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In this study, we introduce a novel semi-analytical technique, the Conformable Shehu 

Homotopy Analysis Transform Method (CSHAM), designed to solve the two-

dimensional Black-Scholes equation. The method integrates the homotopy analysis 

method with the conformable fractional Shehu transform (CST), a Laplace-type integral 

transform that extends the capabilities of traditional Laplace and Sumudu transforms. 

The Shehu transform offers easy-to-use properties and simpler visualization compared 

to Sumudu and other natural transforms. We establish the convergence analysis of the 

method and demonstrate its applications to fractional diffusion equations, confirming 

its efficiency and high accuracy. The results obtained using CSHAM are in complete 

accordance with those obtained using existing techniques, affirming its effectiveness.  
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1. INTRODUCTION

Black and Scholes [1] created the well-known option value 

method in 1973. The fundamental idea of Black and Scholes 

is to create a risk-free portfolio by owning bonds, cash, 

options, and the underlying stock. This strategy not only 

reinforces the application of the no-arbitrage principle but also 

serves as the basis for the Black-Scholes (B-S) formula. 

Consequently, Manale and Mahomed [2] employed this model 

to evaluate European options and American options. The B-S 

model is a parabolic differential equation, and its solution is 

employed to characterize the value of European options [3]. 

The provided passage explains the B-S option valuation 

model, represented by a partial differential equation (PDE). 

The B-S equation is given by: 

𝜕𝜙

𝜕𝜏
+

1

2
𝜁2𝑥2

𝜕2𝜙

𝜕𝑆2
+ 𝑟(𝜏)𝑆

𝜕𝜙

𝜕𝑆
− 𝑟(𝜏)𝜙

= 0, (𝑆, 𝜏) ∈ ℝ+ × (0, 𝑇)
(1) 

With the initial condition: 

𝜙𝐶(𝑆, 𝜏) = max(𝑆 − 𝐾, 0) (1) 

Researchers have extensively explored diverse techniques 

for assessing solutions of the Black-Scholes model, 

particularly focusing on one-dimensional PDE using the 

Caputo approach [4-9]. These methodologies encompass a 

spectrum of analytical and numerical approaches, representing 

option pricing values. Khalil et al. [10] introduced the 

conformable fractional derivative (CFD), providing a coherent 

mathematical foundation for fractional differentiation. 

Abdeljawad [11] further developed conformable fractional 

calculus. Subsequently, in 2016, by applying the reduced 

differential transform approach, Acan et al. [12] obtained a 

solution for conformable fractional partial differential 

equations (FPDEs). Additionally, in 2016, Avcı et al. [13] 

formulated a Cauchy problem for the conformable fractional 

heat equation, while in 2017, they investigated a wave-like 

equation involving conformable fractional derivatives [14]. In 

2018, Yavuz and Ozdemir [15] tackled fractional Black-

Scholes equations using conformable fractional methods. 

Shifting focus to specific Black-Scholes equations. Trachoo et 

al. [16] employed the Laplace transform homotopy 

perturbation method (LHPM) for the two-dimensional B-S 

Model. Sawangtong et al. [17] derived an analytical solution 

for the B-S equation involving two assets. Alfaqeih and Ozis 

tackled [18] the B-S FPDE in 2019 using the Aboodh 

decomposition method (ADM). Prathumwan and Trachoo 

[19] addressed the two-dimensional fractional B–S equation

for the European put option. Thanompolkrang et al. [20]

applied the Generalized LHPM to solve the Time-Fractional

B–S Equations based on the Katugampola Fractional

Derivative. The conformable fractional Shehu transform

(CFSHT) was introduced by Benattia and Belghaba [21].

Later, Liaqat et al. [22] used conformable fractional Shehu

transform (CFSHT) to introduced the new method

conformable Shehu homotopy permutation method (CSHPM)

for solving fractional gas dynamics and Fokker–Planck

equations.

This cumulative research culminated in the development of 

the conformable Shehu homotopy analysis method (CSHAM), 

a novel methodology combining the CST with the homotopy 

analysis method (HAM), specifically tailored for the 
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challenges posed by the two-dimensional Black-Scholes 

equation. Unlike previous approaches relying on the 

homotopy perturbation method in the Caputo sense, our 

method integrates homotopy concepts from topology, offering 

enhanced analytical capabilities without necessitating the 

presence of small or large parameters. Interestingly, it's been 

observed that several other well-known techniques, such as the 

HPM, ADM, and VIM, are special cases of HAM when the 

convergence-control parameter h=-1 [23, 24]. 

