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Control systems of robotics, aircraft flight, seismology, and others in real environments 

are subject to deviations from the nominal operating conditions. It is required to 

maintain the stability and performance of such systems in the presence of uncertain 

parameters, disturbances and noises that affect the measurement accuracy. Robust 

control seeks achieving this goal taking into consideration the present uncertainties in 

the system. To imitate the control of the forehead mentioned systems, triple inverted 

pendulum can be used as a bench mark to test the fulfilment of robust performance and 

stability. This paper develops an H-infinity controller and uses the particle swarm 

optimization (PSO) technique to choose the transfer functions' coefficients of the 

performance weighting transfer matrix (PWTM) to obtain system robustness. The 

resultant robustness measures of the control system's stability and performance were 

found to be 0.528 and 0.987, respectively. Different cases are investigated to test the 

developed controller's capability of stabilization and tracking of the system. While the 

unoptimized H-infinity control system yields good performance for the nominal system, 

this performance level, and stability, is not consistent for system variations. The results 

reveal that the proposed control algorithm has enhanced the stability and performance 

robustness through optimization by 79.93% and 62.52%, respectively, which proves its 

effectiveness in real world applications compared to the control system without 

optimizing the PWTM. 

Keywords: 

H-infinity, particle swarm optimization, robust

control, structured singular value, triple inverted

pendulum, weighting matrix

1. INTRODUCTION

Inverted pendulums have been used widely to test control 

methods. The triple inverted pendulum, specifically, is a 

valuable test bed for developing new control strategies. The 

nonlinearity of system dynamics is very challenging to control. 

It is also an underactuated system, which means that it has 

fewer control inputs than degrees of freedom [1]. Besides that, 

the system is exposed to variety sources of perturbations as 

will be seen in sections 2 and 3. 

Inverted pendulums have been used to develop and validate 

the effectiveness of new control methods. The studies [2-4] 

have developed different feedback control systems for the 

single link inverted pendulum including: pole-placement, 

Proportional-Integral-Derivative (PID), Sliding Mode Control 

(SMC), Linear Quadratic Regulator (LQR), H2 state-feedback, 

and Model Predictive Control (MPC) systems. Yet, Fajar [2] 

hadn't consider the presence of uncertainty, Varghese et al. [3] 

considered only the effect of disturbance, while Ali and 

Kadhim [4] considered the uncertainty of parameter variations 

and disturbance. 

For the double inverted pendulum system, optimized LQR, 

Fuzzy Logic Control (FLC), triple PID, SMC- Linear Matrix 

Inequality (LMI), Linear Quadratic Gauss (LQG) optimal 

control, Laguerre functions, Reinforcement Learning (RL), 

and hierarchical SMC techniques have been applied in the 

researches [5-15]. Though, full system robustness had not 

been studied. 

The addition of another Degree of Freedom (DoF) in the 

triple inverted pendulum system brings new challenge of 

control system development. Gluck et al. [16] have suggested 

the design of feedforward and feedback controllers together, 

the two DoF control system was able to swing-up the system 

whereas the LQR control system proposed by Sharma and 

Sahu [17] could stabilize the system around its vertical 

equilibrium point. In 2017, Setka et al. [18] have utilized ARM 

processors/ FPGA to implement the control system. The 

angular velocity deviations were relatively small and rapidly 

corrected. However, notable oscillations were observed at 

certain times. 

H-infinity control has been used in references [19-24] to

design robust controllers that are capable of stabilizing 

systems while guaranteeing specific performance metrics. 

This methodology involves formulating the control problem as 

a mathematical maximization/minimization problem and the 

identification of the controller that minimizes a specific cost 

function within the chosen optimization framework. 

While traditional control methods typically focus on 

achieving specific performance objectives in the nominal 

system, they don't explicitly account for uncertainties in the 

system model or external disturbances. This can lead to 

degraded performance or even instability when the system 
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deviates from its nominal case. 

On the other hand, H-infinity control focuses on 

guaranteeing robust performance despite system's 

uncertainties by minimizing the worst-case impact of 

uncertainty on system's output. H-infinity control explicitly 

considers uncertainties in the system model and guarantees 

robust performance under a defined range of those 

uncertainties. This leads to better control system behavior even 

when the actual system deviates from its nominal model. Also, 

H-infinity control allows for optimization of a specific 

performance metric while guaranteeing robustness. This can 

lead to controllers that achieve better performance compared 

to traditional methods under uncertainty. 

Several methods are used to find a solution to the H-infinity 

design problem. Youla-Kucera parametrization introduces a 

parameterized controller structure where the actual controller 

is determined by specific values of these parameters. This 

method provides a general framework for controller design. 

