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In the contemporary digital age, ensuring the security of smart grid networks is of 

utmost importance. Traditional intrusion detection mechanisms often falter in 

adaptability and precision, demanding innovative solutions. This research introduces a 

novel fusion of supervised and unsupervised learning techniques to elevate intrusion 

detection efficiency. The researcher performed extensive exploratory data analysis 

(EDA) and preprocessing to remove missing information, duplication, and label 

alterations from a simulated military network landscape. Our study compared 

RF+DBSCAN and RF+K-means hybrid methods. After partitioning the dataset 70-30, 

the models were clustered and evaluated using accuracy, precision, recall, F1-score, 

sensitivity, specificity, and ROC curve to prove their superiority. The RF+DBSCAN 

model performed well, obtaining 99.70% accuracy in preliminary testing. Integration 

of clustering methods with classic classifiers like Random Forest (RF) shows great 

promise for improved intrusion detection procedures. The findings suggest 

cybersecurity stakeholders should use hybrid strategies to defend complex digital 

systems. 
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1. INTRODUCTION

Network security has become crucial due to internet and 

communication technology improvements in the previous 

decade [1]. To protect the network and its assets online, 

firewalls, antivirus software, and Intrusion Detection System 

(IDS) are used. Network Intrusion Detection Systems (NIDSs) 

analyze network traffic for malicious or suspicious activity [2]. 

Hussein [3] introduced IDS, and since then, many network 

security IDS products have been developed. But recent 

technical advances have increased network size and the 

amount of applications employed by network nodes [3, 4]. 

Thus, these nodes generate and exchange a lot of valuable 

data. 

Due to new attack methods, including versions of old and 

novel attacks, protecting this data and network nodes is 

difficult [4]. Nearly every node in a network is susceptible to 

security threats [5]. For instance, the security of data nodes is 

critical for organizations. Compromising the information 

within these nodes can severely impact an organization’s 

reputation and finances. Existing IDSs have struggled to 

identify various types of attacks, including zero-day attacks 

effectively, and also struggle with false alarms [6]. This has 

led to a demand for an improved NIDS that is efficient, 

accurate, and cost-effective, and can provide robust network 

security. 

To create an effective IDS, researchers have used machine 

learning (ML) [7-9]. ML in AI extracts insights from huge 

datasets [10]. GPUs have helped these network security 

methods gain popularity in the past decade. Learning 

significant network traffic patterns using ML helps forecast 

normal and abnormal actions [11]. ML-based IDS uses feature 

engineering to analyze network traffic. 

In Network Intrusion Detection Systems (NIDSs), 

supervised and unsupervised methods are used. The system is 

trained with normal or malicious network instances using 

labelled data in supervised techniques. The system recognizes 

similar cases after distinguishing these classes. However, 

unsupervised methods discover deviations in network traffic 

patterns. These techniques can detect intrusion-related 

behavior. Improve network security by combining supervised 

and unsupervised threat detection and response. 

1.1 Problem statement 

Network infrastructures need NIDS to prevent more 

complex and frequent intrusions [12]. Due to shifting data 

flows, traditional NIDS have high false-positive rates and 

difficulty identifying emerging attack vectors [13-15]. 

Supervised and unsupervised machine learning have been 

researched separately, but not together. This paper develops 

and tests a hybrid NIDS framework that combines supervised 

and unsupervised learning to increase accuracy, false 

positives, and intrusion detection in dynamic network 

environments. 

1.2 Contributions 

We revolutionize NIDS in this paper. Our hybrid 

architecture combining supervised and unsupervised machine 
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learning is innovative. This blend combines supervised 

learning's precision, labeled dataset’s ability to identify and 

categorize known intrusion behaviors, and unsupervised 

learning's ability to exploit traffic abnormalities. Early 

discovery of these anomalies, which typically indicate new 

attack avenues, is critical for security. 

Additionally, our system incorporates a dynamic algorithm 

tailored to autonomously modify its detection methodology in 

alignment with the characteristics of the incoming data stream. 

This ensures peak efficiency, even in continuously 

transforming network scenarios. Our comprehensive 

assessments, conducted using a variety of datasets, pit our 

pioneering model against conventional supervised and 

unsupervised methods. The outcomes, both in quantitative and 

qualitative terms, underscore the heightened detection 

capabilities, diminished false alarms, and increased accuracy 

rates achieved by our blended approach. 

In conclusion, our research carves a pathway for academics 

and industry professionals aiming to craft a robust, flexible, 

and efficacious NIDS. Our solution addresses the pressing 

demands of today’s digital landscape, which is continually 

threatened by sophisticated cyber adversaries, by harnessing 

the power of anomaly exploitation for enhanced security. 