The two dimensional B-S equation is given by [20]: 
 

𝜕𝐶

𝜕𝜏
+

1

2
𝜁1

2𝑆1
2

𝜕2𝐶

𝜕𝑆1
2 +

1

2
𝜁2

2𝑆2
2

𝜕2𝐶

𝜕𝑆2
2 + 𝜔𝜁1𝜁2𝑆1𝑆2

𝜕2𝐶

𝜕𝑆1𝜕𝑆2

 

+𝑟 (𝑆1

𝜕𝐶

𝜕𝑆1

+ 𝑆2

𝜕𝐶

𝜕𝑆2

) − 𝑟𝐶 = 0 

(3) 

 

With the initial condition:  
 

𝐶(𝑆1, 𝑆2, 𝑇) = max{𝜂1𝑆1 + 𝜂2𝑆2 − 𝐾, 0}  
for 𝑆1, 𝑆2 ∈ [0, ∞), 𝜏 ∈ [0, 𝑇] 

(4) 

 

and boundary conditions: 

 

𝐶(𝑆1, 𝑆2, 𝜏) = 

{
0,                                               as 𝑆1 and 𝑆2 → 0

𝜂1𝑆1 + 𝜂2𝑆2 − 𝐾𝑒−𝑟(𝑇−𝜏), as     𝑆1 or 𝑆2 → ∞
 

(5) 

 

 

2. CONFORMABLE SHEHU FRACTIONAL 

DERIVATIVE 
 

Here, we will delve into the fundamental definitions of 

conformable calculus [10, 11, 25]. 

Definition 2.1 The Shehu transform [26] of the function 

𝕊[𝛹(𝜉)] is defined as follows: 
 

𝕊[𝛹(𝜉)] = 𝐹(𝑎, 𝑏) 

= ∫ 𝑒𝑥𝑝 (
−𝑎𝜉

𝑏
) 𝛹(𝜉)𝑑𝜉, 𝑎, 𝑏 > 0

∞

0

  
(6) 

 

Definition 2.2 Let 𝛹: [0, ∞) → ℝ, the CFD of 𝛹 of order 𝜇 

is defined by [10]: 
 

(𝐷𝜇Ψ)(𝜉) = lim
𝜖→0

Ψ(𝜉 + 𝜖𝜉1−𝜇) − Ψ(𝜉)

𝜖 
, 

∀𝜉 > 0, 𝜇 ∈ (0,1]  
(7) 

 

Theorem 2.1 [10] Let 𝜇 ∈ (0,1] and 𝑎1, 𝑎2 ∈ ℝ, then 

 

𝐷𝜇(𝑎1Ψ + 𝑎2ψ) = 𝑎1(𝐷𝜇Ψ) + 𝑎2(𝐷𝜇𝜓), 

 

𝐷𝜇(𝜉𝑘) = 𝑘𝜉𝑘−𝜇 , 𝑘 ∈ ℝ, 
 

𝐷𝜇(Ψ(𝜉)) = 0, ∀ Ψ(𝜉) = 𝜆, 

 

𝐷𝜇(Ψ𝜓) = Ψ(𝐷𝜇𝜓) + ψ(DμΨ), 

𝐷𝜇 (
Ψ

𝜓
) =

𝜓(𝐷𝜇Ψ)−Ψ(𝐷𝜇𝜓)

𝜓2 , 

 

If Ψ(𝜉) is differentiable, then 𝐷𝜇(Ψ(𝜉)) = 𝜉1−𝜇 𝑑

𝑑𝜉
Ψ(𝜉). 

Definition 2.3 Let Ψ: [0, ∞) → ℝ be a real valued function. 

Then, the CST of order 𝜇 is defined by [21]: 

 

𝕊𝜇(𝑎, 𝑏) = ∫ 𝑒𝑥𝑝 (
−𝑎𝜉𝜇

𝑏𝜇
) Ψ(𝜉)𝜉𝜇−1𝑑𝜉

∞

0

, 𝜇 ∈ (0,1] (8) 

 

Theorem 2.2 [21] Let Ψ: [0, ∞) → ℝ  be a real valued 

function and 0 < 𝜇 ≤ 1, then 

 

𝕊𝜇[𝐷𝜇Ψ(𝜉)] =
𝑎

𝑏
𝕊𝜇(𝑎, 𝑏) − Ψ(0). (9) 

 

Theorem 2.3 [21] Let 𝜅1, 𝜅2 , 𝜅3 ∈ ℝ  be a real valued 

function and 0 < 𝜇 ≤ 1, then 

 

𝕊𝜇[𝜅1] = 𝜅1

𝑎

𝑏
. 

