetric channel capacity I(W). The 

fundamental concept of polar coding is the creation of a coding 

scheme that allows for individual access to one of N polarized 

channels, 𝑊𝑁
(𝑖)

and transmits data only via channels that have a

probability of error 𝑍(𝑊𝑁
(𝑖)

) close to zero [1].  The PC has an

encoder and decoder with a recursive nature and minimal 

complexity, making it appropriate for practical applications. 

For this reason,  PC has attracted the interest of many 

researchers in the channel and source coding fields. It has also 

been chosen for the 5G communication [2]. 

The practically PC-acceptable performance is achieved at a 

long code length, while its performance deteriorates at a short 

length due to incomplete polarization of the channels 𝑊𝑁
(𝑖)

.

Therefore, several ways are mentioned in the literature to 

improve PC performance and reduce complexity, such as the 

pipelined architecture presented by Arikan [3]. Walaa 

introduces serial and parallel concatenation of turbo polar-

convolutional codes to avoid short code length performance 

issues [4, 5]. Zhang et al. [6] used the Belief Propagation (BP) 

algorithm to improve PCs' performance in finite code length 

by applying parallel systematic polar codes. Liu et al. [7] used 

the BP with a soft successive cancellation list (SSCL) to 

achieve more enhancement. Liu et al. [8] and Qi et al. [9] 

employed iterative weighted decoding and punctured turbo PC 

to enhance PC performance. Hamad et al. [10] proposed a 

scaling factor (SF) estimation method of STPC with an 

effective early termination (ET) method based on the 

estimation of the correlation coefficient (CC) between a-priori 

( 𝒫𝑘
𝑡 ) and extrinsic information ( ℰ𝑘

𝑡 ). Deep learning (DL)

algorithms that demonstrate PC's exceptional channel 

decoding efficiency are presented by Nachmani et al. [11] and 

Gruber et al. [12]. As reported by Vaz et al. [13], DL methods 

are investigated based on deep neural networks (DNN) for 

decoding PCs and recurrent neural networks (RNN) for turbo 

codes. 

This research suggests a simple neural network (NN) with 

one hidden layer and a single neuron as an alternative to 

replace the previous SF estimation methods to enhance the 

performance of polar code at finite code length, reduce 

latency, and increase the throughput. Proposed ET schemes 

are the SDR [14] and SCR [15] with the STPC decoding 

method. The proposed scheme improves PC performance at a 

finite length and reduces the decoding complexity. The main 

contributions of this paper are summarized as follows: 

⚫ A simple feedforward neural network (NN) with one

hidden layer and a single neuron is proposed for scaling

purposes, training offline by sufficient data sequences to
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get the required weights and bias values to produce the 

SF.  

⚫ The SCR and SDR are introduced with NN as early 

termination mechanisms to reduce the average number 

of iterations. 

⚫ The silicon area and latency of the hardware design are 

minimized by using different optimization techniques 

like pipelining, loop-unrolling and array partition. 

The paper outlines are as follows: Section 2 reviews STPC 

encoding. Section 3 describes STPC decoding. The suggested 

NN method is introduced in Section 4. Two ET mechanisms, 

SCR and SDR, are presented in Section 5. The results of the 

simulation are demonstrated in Section 6. The conclusion of 

the proposed models is given in Section 7. 

 

 

2. STPC ENCODING  
 

This study proposes an STPC comprising two parallel 

systematic polar encoders [16]. The STPC encoding process 

structure is illustrated in Figure 1. Encoder 𝑖 uses a generator 

matrix 𝐺𝑁 to produce the codeword 𝑥𝑖 , where, 𝑖=1 or 2 in the 

same way as any linear code. The generator matrix consists of 

rows of linearly independent bases. Assume that the input to 

the PC encoder is given by the sequence𝑢𝑘 = [𝑢1, 𝑢2, … , 𝑢𝑁], 
where 𝑢 ∈ {0,1}. The output of a non-systematic PC encoder 

was defined by Eq. (1): 

 

𝑥𝑙 = 𝑢𝑙𝐺𝑁 = 𝑢𝑙(𝐵𝑁𝐹2
⨂𝑛) (1) 

 

where, 𝐵𝑁 is a permutation matrix of bit-reversal in the binary 

field format 𝐹2, and ⨂𝑛 is the nth Kronecker product. The first 

kernel is given by 𝐹⨂1 = [
1 0
1 1

]. The data sequence is split 

into two parts ( 𝑢1,ℱ ,  𝑢1,ℱ𝑐)  for ℱ ⊂ {1, ⋯ , 𝑁}  and ℱ𝑐 =

{1, ⋯ , 𝑁}/ℱ, where, 𝑁 denotes the constituent code length so 

that the first part 𝑢1,ℱ  represent the free data bits, while the 

second part 𝑢1,ℱ𝑐 , refer to the frozen bits. The chosen of ℱ 

data is based on the Bhattacharyya bound approximation 

model [1]. Therefore, it is possible to rewrite Eq. (1) as [16, 

17]: 