 

1.3 Paper structure 

 

The paper commences with an Abstract, providing a 

succinct overview of the study’s objectives, methodology, and 

primary findings. Following the abstract, the Introduction sets 

the stage, highlighting the topic's significance, outlining the 

primary research question, and providing context. Delving 

deeper, the Related Work section critically examines existing 

research pertinent to the study, identifying gaps and 

delineating the current study’s significance within the broader 

academic landscape. Subsequent to this, the Methodology 

section elucidates the research design, elaborating on data 

collection, preprocessing, and the analytical techniques 

employed. Once the foundational processes are established, 

the Results section presents the empirical findings derived 

from the analysis, often complemented by tables, charts, and 

other illustrative tools. To interpret these findings. The study 

then culminates in the Conclusion, summarizing the key and 

implications. Finally, Future Work offers directions for 

subsequent research endeavors, and the References section 

lists all the scholarly works cited throughout the paper, 

ensuring academic rigor and integrity. 

 

 

2. RELATED WORK 

 

Numerous contemporary investigations have employed AI 

methods, particularly supervised ML, to enhance the security 

of smart grids. Below, we delve into these studies to explore 

their specifics as shown in Table 1. 

 

Table 1. Summary of related work on intrusion detection 

 
Reference Models/Methods Evaluated Most Effective Model Additional Remarks 

[16] Bagging, Boosting, Stacking Stacking Cyber-attacks in smart grids 

[17] 

K-Nearest Neighbor (K-NN), Support Vector 

Machine (SVM), Adaboost, Naive Bayes, Cat-

Boost, Gradient Boosting 

Boosting Ensembles Intrusions in smart grid 

[18] 
Naive Bayes, SVM, Decision Tree (DT), Random 

Forest (RF) 
RF - 

[19] 

DT, Simple Logistic Regression, Naïve Bayes, 

Multi-Layer Perceptron (MLP), SVM, RF, Zero 

Rule 

DT - 

[20] Neural Networks (NNs), Decision Trees (DTs) CART Network Intrusions (NI) 

[21] 

Extreme Boosting + Long Short-Term Memory 

(EB + LSTM), Classification and Regression Tree 

(CART), Iterative Dichotomiser 3 (ID3), RF, K-

NN, Cervical Segment 4/5 

EB + LSTM - 

[23] RF, Naive Bayes, SVM, EB RF, EB - 

[24] 
SVM, DT, Artificial Neural Network (ANN), K-

NN, Naive Bayes, RF 
RF Cyber-Attack Detection (CAD) 

[25] Stacked Autoencoder, SVM, K-NN Not specified False data injection attacks 

[26] K-Means - 
Data transmission between 

smart homes and power centers 

[30] Isolation Forest - Unsupervised attack detection 

[31] Generative Adversarial Network - Anomaly-based detection 

[32] Restricted Boltzmann Machine - 
Cyber-attacks in extensive 

smart grids 

[33] 
Hierarchical Temporal Memory, Random Cut 

Forest, Bayesian Change, Relative Entropy 
Hierarchical Temporal Memory Real-time anomaly detection 

[34] Autoencoder + RF - CAD in smart grids 

2.1 Supervised learning 

 

Khoei et al. [16] conducted a comparative analysis of three 

supervised methodologies: Bagging, Boosting, and Stacking 

models, for discerning cyber-attacks within smart grids. The 

outcomes exhibited the superior performance of the Stacking 

classifier in contrast to the alternative approaches. The study 

conducted by Khoei et al. [17], a variety of supervised 

Boosting ensembles and conventional models, encompassing 

K-NN, SVM, Adaptive Boosting, Naïve Bayes, Categorial 

Boosting, and Gradient Boosting, were employed to identify 

intrusions within the smart grid. The Boosting ensemble 

classifiers demonstrated enhanced efficacy in comparison to 

the conventional classifiers. 

As demonstrated by El Mrabet et al. [18], a juxtaposition 

was performed on the efficacy of four established supervised 
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ML models for intrusion detection in smart grids: Naïve 

Bayes, SVM, DT, and RF. The findings indicated the RF 

classifier as the most effective technique. The investigation 

detailed in references [19, 20] encompassed a comparison of 

the effectiveness of DT, Simple Logistic Regression, Naïve 

Bayes, Multi-layer perceptron, SVM, RF, and Zero Rule. The 

outcomes established the DT classifier as the most proficient 

in intrusion detection. 

Lastly, Thapa et al. [21] entailed a contrast between Neural 

Networks (NN) and diverse forms of DTs for identifying 

SVM. Among the models evaluated, the Classification and 

Regression Tree classifier exhibited the most promising 

results in detecting SVM. 

Song et al. [22] devised a hybrid supervised model by 

combining Extreme Boosting and Long Short-Term Memory 

to identify intrusions within a smart grid. The model’s 

performance was benchmarked against other ML models, 

including CART, ID 3, RF, K-NN, and Cervical Segment 4/5. 

Their findings showcased that the hybrid model outperformed 

the other examined models in terms of effectiveness. 

In a separate investigation documented by Roy et al. [23], 

diverse supervised models, such as RF, Naïve Bayes, SVM, 

and EB, were scrutinized for their proficiency in detecting 

intrusions within the smart grid. The authors highlighted that 

both the RF and EB models exhibited superior performance 

compared to other models. 