 

𝕊𝜇 [𝑒𝑥𝑝
(𝜅1

𝜉𝜇

𝜇
)
] (𝑎, 𝑏) =

𝑏

𝑎 − 𝜅1𝑏
,
𝑎

𝑏
> 0. 

 

𝕊𝜇 [𝑠𝑖𝑛 (𝜅1

𝜉𝜇

𝜇
)] (𝑎, 𝑏) =

𝜅1𝑏2

𝑎2 + 𝜅1
2𝑏2

,
𝑎

𝑏
> 0. 

 

𝕊𝜇 [𝑐𝑜𝑠 (𝜅1

𝜉𝜇

𝜇
)] (𝑎, 𝑏) =

𝑎𝑏

𝑎2 + 𝜅1
2𝑏2

,
𝑎

𝑏
> 0. 

 

𝕊𝜇 [𝑠𝑖𝑛ℎ (𝜅1

𝜉𝜇

𝜇
)] (𝑎, 𝑏) =

𝜅1𝑏2

𝑎2 − 𝜅1
2𝑏2

,
𝑎

𝑏
> |𝜅1|. 

 

𝕊𝜇 [𝑐𝑜𝑠ℎ (𝜅1

𝜉𝜇

𝜇
)] (𝑎, 𝑏) =

𝑎𝑏

𝑎2 − 𝜅1
2𝑏2

,
𝑎

𝑏
> |𝜅1|. 

 

𝕊𝜇[𝜉𝜅](𝑎, 𝑏) = 𝜇
𝜅
𝜇 (

𝑏

𝑎
)

𝜅
𝜇

+1

Γ (1 +
𝜅

𝜇
). 

 

 

3. CONFORMABLE SHEHU HOMOTOPY ANALYSIS 

METHOD 

 

To illustrate the core principle of the CSHAM, we examine 

the following nonlinear FPDE: 

 
(𝐷𝜇𝜉)(𝜚, 𝜍) + Θ𝜉(𝜚, 𝜍) + 𝒩𝜉(𝜚, 𝜍) = 𝜗(𝜚, 𝜍) 

0 < 𝜇 ≤ 1 
(10) 

 

In this context, where (Dμξ)(ϱ, ς)  represents the 

conformable fractional derivative (CFD), and the linear and 

non-linear terms are denoted as Θ & 𝒩  respectively, with 

ϑ(ϱ, ς) serving as the source term. 

Utilizing the CST in Eq. (10): 

 

𝕊𝜇(𝐷𝜇𝜉)(𝜚, 𝜍) + 𝕊𝜇(Θ𝜉(𝜚, 𝜍)) + 𝕊𝜇(𝒩𝜉(𝜚, 𝜍))

= 𝕊𝜇(𝜗(𝜚, 𝜍)) 
(11) 

 

By using Theorem (2.2) to solve Eq. (11) 

 
𝑎

𝑏
𝕊𝜇[𝜉(𝜚, 𝜍)] − 𝜉(𝜚, 0) + 𝕊𝜇(Θ𝜉(𝜚, 𝜍)) 

+𝕊𝜇(𝒩𝜉(𝜚, 𝜍)) = 𝕊𝜇(𝜗(𝜚, 𝜍)) 
(12) 

 

Equivalently,  
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𝕊𝜇[𝜉(𝜚, 𝜍)] −
𝑏

𝑎
[𝜉(𝜚, 0) + 𝕊𝜇(Θ𝜉(𝜚, 𝜍))

+ 𝕊𝜇(𝒩𝜉(𝜚, 𝜍)) − 𝕊𝜇(𝜗(𝜚, 𝜍))] 
(13) 

 

Non linear term: 
 

ℕ[𝜄(𝜚, 𝜍; 𝑞)] = 𝕊𝜇[𝜄(𝜚, 𝜍; 𝑞)]

−
𝑏

𝑎
[𝜄(𝜚, 0) + 𝕊𝜇(Θ𝜄(𝜚, 𝜍))

+ 𝕊𝜇(𝒩𝜄(𝜚, 𝜍)) − 𝕊𝜇(𝜗(𝜚, 𝜍))] 

(14) 

 

where, 𝜄(𝜚, 𝜍; 𝑞) is a real-valued of 𝜚, 𝜗, and q ∈ [0,1] denotes 

the nonzero auxiliary parameter is the imbedding parameter. 