 

𝑥1,ℱ = 𝑢1,ℱ𝐺ℱℱ + 𝑢1,ℱ𝑐𝐺ℱ𝑐ℱ (2) 

 

𝑥1,ℱ𝑐 = 𝑢1,ℱ𝐺ℱℱ𝑐 + 𝑢1,ℱ𝑐𝐺ℱ𝑐ℱ𝑐  (3) 

 

𝐺ℱℱ𝑐  denotes to 𝐺𝑁  submatrix with columns and rows 

indexes of ℱ𝑐  and ℱ , respectively. In systematic code, the 

vector 𝑢1,ℱ𝑐 is assigned to zero, and 𝑥1,ℱ = 𝑢1,ℱ. Using Eq. (2) 

and Eq. (3), the parity bits 𝑥1,ℱ𝑐  is given by: 

 

𝑥1,ℱ𝑐 = 𝑥1,ℱ(𝐺ℱℱ)−1𝐺ℱℱ𝑐 (4) 

 

The first encoder takes the information vector 𝑢𝑘 as input, 

while the second encoder receives the  𝑢𝜋(𝑘) , which is an 

interleaved version of 𝑢𝑘 to create the STPC parallel structure, 

as shown in Figure 1. The output of the STPC  𝑐 =

{𝑥1,ℱ , 𝑥1,ℱ𝑐 , 𝑥2,ℱ𝑐}  represents the overall codeword at the 

multiplexer output, which is constructed from systematic bits 

𝑥1,ℱ  and the parity bits 𝑥𝑖,ℱ𝑐  generated by encoder 𝑖  with a 

total rate 𝑅𝑇 = 𝐾/𝑁𝑇 ,  where, 𝑁𝑇  refers to the total code 

length, and 𝐾  is the data length  𝑁𝑇 = 2𝑁 − 𝐾 . The 

transmitted coded bits are modulated using a binary shift-

keying (BPSK) signal. The noisy data from the channel is 

shown in Eq. (5). Here, ωk is Gaussian noise that is spread out 

randomly and has a mean of zero and a variance of 

𝜎2 = 𝑁𝑜/2, 𝑠𝑘 = 1 − 2𝑐𝑘, where, 𝑠𝑘 can take a value of -1 or 

+1 [10]. 

 

𝑟𝑘 = 𝑠𝑘 + 𝜔𝑘 (5) 

 

 
 

Figure 1. STPC encoder structure 

 

 

3. STPC DECODING  
 

The STPC iterative decoding structure is shown in Figure 2 

[16]. The decoding procedure involves the following steps: 

A. The demultiplexing process splits a message into 

three parts: the systematic part, denoted as 𝑟𝑠,𝑘, and the two 

parity check sequences, 𝑟1,𝑘  and 𝑟2,𝑘 , which are related to 

SPC1 and SPC2 encoders, respectively. 

B.  The SCAN-1 decoder receives a priori information 

𝒫1,𝑘
𝑡  and sequences  𝑟𝑠,𝑘  and 𝑟1,𝑘  to produce the a-posteriori 

sequence 𝒜1,𝑘
𝑡 . To create extrinsic information ℰ1,𝑘

𝑡 , which is 

delivered to SCAN-2, the redundant systematic 𝑟𝑠,𝑘 and a prior 

information 𝒫1,𝑘 
𝑡 , need to be extracted from 𝒜1,𝑘

𝑡  as shown in 

Eq. (6) [10]: 

 

ℰ1,𝑘
𝑡 =  𝒜1,𝑘

𝑡 −
2

𝜎2
𝑟𝑠,𝑘 − 𝒫1,𝑘

𝑡  (6) 

 

The intrinsic information ℐ1,𝑘
𝑡  is calculated as follows: 

ℐ1,𝑘
𝑡 =

2

𝜎2 𝑟𝑠,𝑘 + 𝒫1,𝑘
𝑡 . To reduce the correlation between 

ℰ1,𝑘
𝑡  and ℐ1,𝑘

𝑡 , the extrinsic is multiplied by a scaling factor 

represented by the symbol 𝑆𝐹𝑖 ≤ 1, which is calculated by 

training a simple neural network on a dataset as mentioned in 

Section 4. The prior information 𝒫2,𝑘
𝑡  for SCAN-2 is generated 

for each iteration and is represented by Eq. (7): 

 

𝒫2,𝑘
𝑡 = ℰ1,𝜋(𝑘)

𝑡̅̅ ̅̅ ̅̅ ̅̅  (7) 

 

where, ℰ1,𝑘
𝑡̅̅ ̅̅ ̅ = 𝑆𝐹1 × ℰ1,𝑘

𝑡 , and the symbol 𝜋  refers to the 

interleaving process. 