Arora et al. [24] conducted a comparison of several 

supervised models for CAD. Models examined encompassed 

SVM, DT, ANNs, K-NN, Naive Bayes, and RF. The outcomes 

revealed that the RF model demonstrated notably improved 

results across metrics like accuracy, false alarm rate, UN-

detection rate, true positive rate, and receiver operating 

characteristic diagram compared to the alternative models. 

Numerous other inquiries delved into applying supervised 

deep learning (DL) techniques for intrusion detection within 

smart grids. For instance, Yao et al. [25] introduced a 

convolutional NN and a long -term memory-based detection 

approach. In the study of Yang et al. [26], an enhanced 

supervised convolutional NN was proposed to discern network 

abnormalities. Wang et al. [27] presented a hybrid model 

employing Kalman Filter and Recurrent NN, structured into 

two levels to predict and fit linear and nonlinear data, 

culminating in a fully connected module that amalgamated the 

results for attack detection. 

 

2.2 Unsupervised learning 

 

Limited research has been conducted to assess the 

effectiveness of unsupervised models in identifying 

cyberattacks.  

For instance, Majidi et al. [28] utilized a stacked 

autoencoder to identify false data injection attacks. The 

performance of this technique was assessed and juxtaposed 

with that of SVM and KNN models. Ahmed et al. [29] 

presented that the K-means model was employed to cluster 

data and construct an outlier detection model for data 

transmission between smart homes and power centers. 

Unsupervised techniques also found application in intrusion 

detection within smart grids. According to the research by 

Menon and Radhika [30], the Isolation Forest model formed 

the basis for an unsupervised approach to attack detection. 

Features were extracted through principal component analysis 

and isolation forest, applied to non-labeled data for training, 

testing, and validation. Anomaly-based intrusion detection 

was introduced by Radoglou et al. [31], employing a 

Generative Adversarial Network. This model incorporated 

three detection layers, focusing on network flows, 

Modbus/transmission control protocol packets, and 

operational data to uncover attacks. 

Moreover, Karimipour et al. [32] employed an unsupervised 

DL approach with the Restricted Boltzmann Machine to 

identify cyber- attacks in extensive smart grids. The model 

utilized feature extraction and symbolic dynamic filtering to 

mitigate computational demands while considering casual 

subsystem interactions. Results indicated commendable 

accuracy, true positive rates, and low false positive rates. 

In the realm of real-time anomaly detection, Barua et al. 

[33] introduced Hierarchical Temporal Memory and 

contrasted its efficacy against Random Cut Forest, Bayesian 

Change, and Relative Entropy. Their model emerged superior 

in terms of real-time anomaly detection accuracy and 

scoreboard evaluation. Lastly, As reported by Hu [34], an 

unsupervised framework leveraging Autoencoder and RF was 

proposed for CAD in smart grids. This model successfully 

classified benign operations, malicious vulnerabilities and 

natural events. 

As mentioned in the previous work, a numerous studies 

have focused on either supervised or unsupervised machine 

learning techniques for intrusion detection within smart grids. 

Supervised techniques, ranging from DTs, NNs, to Boosting 

methods, have been extensively studied and found to have 

varying degrees of success in different scenarios. On the other 

hand, unsupervised techniques such as Stacked Autoencoders, 

K-means, and Generative Adversarial Networks have also 

been explored, though to a lesser extent. 

However, a noticeable gap exists in exploring hybrid 

models that synergistically combine the strengths of both 

supervised and unsupervised approaches. Integrating 

supervised techniques, which typically require labeled data 

and can be trained to recognize known intrusion patterns, with 

unsupervised techniques adept at identifying novel, previously 

unseen attack patterns by uncovering anomalies in the data, 

could yield superior detection capabilities. This combined 

approach might enhance the robustness and adaptability of 

IDS, allowing them to respond more effectively to evolving 

cyber threats in smart grids. 

In light of this, our work seeks to bridge this knowledge gap 

by proposing and evaluating a model that harmoniously 

amalgamates both supervised and unsupervised techniques for 

intrusion detection in smart grids. 

 
 

3. METHODOLOGY 

 

In our methodological approach, we commence by sourcing 

our dataset from Kaggle. With the data at hand, an exploratory 

data analysis (EDA) is conducted, enabling us to delve deeply 

into the underlying patterns and characteristics of the data. 

Post-analysis, we embark on the preprocessing phase to refine 

the dataset and make it more conducive for subsequent 

operations. Our primary innovation lies in the hybrid 

techniques we employ: combining DBSCAN with RF and 

juxtaposing it with the integration of K-means with RF. These 

combinations aim to harness both the power of clustering 

(unsupervised learning) and classification (supervised 

learning) to enhance intrusion detection capabilities. 

Following the hybrid modeling, clustering techniques are 

applied to further segment and categorize the data. The 
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culmination of our process is the evaluation phase, where the 

efficacy of our proposed methods is rigorously tested and 

benchmarked. Figure 1 succinctly encapsulates our 

methodology in a visual flowchart. Each of these stages will 

be elaborated upon in the subsequent subsections as shown in 

Figure 2.  