LMI is used to represent various properties of the system and 

can express constraints on things like system stability and H-

infinity norm, yet, formulating the LMI conditions can be 

mathematically complex. On the other hand, Riccati equations 

offers a direct solution for the controller gain by less intensive 

computations. 

In general, the H-infinity algorithms find a sub-optimal 

controller. To find an optimal controller, the algorithm has to 

be repeatedly reducing the H-infinity cost until the minimum 

is obtained which is numerically and theoretically complicated 

[25]. 

The control objectives of this paper are to design an H-

infinity control system that achieves robustness against all 

possible sources of uncertainties and perturbations by the aid 

of PSO to obtain the optimal elements of PWTM. In addition, 

it must account for the unstable behavior that may be exhibited 

by the system due to its nonlinearity and compensate for the 

lack of control inputs to overcome the problem of under 

actuation. 

This organization of the rest of the paper is as the follows: 

Section 2 explains the equations of the triple inverted 

pendulum system, while section 3 formulates the H-infinity 

control problem and applies optimization to control system 

design. Thereafter, robustness of the controller is analyzed in 

section 4. Different robustness tests for the system are 

presented and compared to the control system without 

optimizing PWTM in section 5. At last, the concluded remarks 

of the developed controller are introduced in section 6. 

 

 

2. TRIPLE INVERTED PENDULUM SYSTEM 

 

The triple inverted pendulum system consists of three links 

whose angles are to be controlled by two DC motors. These 

angles are measured by three potentiometers. Also, three 

horizontal bars are used to make the system easier to control 

by increasing the moment of inertia as shown in Figure 1 [1]. 

The control of this system faces multiple challenges; first, 

the uncertainties in the system (parametric uncertainty, 

external disturbance, measurement noise, and unmodeled 

dynamics) introduce variations in the system's dynamics, 

making its behavior less predictable. Second, the system is 

multi-input/multi output (2 control signals/ 3 controlled 

angles) with interactions between inputs and outputs which are 

hard to control. Third, the system is nonlinear which means 

that its behavior can be difficult to predict analytically because 

simple changes in inputs can lead to drastic changes in outputs. 

Finally, the system is under actuated (has fewer control inputs 

than its degrees of freedom), this limitation restricts the ability 

to directly control all aspects of the system's behavior. some 

degrees of freedom can only be indirectly influenced through 

the available control inputs. 

 

 
 

Figure 1. Triple inverted pendulum system [1] 

 

The system's equations of motion are [26]: 

 

𝑀(𝜃) [

𝜃1̈

𝜃2̈

𝜃3̈

] + 𝑁𝑐 [

𝜃1̇

𝜃2̇

𝜃3̇

] + [

𝑞1

𝑞2

𝑞3

] + 𝐺 [
𝑡𝑚1

𝑡𝑚2
] = 𝑇 [

𝑑1

𝑑2

𝑑3

] (1) 

 

where, the vector θ=[θ1 θ2 θ3]T represents the angles of the 

links from the vertical axis, tmj represents the jth motor torque, 

di represents the disturbance torque applied on the ith link: 

 

[

𝐽1 + 𝐼𝑝1 𝑙1 𝑀2 cos(𝜃1 − 𝜃2) − 𝐼𝑝1 𝑙1 𝑀3 cos(𝜃1 − 𝜃3)

𝑙1 𝑀2 cos(𝜃1 − 𝜃2) − 𝐼𝑝1 𝐽2 + 𝐼𝑝1 + 𝐼𝑝2 𝑙2 𝑀3 cos(𝜃2 − 𝜃3) − 𝐼𝑝2

𝑙1 𝑀3 cos(𝜃1 − 𝜃3) 𝑙2 𝑀3 cos(𝜃2 − 𝜃3) − 𝐼𝑝2 𝐽3 + 𝐼𝑝2

] 

 

𝑁𝑐 = [

𝐶1 + 𝐶2 + 𝐶𝑝1 −𝐶2 − 𝐶𝑝1 0

−𝐶2 − 𝐶𝑝1  𝐶𝑝1 + 𝐶𝑝2 + 𝐶2 + 𝐶3 −𝐶3 − 𝐶𝑝2

0 −𝐶3 − 𝐶𝑝2 𝐶3 + 𝐶𝑝2

], 

 
𝑞1 = 𝑙1𝑀2 sin(𝜃1 − 𝜃2) 𝜃̇2

2 + 𝑙1𝑀3 sin(𝜃1 − 𝜃3) 𝜃̇3
2 − 𝑀1𝑔 sin (𝜃1), 

𝑞2 = 𝑙1𝑀2 sin(𝜃1 − 𝜃2) 𝜃̇1
2 + 𝑙2𝑀3 sin(𝜃2 − 𝜃3) 𝜃̇3

2 − 𝑀2𝑔 sin (𝜃2), 
𝑞3 = 𝑙1𝑀3 sin(𝜃1 − 𝜃3) (𝜃̇1

2 − 2 𝜃̇1𝜃̇3) + 𝑙2𝑀3 sin(𝜃2 − 𝜃3) (𝜃̇2
2 −

2 𝜃̇2𝜃̇3) − 𝑀3𝑔 sin (𝜃3), 

 