 

 
 

Figure 2. Decoding of the STPC 
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C. The second decoder, SCAN-2, utilizes 𝑟𝑘,𝑠, 𝑟2,𝑘, and 

𝒫2,𝑘
𝑡  to generate the log-likelihood ratios (LLRs) 𝒜2,𝑘 

𝑡 for the 

free data bits. The prior sequence 𝒫1,𝑘
𝑡 is obtained from ℰ2,𝑘

𝑡  

using Eq. (8): 
 

𝒫1,𝑘
𝑡 = ℰ2,.𝜋−1(𝑘)

𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (8) 

 

Here, 𝜋−1  refer to the de-interleaver, and ℰ2,k
𝑡̅̅ ̅̅ ̅ = 𝑆𝐹2 ×

ℰ2,𝑘
𝑡 . Step (B) and step (C) are iterated even maximum value 

of iterations 𝐼𝑚𝑎𝑥  is achieved, or some termination technique 

is used to stop the iteration. 

D. The output decoded sequence 𝑢̂𝑘 represents the hard 

decision of the de-interleaved a-posteriori sequence 𝒜2,𝜋−1(𝑘)
𝑡  

as despite in Eq. (9): 
 

𝑢̂𝑘 = {
1,               𝒜2,𝜋−1(𝑘)

𝑡 < 0 

0,                     𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
 (9) 

 

 

4. THE PROPOSED SF ESTIMATION METHOD  
 

The proposed method implicitly calculates the scaling 

factors SF1 and SF2 using the NN technique. The optimal 

weights and biases are estimated from the offline training of 

the NN using a large dataset of optimally scaled extrinsic 

information obtained from the study conducted by Hamad et 

al. [10]. The neural networks are optimally implemented, 

allowing for high throughput and less utilization of resources 

and power. The scaled LLR sequence ℰs,k
t̅̅ ̅̅ ̅ is calculated by the 

proposed system using a single hidden layer and one neuron, 

as depicted in Figure 3. The equations that describe the NN are 

given by Eq. (10) and introduced by Havstöm and Heuts [18]:  
 

𝑧 = 𝑇𝑎𝑛𝑆𝑖𝑔(ℰ𝑠,𝑘
𝑡  𝑤𝑖 + 𝑏𝑖) (10a) 

 

ℰ𝑠,𝑘
𝑡̅̅ ̅̅ ̅ = 𝐿𝑖𝑛𝐴𝑐𝑡(𝑧 𝑤𝑜 + 𝑏𝑜) (10b) 

 

 
 

Figure 3. Neural network training 

Table 1. Result of the training process 

 
wi (Input 

Weight) 

bi (Output 

Weight) 

wo (Output 

Weight) 

Bo (Output 

Weight) 
ymin 

0.042 -0.0011 23.8036 0.0251 -1 

xmax1 xmin1 xmax xmin ymax 

16.96 -17.7940 11.8720 -12.4560 1 
Note: ymin, xmax, xmin, xmax1, xmin1, ymax are input and target normalization 

parameters. 

 

 
 

Figure 4. Scaling process by neural network 
 

In the proposed scheme, the activation function type is the 

Tansigmoid ( 𝑇𝑎𝑛𝑆𝑖𝑔) for the hidden layer, and a linear 

activation function (𝐿𝑖𝑛𝐴𝑐𝑡) for the output layer. The neuron's 

biases of input and output layers are 𝑏𝑖 and 𝑏𝑜, whereas 𝑤𝑖  and 

𝑤𝑜 are the weights of hidden and output layers, respectively. 

The correlation coefficient method was programmed, and then 

the scaling factor was calculated based on the statistical 

equations mentioned by Hamad et al. [10], which gave optimal 

values. Accordingly, the  values of extrinsic information 

before ℰ𝑠,𝑘
𝑡  and after ℰ𝑠,𝑘

𝑡̅̅ ̅̅ ̅ scaling are stored to be used later in 

the training of NN. The proposed NN is training offline with a 

total of 64 × 103 values of ℰs,k
t  as input and ℰs,k

t̅̅ ̅̅ ̅ as the desired 

target, as shown in Figure 3. The optimal values of weights 

and bias are listed in Table 1. Figure 4 illustrates the scaling 

process steps of the extrinsic information values for each scan 

decoder. 