 

3.1 Dataset 

 

Our study utilizes a dataset derived from a sophisticated 

simulation that replicates a typical United States Air Force 

Local Area Network (LAN), aimed at capturing a diverse 

range of cyber-attacks within a realistic network environment. 

The study we conducted required authentic TCP/IP dump data, 

which this configuration provided. Each connection in the 

dataset is a sequence of TCP packets sent between a source 

and a target IP address over a defined duration using specific 

protocols. These connections are carefully classified as 

'regular' or 'anomalous' and assigned an attack type. 

The dataset is detailed, with 100 bytes per TCP/IP 

connection. It has 41 attributes—3 qualitative and 38 

quantitative. Protocol type, service, and complex metrics like 

failed login attempts and service request rates are included. 
It defines 13,449 cases as 'Normal' and 11,743 as 

'Anomalous' across 22,544 rows and 41 columns. A complete 

network intrusion susceptibility analysis needs this balance. 

Evaluation of hybrid intrusion detection models is supported. 

The variables'duration', 'protocol_type','service', and 'flag' 

show the network's normal and compromised activities. 

Content diversity and balanced class distribution help 

understand network operations, making the dataset 

appropriate for intrusion detection research. 
In Figure 1, 13,449 'Normal' network connections are '0' 

while 11,743 'Anomalous' connections are '1'. 

 

 
 

Figure 1. The class distribution of a dataset 

 

 
 

Figure 2. Proposed flowchart 

 

3.2 Exploratory data analysis 
 

Researchers need exploratory data analysis (EDA) to 

understand dataset complexity and patterns. This method finds 

anomalies, outliers, distributions, and assumptions using 

visual and quantitative data analysis.  

EDA visualized "Normal" and "Anomalous" linkages for 

our dataset using simulated military networks. Balance—or 

potential imbalance—was obvious between these classes. 

Histograms, scatter plots, and box plots showed 41 qualitative 

and quantitative factors' distribution and links. The means, 

medians, standard deviations, and interquartile ranges of each 

feature were estimated. This highlighted the data's main trend 

and distribution.  

We also created correlation matrix heatmaps to understand 

how features link, which could help with feature selection or 

engineering.  

Visual cues and statistical testing detected anomalies and 

outliers that could bias our models. We performed a 

preliminary feature priority ranking to determine which 

qualities may be more important in selecting connection kinds. 

In summary, the EDA step helped us grasp the dataset's 

features and guide preprocessing and modeling. 

 

3.3 Preprocessing 

 

The data analysis pipeline requires preprocessing to prepare 

and shape the dataset for modeling. In this phase, data quality 

is improved by several activities. We preprocessed our dataset 

as follows: 
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⚫ Missing Data: Addressing missing data was the first step. 

Incomplete data can influence analyses. The dataset was 

checked for nulls and missing values. Depending on their 

nature and impact, these were either filled using mean, 

median, or mode or eliminated if they were negligible. 

⚫ Removal: Duplicate entries can skew results by giving 

repeated records undue weight. The dataset was 

thoroughly searched for and deleted duplicates. Each 

record is individual and contributes to analysis separately. 

⚫ Label encoding: For machine learning models, convert 

qualitative dataset attributes to numerical format. Used 

label encoding. A distinct integer for each qualitative 

feature value made them more modelable without 

compromising category meaning or relationship. 

After these preprocessing steps, our dataset was clean and 

ready for research. 
 

3.4 Dataset splitting 
 

Dataset partitioning is necessary before model training and 

testing. This ensures that we have different data sets for 

training and testing our model. A solid split prevents 

overfitting and helps the model generalise to new data.  

Recent research on dataset splitting ratios in machine 

learning algorithms supports a 70-30 data split for training and 

testing [1, 2]. Muraina [35] emphasized the importance of 

dataset splitting ratios in determining machine learning model 

parameters that best fit training data. Muraina [35] found that 

partitioning datasets into train and test sets is essential for 

model training and assessment after experimenting with 50:50, 

60:40, 70:30, 80:20, and 90:10. Joseph [36] also recommended 

a splitting ratio of p: 1, where p is the number of parameters in 

a linear regression model that describes the data effectively. 

Given this, we chose the typical 70-30 split ratio for our 

study.  

⚫ Training Set (70%): This 70% of the dataset is essential 

for creating and training machine learning models. By 

showing the model most of the data, we ensure it learns 

the dataset's patterns and correlations. 

⚫ Test Set (30%): The remaining 30% of the data is reserved 

for testing. This subset is crucial in gauging the 

effectiveness and accuracy of our models. Since the model 

hasn’t been exposed to this data during training, the test 

set offers a reliable measure of how the model will 

perform on real-world, unseen data. 

It’s worth noting that while splitting, care was taken to 

ensure that both training and test sets are representative of the 

overall dataset, maintaining the inherent distribution of 

‘Normal’ and ‘Anomalous’ connections. This is essential to 

ensure unbiased training and accurate performance evaluation. 