𝑔 is acceleration of gravity,  

 

𝐺 = [
𝐾1 0

−𝐾1 𝐾2

0 − 𝐾2

], 𝑇 = [
1 −1 0
0 1 −1
0 0 1

] 

 

𝐶𝑝𝑖 = 𝐶𝑝𝑖
′ + 𝐾𝑖

2 𝐶𝑚𝑖, 𝐼𝑝𝑖 = 𝐼𝑝𝑖
′ + 𝐾𝑖

2 𝐼𝑚𝑖 

𝑀1 = 𝑚1 ℎ1 + 𝑚2 𝑙1 + 𝑚3 𝑙1, 𝑀2 = 𝑚2 ℎ2 + 𝑚3 𝑙2, 𝑀3 = 𝑚3 ℎ3 

𝐽1 = 𝐼1 + 𝑚1 ℎ1
2 + 𝑚2 𝑙1

2 + 𝑚3 𝑙1
2, 𝐽2 = 𝐼2 + 𝑚2 ℎ2

2 + 𝑚3 𝑙2
2,  

𝐽3 = 𝐼3 + 𝑚3 ℎ3
2 

 

The nonlinear differential Eq. (1) is approximated to the 

linear Eq. (2) through applying small deviation from the 

upright position (θ1=θ2=θ3=0) as: 

 

𝑀𝑙 [

𝜃1̈

𝜃2̈

𝜃3̈

] + 𝑁𝑐 [

𝜃1̇

𝜃2̇

𝜃3̇

] + 𝑃𝑙 [

𝜃1

𝜃2

𝜃3

] + 𝐺 [
𝑡𝑚1

𝑡𝑚2
] = 𝑇 [

𝑑1

𝑑2

𝑑3

] (2) 
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where,  

𝑀𝑙 = [

𝐽1 + 𝐼𝑝1 𝑙1 𝑀2 − 𝐼𝑝1 𝑙1 𝑀3

𝑙1 𝑀2 − 𝐼𝑝1 𝐽2 + 𝐼𝑝1 + 𝐼𝑝2 𝑙2 𝑀3 − 𝐼𝑝2

𝑙1 𝑀3 𝑙2 𝑀3 − 𝐼𝑝2 𝐽3 + 𝐼𝑝2

] 

𝑃𝑙 = [

− 𝑀1𝑔 0 0
0 −𝑀2𝑔 0
0 0 −𝑀3𝑔

]. 

 

The measured output vector yp is: 

 

𝑦𝑝 = 𝐶𝑝 [

𝜃1

𝜃2

𝜃3

] (3) 

 

where, 𝐶𝑝 = [

𝛼1 0 0
−𝛼2 𝛼2 0
0 −𝛼3 𝛼3

] and αi represents the gain of the 

ith potentiometer.  

The actuators' models are described by first order transfer 

functions: 

 

𝐺𝑚𝑗(𝑠) =
𝐾𝑚𝑗

𝑇𝑚𝑗 𝑠+1
  (4) 

 

In order to make the control system robust to the unmodeled 

actuators dynamics, input multiplicative uncertainties 

representation is used as: 

 

𝐺𝑚𝑗(𝑠) = (1 + 𝑊𝑚𝑗(𝑠)𝛿𝑚𝑗(𝑠))𝐺̅𝑚𝑗(𝑠) (5) 

 

where, Wmj(s) is the jth actuator uncertainty weight transfer 

function: 

 

𝑊𝑚1(𝑠) =
0.3877 𝑠+25.6011

𝑠+246.3606
 and 𝑊𝑚2(𝑠) =

0.3803 𝑠+60.8973

𝑠+599.5829
 

 

𝛿𝑚𝑗(𝑠) is uncertain linear time-invariant dynamics used to 

represent the uncertainty of the jth actuator, and 𝐺̅𝑚𝑗(𝑠) 

represents the nominal transfer function of the jth actuator.  

The derived mathematical model in this section is to be used 

next in the synthesis and optimization of the H-infinity control 

system. 

 

 

3. CONTROLLER DESIGN 

 

The suggested controller has two degrees of freedom as 

depicted in Figure 2 [25], where, r represents the reference 

input, K represents the controller, u represents the control 

action, d represents the disturbance, Gmodel represents the 

model, y represents the output,  represents the measurement 

noise, and yc represents the fed back measured output (affected 

by noise).  