 

 

5. PROPOSED EARLY TERMINATING  

 

The reliability of soft inputs and output data in conventional 

decoding improves with increasing iteration numbers. 

Unfortunately, as the number of iterations rises, the 

computationally complex and time-consuming processes 

expand [19]. The decoder performs decoding successfully 

before reaching the preset maximum number of iterations 

(Imax) for many decoding sessions, particularly at a high 

signal-to-noise power ratio [19]. Therefore, early termination 

utilization provides a practical approach to reducing 

computation and latency. This work uses the SDR and SCR as 

ET techniques to terminate extra decoding iterations in 

STPC_NN decoding.  

The stopping condition of the SCR depends on computing 

the sign changes 𝐶(𝑡) of ℰ2,𝑘
𝑡 (𝑢̂) from iteration  (𝑡 − 1) to 𝑡 

iteration. The SCR rule states that for each iteration:  

 

{
𝑖𝑓 𝐶(𝑡) <= 10−9 × 𝑘𝑝, 𝑒𝑛𝑑 𝑡ℎ𝑒 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

𝑒𝑙𝑠𝑒, 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑢𝑛𝑡𝑖𝑙 𝐼𝑚𝑎𝑥
 (11) 
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where, 𝑘𝑝  is frame size. To retain the sign values of 

ℰ2,𝑘
𝑡 (𝑢̂) from the previous iteration, the SCR approach 

requires a storage device, hence its complexity. This issue led 

to the suggestion of a different strategy known as SDR, in 

which for each iteration 𝑡, let 𝐷(𝑡) represent the number of 

sign differences between ℰ2,𝑘
𝑡 (𝑢̂) and ℰ1,𝑘

𝑡 (𝑢̂). The condition 

of termination is given by Eq. (12): 

 

{
𝑖𝑓 𝐷(𝑡) ≤ 0.5 × 10−3 × 𝑘𝑝, 𝑒𝑛𝑑 𝑡ℎ𝑒 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

𝑒𝑙𝑠𝑒, 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑢𝑛𝑡𝑖𝑙 𝐼𝑚𝑎𝑥
 (12) 

 

To measure how well the current stopping criteria work, a 

benchmark ET technique called the "Genie stopping rule" is 

simulated [20]. Genie assumes that the decoder is believed to 

have complete knowledge about the communicated bits and 

finishes decoding if the rule in Eq. (13) is satisfied: 

 

{
𝑖𝑓 𝑢̂𝑘 = 𝑢𝑘 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 𝑏𝑖𝑡𝑠, 𝑒𝑛𝑑 𝑡ℎ𝑒 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

𝑒𝑙𝑠𝑒, 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑢𝑛𝑡𝑖𝑙 𝐼𝑚𝑎𝑥
 (13) 

 

The simulated steps of the SDR and SCR algorithms are 

summarized in Figure 5. 

 

 
(a) 

 
(b) 

 

Figure 5. Early terminations criteria: (a) SDR; (b) SCR 

 

 

6. SIMULATION RESULTS  

 

In this study, MATLAB R2020b was utilized to compare 

the performance of proposed techniques against decoding 

methods [4, 10]. The STPC-NN-SDR and STPC-NN-SCR 

codes were tested by examining their bit error rate (BER) and 

frame error rate (FER) performance over AWGN. The specific 

parameters of the proposed STPC systems are detailed in 

Table 2. 

 

Table 2. Proposed parameter values 

 
Parameter Value 

The frame size of NN training 64 

The data length of STPC (K) 64, 128 

Rate of constituent PC 1/2 

STPC rate 1/3, 1/2 

Number of NN frame training 1000 

Modulation type BPSK 

The PC construction method Bhattacharya 

Constituent decoders type SCAN 

Maximum iteration Imax 6 

Minimum block errors 100 

Channel type 
AWGN, 𝒩(0, 𝜎2), 

𝜎2 = 1/(2𝑅𝑇 𝐸𝑏 𝑁𝑜⁄ ) 

Maximum number of block samples 1,000,000 

Minimum number of block samples 50,000 

 

 
(a) 

 
(b) 

 

Figure 6. BER performance of different STPC schemes with 

𝐼𝑚𝑎𝑥 =6, rate 1/3: (a) K=64; (b) K=128 

 

6.1 Simulation results with fixed iterations 

 