 

3.5 Hybrid supervised and unsupervised techniques 

 

Leveraging the strengths of both supervised and 

unsupervised learning paradigms, we introduced a hybrid 

approach aimed at enhancing the intrusion detection 

capabilities. This innovative methodology seeks to combine 

the structured, label-dependent learning of supervised 

techniques with the pattern discovery prowess of unsupervised 

ones. We merged RF with DBSCAN and K-means clustering 

methods in our study.  

⚫ RF + DBSCAN: 

- DBSCAN stands out for its ability to identify outliers and 

clusters of varied densities and shapes in datasets. This is 

useful for intrusion detection, because abnormal data 

points (possible intrusions or attacks) may not fit typical 

cluster shapes. DBSCAN clusters dense regions and labels 

sparse points as noise or outliers. 
- RF is a powerful ensemble learning algorithm used on 

clustered data. Cluster labels, added to the original data, let 

RF analyze and learn from data distribution and features 

within each cluster. Give RF more data structure context to 

boost classification performance and make more accurate 

and robust predictions. 
⚫ RF + K-means: 

- Data is clustered into a preset number of clusters using K-

means. K-means divides the dataset into 'K' groups based 

on feature similarity, unlike DBSCAN, to uncover intrinsic 

data groupings. This approach organizes material into clear 

chunks well. 

- RF is used to classify data after K-means clustering, with 

the clusters serving as additional features. This lets RF use 

K-means' structured data to better comprehend inter-

cluster interactions and improve the classifier's predictions. 

We want to combine the strengths of supervised and 

unsupervised learning in our hybrid approach. The fusion 

enhances feature space and more. The enhanced feature set 

helps RF understand data structure and analyze more 

thoroughly by introducing cluster assignments. Clustering and 

classification enable the hybrid model discover threats in 

complex situations like intrusion detection. DBSCAN 

strengthens the model's tolerance to noise and outliers, helping 

it find data anomalies. 

However, this integrated strategy has limitations. Clustering 

increases RF classification computing and training time. Also, 

changing K-means and DBSCAN parameters substantially 

impacts performance. Poor configuration can reduce 

clustering efficiency and model performance. Finally, cluster 

quality determines RF classifier success.  

Poor clustering could confuse the RF algorithm, causing 

erroneous classifications. Despite these shortcomings, the 

hybrid model's ability to improve forecast accuracy and 

robustness, especially in complex and ambiguous domains, 

makes it valuable to intrusion detection. 
 

3.6 Clustering 
 

Clustering is a key unsupervised learning approach that 

organizes a dataset into clusters where instances in the same 

group are more similar than those in other groups. Clustering 

can help identify patterns, categorize intrusions, and identify 

new threats in intrusion detection. 

Our strategy used two popular clustering algorithms: 

⚫ DBSCAN uses density instead of a preset number of 

clusters like many other clustering methods. This 

technique can discover clusters of different forms and 

densities from densely packed dots. Its unique capacity to 

differentiate outliers or noise can help detect aberrant 

actions that depart from patterns. 

⚫ K-means: A partitioning technique that groups data into 

'K' different clusters based on feature similarities. The 

algorithm modifies cluster centroids until optimal 

partitioning is reached. K-means' deterministic nature 

helps it create separate, non-overlapping clusters for 

dataset categorization. The optimal 'K' typically requires 

additional procedures or heuristics like the Elbow 

approach. 

Analyzing the clusters after clustering revealed the 

segmented groups' features. This step is vital to comprehend 

the variety of intrusions and the inherent patterns within the 
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dataset. Moreover, the clusters serve as foundational inputs for 

subsequent modeling stages, especially in the hybrid 

supervised-unsupervised approach we’ve adopted. 

 

3.7 Evaluation 

 

Our IDS needs stringent evaluation criteria to prove its 

usefulness and dependability. These metrics reveal model 

performance and guide revisions and iterations. We used 

standard evaluation metrics in our research. 

⚫ The Confusion Matrix is a tabular form that details the 

model's predictions. Matrix includes: 

⚫ True Positives (TP): attacks case is correctly identified.  

⚫ True Negatives (TN): normal cases are correctly 

diagnosed. 

⚫ False Positives (FP): Misidentification of normal cases as 

attacks. 

⚫ False Negatives (FN): Misidentification of attack 

situations as normal. 

⚫ Accuracy: The percentage of correctly classified 

occurrences compared to the total instances. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

 

⚫ Precision: Assesses model accuracy, providing the 

percentage of detected attacks that were real. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 

⚫ Recall (Sensitivity): It evaluates the model's capacity to 

detect all attacks. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

 

⚫ The harmonic means of Precision and Recall, F1-Score, 

balances their divergent scores. 
 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

⚫ Specificity assesses the model's ability to accurately 

identify normal occurrences, indicating its genuine 

negative rate. 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (5) 

 

⚫ ROC Curve: A graphical figure demonstrating the 

diagnostic effectiveness of a binary classifier system with 

varying discrimination thresholds. The curve shows a 

true positive rate (Recall) against a false positive rate (1 - 

Specificity), and the Area Under the Curve (AUC) 

measures performance regardless of the categorization 

threshold. 