 

 
 

Figure 2. Two degrees of freedom control configuration 

The controller K constitutes of two parts, K=[Kr Ky]T, where 

Kr is a prefilter and Ky is the feedback controller. It has six 

inputs (three reference signals and three measured angles) and 

two outputs (inputs to actuators). 

 

3.1 Synthesizing the H-infinity controller 

 

The two degrees of freedom control system in Figure 2 can 

be utilized to control the modeled triple inverted pendulum 

system as shown in Figure 3. 

 

 
 

Figure 3. Triple inverted pendulum control system 

 

The input voltage to the DC motors is obtained by: 

 

𝑢(𝑠) = 𝐾(𝑠) [
𝑦𝑐(𝑠)

𝐶𝑝 𝑟(𝑠)
] (6) 

 

To design an H-infinity controller, the two degrees of 

freedom control configuration in Figure 3 has to be in the 

general robust control configuration of Figure 4 where P 

represents the generalized plant model.  represents the 

normalized model uncertainty (||||<1), u represents the 

control signals, w represents the weighted exogenous signals 

(d, r, and ) in Figure 3, z represents the weighted error signals 

of interest (eu and ey) in Figure 3. v represents the controller 

input (yc and Cpr). u and y represent the perturbed input and 

output, respectively. 

 

 
 

Figure 4. General control configuration 
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The stabilizing controller K in Figure 4 is to be synthesized 

for the generalized plant P to produce the control signals 

required for the actuators. During gamma-iteration, the 

minimal gamma is computed for which the condition: 

 

min
𝐾

‖𝑁‖∞ <  𝛾 (7) 

 

is satisfied, where γ represents the H-infinity cost, and N 

represents the lower linear fractional transformation of the 

closed-loop system defined by: 

 

𝑁 = 𝐹𝑙(𝑃, 𝐾) ≜ 𝑃11 + 𝑃12 𝐾(𝐼 − 𝑃22𝐾)−1𝑃21 (8) 

 

For robustness analysis of the designed control system, the 

structures in Figure 5 are used.  

 

 
(a) N- structure 

 
(b) N11- structure 

 

Figure 5. Robustness analysis structures 

 

Based on structured singular value (SSV) tool, the robust 

stability condition is given by Eq. (9) whereas the robust 

performance condition is given by Eq. (10) [25]: 

 

𝑅𝑜𝑏𝑢𝑠𝑡 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 → 𝜇∆(𝑁11) < 1 (9) 

 

𝑅𝑜𝑏𝑢𝑠𝑡 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 → 𝜇∆(𝑁) < 1  (10) 

 

for all frequencies, where, N11 is the transfer function from the 

output to the input of the perturbations. 

 

3.2 Optimizing the performance weighting transfer matrix 

 

In H-infinity controller design, PWTM plays a crucial role 

in determining the trade-off between various control 

objectives. It is used to find a controller that balances system 

performance with robustness to uncertainties. PSO offers an 

effective way to optimize this weighting matrix, and the cost 

function formulation directly guides this optimization process. 

The coefficients of the PWTM are to be determined by PSO 

technique to achieve robust performance and stability. The 

transfer functions are to be of second order then the total 

parameters to be optimized for a diagonal performance 

weighting transfer matrix is 21 (3 transfer functions each has 

3 numerator coefficients, 3 denominator coefficients, and a 

gain). 

PSO is a simple and flexible swarm-intelligence-based 

algorithm that has been used in a wide variety of applications 

[27]. Since PSO is capable of searching for optimal solutions 

in complex, non-linear problems effectively, it is a good fit for 

application in control design. In controller development, PSO 

can be used to find the optimal parameters of specific design 

variables by spreading solutions randomly within the search 

space then directing them towards the solution that minimizes 

a predetermined cost function.  

The PSO algorithm searches for the optimal solution to a 

cost function by adjusting the trajectories of individual 

particles. The cost function of the design problem is multi-

objective. To meet the control goals of this paper, the cost 

function of the optimization problem has to include the 

Integral Time Absolute Error (ITAE) of the three links' angles 

and the structured singular values of the closed loop control 

systems in Figure 5. Using the Weighted-sum method, the cost 

function is suggested to be: 

 
Cost function=0.25 × [ITAE1 + ITAE2 + ITAE3] 
+0.35 × 𝑚𝑎𝑥(𝜇∆(𝑁11)) + 0.4 × 𝑚𝑎𝑥(𝜇∆(𝑁)) 

(11) 

 

where, 

 

ITAE1=∫|𝑒1(𝑡)| ∗ 𝑡 𝑑𝑡 (12) 

 

ITAE2=∫|𝑒2(𝑡)| ∗ 𝑡 𝑑𝑡 (13) 

 

ITAE3=∫|𝑒3(𝑡)| ∗ 𝑡 𝑑𝑡   (14) 

 

where, e1, e2, and e3 represent the errors of links 1, 2, and 3, 

respectively. 