This section presents the results of simulated STPC systems 

with six decoding iterations. A performance comparison in 

terms of BER and FER against 𝐸𝑏 𝑁𝑜⁄  for the proposed STPC-

NN that employs a neural network, the STPC-Fixed-SF 

presented by Alebady and Hamad [4] and STPC-CC scheme 
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utilizes an adaptive scaling factor offered by Hamad et al. [10], 

depicted in Figure 6 for k=64 and 128, R=1/3, R=1/2 

respectively. Additionally, the original STPC system without 

SF is simulated as a reference to highlight the benefits of the 

proposed weighted scheme. At BER and FER of  10−5 , the 

STPC-NN shows a 0.3 dB and 0.25 dB enhancement, 

respectively, over the original STPC without scaling factors. It 

also slightly outperforms the STPC-CC and STPC-Fixed-SF 

by approximately 0.05 dB. For the same parameter the STPC-

CC system with code length N=256 bit found that the STPC-

NN exceed the STPC-CC by 0.15 dB at BER= 10−6. 

 

6.2 Complexity analysis result 

 
High-level synthesis (HLS Vitis 2022.1) was utilized to 

assess the latency and utilization improvement of the proposed 

scheme. All systems are designed based on the Genesys 2 

board, which has a Kintex-7 Field Programmable Gate Array 

(FPGA) and a core part number XC7K325T-2FFG900C. 

Table 3 illustrates the design schemes with and without 

applying pipeline using directive pragma offered by the HLS 

Vitis platform. The optimized schemes enhance the time delay 

at the expense of increasing the required resources. 

 
Table 3. Delay and utilization analysis 

 

Parameter 

Proposed NN CC [10] 

Without 

Pipeline 

With 

Pipeline 

With 

Pipeline 

+Array 

Partitioning 

With 

Pipeline 

Latency 

(cycles) 
6209 323 93 839 

Interval 

(cycles) 
6210 324 1 840 

BRAM_18K 0 0 0 0 

DSP 15 55 2688 913 

FF 1620 9702 243166 116034 

LUT 2665 8827 255682 87628 

 
Table 3 reveals that the proposed NN scheme has reduced 

latency, interval, and utilization of the pipeline technique 

compared to CC. If the array partitioning pragma is added, 

even 1 cycle (10 ns) can be reached in every scaling process 

with an N sequence of extrinsic information at the expense of 

increased resources. 

 
6.3 Results of STPC with early termination 

 
Several simulation experiments were run to illustrate the 

impact of ET on the proposed performance. Figures 7 and 8 

demonstrate the proposed system (STPC-NN) using a neural 

network with SDR (STPC-NN-SDR), SCR (STPC-NN-SCR), 

and GINE (STPC-NN-Gine) ET techniques for K=64 and 128 

with different turbo coding rates (1/2 and 1/3). The simulation 

tests for various systems show a comparative performance. 

Figure 9 compares the proposed system with the method 

studied by Hamad et al. [10] regarding the average number of 

iterations (ANI). The proposed schemes, STPC-NN-SDR and 

STPC-NN-SCR, reduce the required ANI compared to STPC-

CC-ET by approximately 70% and 41%, respectively. These 

ANI reductions without compromising performance suggest 

improved data throughput and lower latency. 

 

 
(a) 

 
(b) 

 

Figure 7. STPC-NN results of K=64 with different ET: (a) 

R=1/3; (b) R=1/2 

 

 
(a) 

 
(b) 

 

Figure 8. STPC-NN results with different ET at K=128: (a) 

R=1/3; (b) R=1/2 
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(a) 

 
(b) 

 

Figure 9. ANI of the suggested STPC with an early 

termination: (a) K=64; (b) K=128 

 

 

7. CONCLUSIONS 

 

This research presents a new approach to tackle the 

performance degradation of PCs at short lengths and alleviate 

the overestimation issue when constructing them in a turbo 

decoding scheme. The proposed solution involved a simple 

neural network with one hidden layer and a single neuron, 

which effectively replaces the conventional scaling 

techniques, thereby reducing complexity, power consumption, 

and processing delay in hardware implementation. 

Furthermore, the employing of stopping criteria such as signed 

difference ratio (SDR) and sign change ratio (SCR) algorithms 

significantly improve the decoding efficiency of the proposed 

scheme in terms of the average number of iterations (ANI) as 

compared with the system adopted by Hamad et al. [10]. The 

results suggest promising prospects for deploying neural 

network-based scaling schemes and stopping criteria to 

enhance PC communication systems' efficiency and 

reliability. For future work, testing NN with different 

parameters are interesting. Different ET mechanisms like 

Cross-entropy or threshold static methods can be applied. 
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