 

These metrics collectively offer a holistic view of the 

model’s performance, ensuring it not only identifies attacks 

with precision but also minimizes false alarms. They are 

paramount in upholding the trustworthiness and operational 

reliability of the IDS. 
 

 

4. RESULTS 
 

4.1 Performance of RF+DBSCAN hybrid model 
 

The hybrid model of RF combined with DBSCAN was 

tested on the dataset, and the results were particularly 

promising. 

The confusion matrix (Figure 3) showcased an impressive 

distinction between the predicted and actual values. Out of 

3498 instances of class 0, 3486 were correctly predicted, while 

12 were falsely classified. Similarly, out of 4060 instances of 

class 1, 4045 were correctly predicted, with only 15 

misclassifications. 

The classification report (Table 2) further emphasizes the 

model’s robustness. Both the classes 0 and 1 achieved 

precision, recall, and F1-score values close to 1.00, 

underscoring the model’s adeptness in accurate predictions 

and minimizing false positives and negatives. The accuracy of 

the model stands at a notable 0.9964, signifying its ability to 

produce correct outcomes for almost 99.64% of the tested 

instances. 

 

 
 

Figure 3. Confusion matrix RF+K-means 

 

Table 2. Performance metrics for the RF+K-means 

 
Metric Value 

Accuracy 0.9964 

Precision (class 0) 1.00 

Precision (class 1) 1.00 

Recall (class 0) 1.00 

Recall (class 1) 1.00 

Sensitivity 0.9963 

Specificity 0.9965 

 

 
 

Figure 4. ROC curve of RF+K-means 
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Further, the model showcased a sensitivity (or true positive 

rate) of 0.9963, indicating its prowess in identifying and 

classifying the true positives. The specificity, at 0.9965, 

highlights the model’s capability to correctly identify the true 

negatives. 

The Receiver Operating Characteristic (ROC) curve 

depicted in Figure 4, which pertains to the K-means+RF 

hybrid model, is an exemplary illustration of the model's 

exceptional performance in discriminating between the 

'Normal' and 'Anomalous' classes. The area under the curve 

(AUC) value is 1.00, which is the maximum possible and 

represents a perfect classification model. In practice, an AUC 

of 99.98%, still indicates an extremely high level of 

separability, meaning that the model has an almost perfect 

ability to differentiate between all positive and negative 

instances. The ROC curve in the graph's top-left corner shows 

that the model can identify true positives without increasing 

false positives, a crucial trait of an IDS. 

Our RF+K-means model's performance claims were 

supported by a more rigorous statistical investigation. We 

generated the Area Under the Curve (AUC) statistic's 95% 

confidence interval to assess the model's ability to distinguish 

across classes. We found a 95% confidence interval for the 

AUC of [1.000, 1.000], indicating that the model's 

performance is not due to chance and that its prediction 

capability is extremely reliable.  

This tight interval underscores the model's robustness and 

the precision of our performance metrics. 

In essence, the hybrid RF+K-means model demonstrates 

substantial potential as an effective tool for intrusion detection, 

delivering precise and reliable outcomes across various 

performance metrics. 
 

4.2 Performance of RF+DBSCAN hybrid model 
 

The performance of the hybrid model that integrated RF 

with DBSCAN clustering was also evaluated, and the results 

manifested a high level of efficiency and accuracy as 

demonstrated in Table 3. 

An examination of the confusion matrix (Figure 5) for this 

model portrays an exceptional differentiation between the real 

and anticipated classifications. From a total of 3498 instances 

belonging to class 0, 3487 were accurately categorized while 

only 11 were misclassified. On the other hand, from the 4060 

instances of class 1, a remarkable 4048 were correctly 

identified, leaving a mere 12 instances that were inaccurately 

predicted. The classification report (Table 3) fortifies the 

conclusion about the model’s outstanding proficiency. Both 

classes 0 and 1 scored near perfect values for precision, recall, 

and the F1-score, emphasizing the model’s dexterity in 

accurate detection while concurrently reducing both type I and 

type II errors. An impressive accuracy of approximately 

99.70% denotes the model’s adeptness in consistently 

producing correct results. 

 

Table 3. Performance metrics for the RF+DBSCAN 
 

Metric Value 

Accuracy 0.9970 

Precision (class 0) 1.00 

Precision (class 1) 1.00 

Recall (class 0) 1.00 

Recall (class 1) 1.00 

Sensitivity 0.9970 

Specificity 0.9969 

 
 

Figure 5. Confusion matrix RF+DBSCAN 

 

Moreover, the model exhibited a sensitivity of about 

0.9970, underscoring its effectiveness in correctly classifying 

positive instances. The specificity score, standing close to 

0.9969, reiterates the model’s competence in discerning true 

negatives. 

Figure 6 showcases the ROC curve for an RF+DBSCAN 

hybrid model, and it exhibits an almost perfect performance 

with a stated ROC AUC of 99.99%. Such a high AUC value 

demonstrates that the model has an exceptional ability to 

differentiate between the 'Normal' and 'Anomalous' classes in 

the dataset. The curve closely follows the left-hand border and 

then the top border of the ROC space, indicating that the model 

has a high true positive rate and a very low false positive rate. 