Both the number of iterations and the swarm size are set to 

20, cognitive coefficient (c1) and social coefficient (c2) to 2, 

minimum and maximum inertia weights (wmin and wmax) to 0.2 

and 0.7, respectively, lower and upper bounds of the search 

space to 0.5 and 100, respectively, and number of variables to 

21. 

PSO algorithm starts by setting the initial particles' 

positions (Xi) randomly within the search space, the initial 

particles' velocities (Vi) to 0, where i indicates the iteration 

index. the particle's positions are then applied to the 

corresponding coefficients of the performance weighting 

transfer matrix. The H-infinity controller is then synthesized 

according to Eq. (7) and applied to the system to obtain output 

errors and the structured singular values. The cost function is 

computed as given in Eq. (11). The best personal solution of 

each particle (Pbest i) and the best global solution of all particles 

(Gbest) are then found according to the particles' score of the 

cost function. Next, the particles' velocities and positions are 

updated according to: 

 
𝑉𝑖(𝑡 + 1) = 𝑤 × 𝑉𝑖(𝑡) + 𝑐1 × 𝑟𝑎𝑛𝑑1 × 

(𝑃𝑏𝑒𝑠𝑡 𝑖(𝑡) − 𝑋𝑖(𝑡)) + 𝑐2 × 𝑟𝑎𝑛𝑑2 × (𝐺𝑏𝑒𝑠𝑡  (𝑡) − 𝑋𝑖(𝑡))  
(15) 

 
𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑉𝑖(𝑡 + 1) (16) 

 

where, w represents the inertia weight, rand1 and rand2 are two 

random numbers between 0 and 1. 

The algorithm repeats itself till maximum number of 

iterations is reached. The final controller can then be applied 

to the original nonlinear system. The proposed merging of 

PSO with the H-infinity controller design is depicted in Figure 

6. 
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Figure 6. The proposed controller design steps 

 

 
 

Figure 7. Closed loop system's poles 

 

The designed controller is of order 30 and achieves 

γ=0.6464. The poles of the closed loop system lie in the left 

half plane as shown in Figure 7 which indicates decaying 

exponential responses and hence, indicates system's stability. 

The PWTM obtained by optimization is given by: 

 

𝑊𝑝(𝑠) =

[
 
 
 
 
 
 0.5

0.5𝑠2 + 43.194𝑠 + 100

65.093𝑠2 + 100𝑠 + 83.942
0 0

0 60.159
36.253𝑠2 + 100𝑠 + 89.199

54.033𝑠2 + 53.279𝑠 + 0.5
0

0 0 0.5
43.644𝑠2 + 19.887𝑠 + 65.851

0.5𝑠2 + 60.372𝑠 + 13.465 ]
 
 
 
 
 
 

 

 

The developed control system with the optimized PWTM is 

to be tested in section 5. It is also to be compared to the control 

system with the unoptimized PWTM given by [1]: 

 

𝑊𝑝(𝑠) =

[
 
 
 
 
 
 0.01

𝑠2 + 2𝑠 + 4

𝑠2 + 1.5𝑠 + 0.1
0 0

0 0.02
𝑠2 + 2𝑠 + 4

𝑠2 + 1.5𝑠 + 0.01
0

0 0 0.04
𝑠2 + 2𝑠 + 4

𝑠2 + 1.5𝑠 + 0.01]
 
 
 
 
 
 

 

 

 

4. ROBUSTNESS ANALYSIS 

 

The structured singular values μ∆ (N11) of the developed 

closed loop control system with optimized and unoptimized 

PWTM are shown in Figure 8. The upper bound of μ of the 

developed closed loop control system with optimized PWTM 

satisfies condition (9) since the max (μ∆ (N11)) is 0.528. Hence, 

the uncertain closed loop system is robustly stable and can 

tolerate up to 188% of the modeled uncertainty. 

 

 
 

Figure 8. Upper and lower bounds of μ∆ (N11) 

 

Table 1. Stability robustness sensitivity 

 

Parameter 

Sensitivity 

in Optimal 

PWTM 

Sensitivity 

in Non-Optimal 

PWTM 

first actuator uncertain 

dynamics  
51% 54% 

second actuator 

uncertain dynamics  
30% 21% 

first hinge's viscous 

friction coefficient 
1% 0% 

second hinge's viscous 

friction coefficient 
0% 0% 

third hinge's viscous 

friction coefficient 
1% 0% 

first motor's viscous 

friction coefficient 
6% 15% 

second motor's viscous 

friction coefficient 
1% 0% 

first link's moment of 

inertia around the center 

of gravity 

19% 23% 

second link's moment of 

inertia around the center 

of gravity 

1% 8% 

third link's moment of 

inertia around the center 

of gravity 

62% 31% 

 