This suggests that the RF+DBSCAN model is highly skilled at 

identifying true anomalies as such, without mistakenly 

classifying normal behavior as an anomaly, which is crucial 

for minimizing false alarms in an intrusion detection context. 

The statistical rigor of the RF+DBSCAN model's 

performance evaluation has been enhanced by calculating the 

95% confidence interval for the AUC metric. This interval 

[1.000, 1.000] proves that the model's excellent discrimination 

is constant and trustworthy. This substantial statistical 

confidence in the model's AUC supports its class distinction 

performance. 

In conclusion, like K-means, the hybrid RF+DBSCAN 

model is a vital intrusion detection tool with unsurpassed 

precision and dependability across performance parameters. 

 

 
 

Figure 6. ROC curve of RF+DBSCAN 
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Table 4. Performance metrics for the ensemble model 

without hyperparameter tuning 

 
Metric Value 

Accuracy 0.989 

Precision (class 0) 0.99 

Precision (class 1) 0.99 

Recall (class 0) 0.99 

Recall (class 1) 0.99 

Sensitivity 0.989 

Specificity 0.989 

 

 
 

Figure 7. Ensemble learning without hyperparameter tuning 

confusion matrix 

 

Table 5. Performance metrics for the ensemble model with 

hyperparameter tuning 

 
Metric Value 

Accuracy 0.9947 

Precision (class 0) 1.00 

Precision (class 1) 0.99 

Recall (class 0) 0.99 

Recall (class 1) 1.00 

Sensitivity 0.9958 

Specificity 0.9934 

 

 
 

Figure 8. Ensemble learning hyperparameter tuning 

confusion matrix 

 

4.3 Performance of ensemble learning without 

hyperparameter tuning 

 

Table 4 shows the ensemble learning model's performance 

metrics without hyperparameter tuning. 

Its 98.9% accuracy shows that this model classified most 

events correctly. The confusion matrix as shown in Figure 7, 

sheds light on the distribution: Here, minor misclassifications 

can be observed for both classes, but they are considerably 

low. 

Table 6. Comparative metrics for RF+DBSCAN vs RF+K-

means 

 
Metric RF+K-Means RF+DBSCAN 

Accuracy 0.9964 0.9970 

Precision (class 0) 1.00 1.00 

Precision (class 1) 1.00 1.00 

Recall (class 0) 1.00 1.00 

Recall (class 1) 1.00 1.00 

Sensitivity 0.9963 0.9970 

Specificity 0.9965 0.9969 

 

4.4 Performance of ensemble learning with 

hyperparameter tuning 

 

Upon introducing hyperparameter tuning to the ensemble 

learning model, a distinct improvement in its performance was 

observed in Table 5. With an accuracy nearing 99.47%, the 

model has shown enhanced reliability in predictions. The 

confusion matrix as shown in Figure 8, provides a clearer 

insight: The misclassifications were further minimized in this 

tuned model, reinforcing the benefits of hyperparameter 

optimization. 

In conclusion, while the ensemble model showcased strong 

performance even without tuning, the incorporation of 

hyperparameter optimization further solidified its efficiency, 

leading to even more reliable outcomes. 

 

4.5 Comparison between RF+DBSCAN and RF+K-means 

models 

 

Having assessed the performance metrics of both the 

RF+DBSCAN and RF+K-means models, a side-by-side 

comparison aids in understanding the nuances between their 

performances. Both models showcased high degrees of 

accuracy, precision, and recall, signifying their capability to 

detect and classify intrusions efficiently. However, slight 

differences exist between the two, which are illustrated in the 

comparison Table 6. 

While both models exhibited commendable performances, 

the RF+K-means edged out slightly in terms of accuracy, 

sensitivity, and specificity. The differences, albeit minimal, 

could be attributed to the inherent differences in the clustering 

techniques of DBSCAN and K-means. 

However, it’s essential to note that both models performed 

exceptionally well in the domain of intrusion detection, and 

the choice between them would largely depend on specific 

use-cases, computational resources, and data characteristics. 

 

 

5. DISCUSSION 

 

The advent of hybrid methodologies, which amalgamate 

both supervised and unsupervised approaches, signifies a 

paradigm shift in intrusion detection systems. The synthesis 

offers the robustness of supervised models with the versatility 

of unsupervised techniques, ideally balancing precision with 

adaptability. 

Referring to Table 5, the presented models’ performance 

across various research efforts is summarized. It becomes 

evident that while individual models, like Stacking or Random 

Forest, achieve commendable accuracy, none quite reach the 

performance pinnacle of the hybrid RF+DBSCAN approach 

proposed in this research. 

Specifically, as illustrated in Table 7 the closest competing 
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model is the stacking approach from the reference [37], 

registering an accuracy of 97.3%. However, even this 

impressive figure falls short of the 99.70% achieved by the 

RF+DBSCAN combination. It’s intriguing to note that the 

Long Short-term Memory combined with Extreme Boosting, 

as described by Thapa et al. [21], did not perform as 

efficiently, which underscores the point that not all hybrid 

models guarantee top-tier performance. Nonetheless, the 

superior efficacy of our proposed model reaffirms the potential 

of judiciously integrating supervised and unsupervised 

techniques. 