516



 

 
 

Figure 9. Upper and lower bounds of μ∆ (N) 

 

Table 2. Performance robustness sensitivity 

 

Parameter 

Sensitivity 

in Optimal 

PWTM 

Sensitivity 

in Non-Optimal 

PWTM 

first actuator uncertain 

dynamics  
26% 54% 

second actuator uncertain 

dynamics  
5% 20% 

first hinge's viscous 

friction coefficient 
1% 0% 

second hinge's viscous 

friction coefficient 
0% 0% 

third hinge's viscous 

friction coefficient 
0% 0% 

first motor's viscous 

friction coefficient 
3% 15% 

second motor's viscous 

friction coefficient 
1% 0% 

first link's moment of 

inertia around the center 

of gravity 

11% 22% 

second link's moment of 

inertia around the center 

of gravity 

0% 8% 

third link's moment of 

inertia around the center 

of gravity 

35% 31% 

 

The upper bound of μ of the closed loop control system with 

unoptimized PWTM does not satisfy condition (9) since the 

max (μ∆ (N11)) is greater than 1, which means that the system 

is not stable for samples of the modeled perturbed set other 

than the nominal system (as will be shown in the next section). 

The sensitivity of stability robustness to the uncertain 

parameters are given in Table 1. The robust stability is more 

dependent on uncertainties in moment of inertia of the third 

arm and the actuators uncertain dynamics. It is almost 

independent on uncertainties in viscous friction coefficients. 

The robust stability margins of the optimal and non-optimal 

PWTM are 1.89 and 0.38, respectively. Which indicates 

greater tolerance for uncertainties in the optimized PWTM 

system before it becomes unstable. Hence, the optimal PWTM 

is more reliable than non-optimal PWTM in applications. 

The structured singular values μ∆ (N) of the optimized and 

unoptimized PWTM closed loop control system are shown in 

Figure 9. Condition (10) is also satisfied in the optimized 

PWTM system since the max (μ∆ (N)) is 0.987. Hence, the 

uncertain closed loop system achieves performance 

robustness. A model uncertainty of 101% can lead to 

input/output gain of 0.986 at frequency 1.23 rad/sec. At any 

other frequency, the uncertain closed loop system has higher 

performance robustness. 

The upper bound of μ of the closed loop control system with 

unoptimized PWTM does not satisfy condition (10) since the 

max (μ∆ (N11)) is greater than 1, which means that system 

uncertainty leads to degradation in performance. 

Table 2 shows that the robust performance is moderately 

dependent on uncertainties in moment of inertia of the third 

link and the first actuator uncertain dynamics. It is almost 

independent on variations in viscous friction coefficients, 

moment of inertia of the second link and the second actuator 

uncertain dynamics. The robust performance margins of the 

optimal and non-optimal PWTM are 1.01 and 0.38, 

respectively. Which again indicates that the optimal PWTM 

can handle larger deviations from the nominal model while 

still achieving desired performance which is the essence of the 

controller development in this paper. 

In order to investigate the system robustness against 

different scenarios of disturbances, the bode plots of the 

uncertain transfer functions from disturbance inputs to the 

three controlled angles are plotted in Figure 10. As can be 

seen, the maximum gain from any disturbance to any angle is 

below 0 dB, which means that over all the frequency range [10-

5, 107 rad/sec], the disturbances are attenuated. Moreover, it 

can be seen that the disturbance attenuation level dramatically 

increases at high frequencies, which indicates that the control 

system can effectively filter out rapid fluctuations in the 

disturbance signal.  

 

 
 

Figure 10. Disturbance frequency response 

 

It can also be concluded from this plot that when a 

disturbance is applied at the first link, its effect on the first and 

third angles is the least attenuated (maximum gain is almost 0 

dB at 1 rad/sec). 

 

 

5. SIMULATION RESULTS 

 

In this section, the stabilizing and tracking problems of the 

triple inverted pendulum system are investigated. Meanwhile, 

the robustness of the control system under uncertain 

parameters' variations, disturbance, and noise are analyzed. 
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Also, the results of different cases are given. A comparison 

with the unoptimized PWTM control system is made 

throughout the cases. The results are simulated using 

MATLAB. 

 

5.1 Case 1 (Stabilization) 

 

To check the system's ability to robustly overcome the 

effect of parameters' variations, 30 samples of uncertain 

models (within the model uncertainty range) are tested. The 

stabilization of the system in the upright position requires all 

links to be aligned vertically (θ1d=θ2d=θ3d=0 deg) in the 

presence of external torque disturbance on the third link 

(d3=0.1 N.m) and measurement noise in all potentiometers 

(1=2=3=±0.5 V). The closed-loop response of the system 

is shown in Figure 11. 

The responses of 30 samples of the uncertain models in 

Figure 11(a) are almost identical (the discrepancies in all 

angles' due to parameters' variations are unrecognizable). It is 

noted that θ1 and θ2 responses are smoother than θ3 response. 

Yet, the wobbles of θ3 around the desired value are of very 

small amplitude (0.859 deg=0.015 rad). Figure 11(b) shows 

that the unoptimized PWTM system response cannot stay 

stable for all samples within the modeled perturbed set (the 

responses of θ2 and θ3 exhibits similar unstable behavior and 

their plots are not included to save space).  

 

 
(a) Optimized PWTM 

 
(b) First link angle (optimized and unoptimized PWTM) 

 

Figure 11. Closed-loop response (case 1) 

 
(a) Optimized PWTM 

 
(b) First control signal (optimized and unoptimized PWTM) 

 

Figure 12. Control action (case 1) 
 

Figure 12(a) shows the control action produced by the 

developed controller. To keep the angles at their desired value, 

the controller signals fluctuate to compensate the effect of 

noise on potentiometers' readings. In the same time, they tend 

to reject disturbance and attain the desired response in spite of 

variations in uncertain parameters in the model and actuators. 

The control action u2 plays major role in achieving this goal. 

Figure 12(b) shows that the unoptimized PWTM is 

practically inefficient compared to the optimized PWTM 

system. 

 

5.2 Case 2 (Stabilization) 

 

To test the robustness of the original nominal nonlinear 

system, consider applying disturbance and measurement noise 

to every link of the nonlinear system. The disturbances are 

applied asynchronously to all the three links (d1 at t=0 sec, d2 

at t=5 sec, and d3 at t=10 sec). The nonlinear system responds 

as shown in Figure 13.  

In the optimized PWTM system, the angle of the first link 

θ1 oscillates before settling with steady state error=0.401 deg 

(0.007 rad). While θ2 follows the desired value without 

overshooting. θ3 in Figure 13(c) overshoots to 5.446 deg 

(0.095 rad) at t=1.809 sec then settles with steady state 

error=1.261 deg (0.022 rad). 

The angles of all links are almost unaffected by the applied 

measurement noise in the system with optimized PWTM, 
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while the effect of noise is not well compensated in the system 

with unoptimized PWTM. The control signals of case 2 are 

shown in Figure 14. u2 of optimized PWTM could compensate 

the effect of disturbance and noise with less effort than in 

unoptimized PWTM system. 
 

 
(a) First link angle (optimized and unoptimized PWTM) 

 
(b) Second link angle (optimized and unoptimized PWTM) 

 
(c) Third link angle (optimized and unoptimized PWTM) 

 

Figure 13. Closed-loop response (case 2) 

 

 
(a) First control signal 

 
(b) Second control signal 

 

Figure 14. Control action (case 2) 

 

5.3 Case 3 (Tracking) 

 

To investigate the ability of tracking different references for 

each link, the following reference signals are applied: θ1d=5 

deg for the time interval [5, 35) sec and θ1d= 0 deg in other 

time intervals, θ2d=-10 deg for the time interval [5, 40) sec and 

θ2d=0 deg in other time intervals, θ3d=-5 deg for the time 

interval [15, 35) sec and θ3d=0 deg in other time intervals. 

 

 
(a) First link angle (optimized and unoptimized PWTM) 
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(b) Second link angle (optimized and unoptimized PWTM) 

 
(c) Third link angle (optimized and unoptimized PWTM) 

 

Figure 15. Closed-loop response (case 3) 

 

Also, an 0.1 N.m external disturbance is applied to the 

second link at t=25 sec. In addition, noise is applied in all 

measurements readings. The nonlinear system responds as 

shown in Figure 15. The three angles θ1, θ2, and θ3 needs 20, 

15, 10 seconds, respectively to follow the given references by 

the aid of the control signal shown in Figure 16. Unlike the 

unoptimized PWTM system response, the optimized system 

response is unaffected by noise. On the other hand, the effect 

of the applied disturbance at t=25 sec is manifested in the 

optimized PWTM system response of the third link yet, 

immediately rejected. 

 

 
(a) First control signal 

 
(b) Second control signal 

 

Figure 16. Control action (case 3) 
 

The rise and settling time (in seconds), maximum overshoot 

and steady-state error (in degrees) characteristics of all above 

cases are listed in Table 3. The results of simulating different 

cases of regulating and tracking of the control system under 

different conditions validate the effectiveness and robustness 

of the developed controller. 
 