Another observation to highlight is the performance of the 

Random Forest model from Song et al. [22], which achieves 

an accuracy of 97.01%. This suggests that the Random Forest 

algorithm, even when used in isolation, exhibits robust 

performance. Yet, the fusion with DBSCAN in our proposed 

approach amplifies its potency, pushing the accuracy to a near-

perfect score. 

The Generative Adversarial Network [26] and the 

Hierarchical Temporal Memory [27], while employing 

distinct methodologies, converge around the same accuracy 

range, further accentuating the varied outcomes different 

models can achieve when addressing similar problems. 
 

In essence, the results accentuate a pivotal inference: while 

individual models can achieve remarkable accuracy, their 

performance can often be enhanced through hybrid 

methodologies. The synergy of RF+DBSCAN, as proposed, 

champions this idea, combining the precision of RF with the 

clustering prowess of DBSCAN. The data shows that this 

confluence creates an optimal IDS that outperforms its 

components and several contemporaneous models. 

Though powerful in detection, the RF+DBSCAN model 

requires more computational effort due to clustering and 

classification. Due to its complexity, the DBSCAN algorithm 

may take too long to locate clusters for real-time intrusion 

detection. This hybrid model's efficiency and efficacy depend 

on DBSCAN's parameter calibration, which if not tuned, could 

damage it. 

RF+DBSCAN's near-perfect accuracy is obvious, but 

understanding and addressing its computational constraints 

will be crucial for its real-time adoption. This involves a 

careful balance between the depth of detection and the 

necessity for speed, ensuring that the model remains both 

accurate and agile in live network environments. 

 

Table 7. Comparative analysis with state-of-the-art models 

 
References Models Accuracy (%) 

[21] 
Long Short-Term Memory 

with Extreme Boosting 
88 

[22] Random Forest 97.01 

[23] Isolation Forest 93.01 

[26] 
Generative Adversarial 

Network 
93 

[27] 
Hierarchical Temporal 

Memory 
96 

[37] Stacking 97.3 

Proposed 

model 
RF+DBSCAN 99.70 

 

 

6. CONCLUSIONS 

 

The constantly shifting terrain of cyber threats demands 

intrusion detection systems that are both sophisticated and 

adaptable. Through our research, we highlight the importance 

of harnessing both supervised and unsupervised learning 

techniques, which together provide an innovative solution to 

the shortcomings of conventional intrusion detection methods. 

Specifically, by deploying hybrid models RF+DBSCAN and 

RF+K-means on an extensive simulated military network 

dataset, we demonstrated enhanced efficiency in detecting and 

exploiting anomalies within the SVM. 

These anomalies, often signifying potential breaches or new 

attack vectors, are invaluable for bolstering security. In fact, 

the RF+DBSCAN hybrid showcased slightly superior 

performance, underlining the potency of exploiting these 

irregularities in the data when combined with established 

detection techniques. 

Furthermore, we emphasized the criticality of meticulous 

data preprocessing and the selection of pertinent metrics for 

accurate evaluation, reinforcing the essential steps to harness 

machine learning models to their fullest potential. Our study’s 

positive results herald a promising direction for more in-depth 

exploration of hybrid models, underscoring their prospective 

mainstream role in cybersecurity applications. 

In practical terms, the real-world application of our 

proposed hybrid models could greatly enhance current security 

measures. By integrating into existing systems, they offer a 

robust, adaptive response to evolving threats. The significant 

impact of such integration is clear: a fortified defense 

mechanism with higher precision in threat detection, providing 

a strong foundation for a resilient and comprehensive network 

security strategy in an increasingly interconnected digital 

world. 

 

 

7. FUTURE WORK 

 

While the current study has shed light on the potential of 

hybrid IDS, it also lays the foundation for numerous avenues 

of further exploration. Firstly, as technology and cyber threats 

continue to evolve, there’s a pressing need to constantly 

update and refine the datasets being used for training, ensuring 

they capture the nuances of emerging threats. Future research 

could extend the adaptability of our model to different types 

of networks beyond military ones, investigating how it might 

be scaled or adapted to the unique demands of commercial, 

industrial, or public sector networks. Additionally, the 

exploration of other combinations of supervised and 

unsupervised techniques could uncover synergies leading to 

even more robust and adaptive systems. Integrating deep 

learning (DL) architectures, such as Convolutional Neural 

Networks (CNN) or Recurrent Neural Networks (RNN), with 

our established models could achieve unprecedented accuracy 

and adaptability. In terms of application, it is pivotal to assess 

the effectiveness of these models in real-world scenarios 

across various sectors, from healthcare to finance, ensuring 

they are effective and applicable on a broader scale. 

Considerations for scalability and real-time detection 

capabilities will be paramount, affirming the practicality and 

efficacy of these solutions in diverse and dynamic 

environments. 
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