Table 3. Control system response specifications 
 

Parameter Case 1 Case 2 Case 3 

Rise time (first link)  

optimized PWTM 
0 0 15 

Rise time (first link)  

unoptimized PWTM 
unstable 1.67 15 

Settling time (first link) 

optimized PWTM 
0 13.296 20 

Settling time (first link) 

unoptimized PWTM 
unstable 4 20 

Maximum overshoot  

(first link) optimized 

PWTM 

0 0.046 0 

Maximum overshoot  

(first link) unoptimized 

PWTM 

unstable 0.288 0.225 

Steady-state error  

(first link) optimized 

PWTM 

0 0.401 0.257 

Steady-state error  

(first link) unoptimized 

PWTM 

unstable 0.183 0.219 

Rise time (second link) 

optimized PWTM 
0 0 11 

Rise time (second link) 

unoptimized PWTM 
unstable 0 11 

Settling time (second 

link) optimized PWTM 
0 0 15 

Settling time (second 

link) unoptimized 

PWTM 

unstable 3.5 15 

Maximum overshoot 

(second link) optimized 

PWTM 

0.197 0 0 

Maximum overshoot  

(second link) 

unoptimized PWTM 

unstable 1.906 0.555 

Steady-state error  

(second link) optimized 

PWTM 

0 0.005 0 
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Steady-state error  

(second link) 

 unoptimized PWTM 

unstable 0.04 0.214 

Rise time (third link)  

optimized PWTM 
0 0 7 

Rise time (third link)  

unoptimized PWTM 
unstable 0 7 

Settling time (third link) 

optimized PWTM 
0 15 10 

Settling time (third link) 

unoptimized PWTM 
unstable 3 10 

Maximum overshoot  

(third link) optimized 

PWTM 

0.678 5.446 0.348 

Maximum overshoot  

(third link) unoptimized 

PWTM 

unstable 1.528 0.495 

Steady-state error  

(third link) optimized 

PWTM  

0.228 1.261 0.071 

Steady-state error  

(third link) optimized 

PWTM  

unstable 0.017 0.077 

 

 

6. CONCLUSIONS 

 

The developed controller has attained the robust stability 

and performance for the triple inverted pendulum system by 

optimizing the PWTM coefficients using PSO method. The 

key point was to include the structured singular values (that 

are required to be less than one in robustness conditions) with 

the tracking error in the cost function with suitable weights for 

each term. Considering the possible sources of uncertainty in 

the model, different cases of regulating and tracking were 

simulated. The results show that the controlled system is 

capable of handling all applied perturbation even when applied 

simultaneously. The most important achievement in this paper 

lies in the compromise between time response characteristics 

and robustness without exhibiting unnecessary 

conservativeness. It would be challenging to model a wider 

range of uncertainty and examine the robustness attaining 

ability of the proposed for higher uncertainty. In future, other 

robust control methods like Mu-synthesis can be also 

optimized in a suitable way to achieve further enhancements 

on robustness and performance. It is also recommended to 

implement the proposed control strategy on a system with 

multiple interconnected triple inverted pendulums in which 

maintaining stability becomes a bigger challenge. 
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NOMENCLATURE 

 

C1 viscous friction coefficient of the first hinge, N. m. s 

C2 viscous friction coefficient of the second hinge, N. m. 

s 

C3 viscous friction coefficient of the third hinge, N. m. s 

Cm1 viscous friction coefficient of the first motor, N. m. s 

Cm2 viscous friction coefficient of the second motor, N. m. 

s 

𝐶𝑝1
′  viscous friction coefficient of the belt–pulley system 

of the first hinge, N. m. s 

𝐶𝑝2
′  viscous friction coefficient of the belt–pulley system 

of the second hinge, N. m. s 

h1 the distance from the bottom to the center of gravity 

of the first arm, m 

h2 the distance from the bottom to the center of gravity 

of the second arm, m 

h3 the distance from the bottom to the center of gravity 

of the third arm, m 

I1 moment of inertia of the first arm around the center of 

gravity, kg. m2 

I2 moment of inertia of the second arm around the center 

of gravity, kg. m2 

I3 moment of inertia of the third arm around the center 

of gravity, kg. m2 

Im1 moment of inertia of the first motor, kg. m2 

Im2 moment of inertia of the second motor, kg. m2 

𝐼𝑝1
′  moment of inertia of the belt–pulley system of the first 

hinge, kg. m2 

𝐼𝑝2
′  moment of inertia of the belt–pulley system of the 

second hinge, kg. m2 

K1 dimensionless ratio of teeth of belt–pulley system of 

the first hinge 

K2 dimensionless ratio of teeth of belt–pulley system of 

the second, hinge 

l1 length of the first arm, m 

l2 length of the second arm, m 

m1 mass of the first arm, kg 

m2 mass of the second arm, kg 

m3 mass of the third arm, kg 

α1 gain of the first potentiometer, V. rad-1 

α2 gain of the second potentiometer, V. rad-1 

α3 gain of the third potentiometer, V. rad-1 
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