We constructing homotopy as follows  

 
(1 − 𝑞)𝕊𝜇[𝜄(𝜚, 𝜍; 𝑞) − 𝜉0(𝜚, 𝜍)] = ℎ𝑞𝐻(𝜚, 𝜍)ℕ[𝜄(𝜚, 𝜍; 𝑞)] (15) 

 

where, 𝕊𝜇  represents the CST, q ∈  [0,1] is the imbedding 

parameter. 𝐻(𝜚, 𝜍) denotes a non-zero auxiliary function, h≠0 

is an auxiliary parameter, 𝜉0(𝜚, 𝜍)  is the initial estimate of 

𝜉(𝜚, 𝜍) and 𝜄(𝜚, 𝜍; 𝑞) denotes the unknown function. 

The concept of CSHAM allows for significant flexibility in 

selecting an auxiliary parameter and an initial estimate. When 

q=1 and q=0 in Eq. (15), the conclusion is obtained as follows: 
 

𝜄(𝜚, 𝜍; 0) = 𝜉0(𝜚, 𝜍) 𝑎𝑛𝑑 𝜄 (𝜚, 𝜍; 1) = 𝜉(𝜚, 𝜍) (16) 

 

Thus, q rises from 0 to 1, the solution 𝜄(𝜚, 𝜍; 𝑞) shifts from 

the initial estimate 𝜉0(𝜚, 𝜍) to the solution 𝜉(𝜚, 𝜍). Expanding 

𝜄(𝜚, 𝜍; 𝑞) as a Taylor series with respect to q, we deduce 

 

𝜄(𝜚, 𝜍; 𝑞) = 𝜉0(𝜚, 𝜍) + ∑ 𝜉𝑚(𝜚, 𝜍)𝑞𝑚

+∞

𝑚=1

 (17) 

 

where, 

 

𝜉𝑚(𝜚, 𝜍) =
1

Γ(𝑚 + 1)

𝜕𝑚𝜄(𝜚, 𝜍; 𝑞)

𝜕𝑞𝑚
| 𝑞=0 (18) 

 

If the auxiliary linear operator, the initial guess, the 

auxiliary parameter h, and auxiliary function are chosen 

properly, then Eq. (17) converges at q=1, and 

 

𝜄(𝜚, 𝜍) = 𝜉0(𝜚, 𝜍) + ∑ 𝜉𝑚(𝜚, 𝜍)

+∞

𝑚=1

 (19) 

 

where, 

 

𝜉𝑚̅ = {𝜉0(𝜚, 𝜍), 𝜉1(𝜚, 𝜍), 𝜉2(𝜚, 𝜍), … , 𝜉𝑚(𝜚, 𝜍)} (20) 

 

Differentiating Eq. (15) w.r.t. q=0 and divide by 𝛤(𝑚 + 1), 

then 𝑚𝑡ℎ order deformation equation 

 

𝕊𝜇[𝜉𝑚(𝜚, 𝜍) − χm𝜉𝑚−1(𝜚, 𝜍)] = ℎ𝐻(𝜚, 𝜍)𝑅𝑚 (𝜉𝑚̅−1(𝜚, 𝜍)) (21) 

 

where, 

 

𝑅𝑚 (𝜉𝑚̅−1(𝜚, 𝜍)) = [
1

Γ(𝑚)

𝜕𝑚−1ℕ[𝜄(𝜚, 𝜍; 𝑞)]

𝜕𝑞𝑚−1
]

𝑞=0

  

 

and 

𝜒𝑚 = {
0 𝑚 ≤ 1
1 𝑚 > 1

  (22) 

 

Apply the inverse Shehu transform in Eq. (20) 

 

𝜉𝑚(𝜚, 𝜍) = χm𝜉𝑚−1(𝜚, 𝜍) 

+𝕊𝜇
−1 [ℎ𝐻(𝜚, 𝜍)𝑅𝑚 (𝜉𝑚̅−1(𝜚, 𝜍))] 

(23) 

 

Based on Eq. (10) 𝑅𝑚 (𝜉𝑚̅−1(𝜚, 𝜍)) is defined as 

 

𝑅𝑚 (𝜉𝑚̅−1(𝜚, 𝜍)) = (𝐷𝜇𝜉𝑚−1)(𝜚, 𝜍) + Θ𝜉𝑚−1(𝜚, 𝜍) 

+𝒩𝜉𝑚−1(𝜚, 𝜍) − (1 − 𝜒𝑚)𝜗(𝜚, 𝜍) 
(24) 

 

Compute 𝜉𝑚(𝜚, 𝜍)  for 𝑚 ≥ 1, using Eq. (23), and at the 

Mth-order we deduce 

 

𝜉(𝜚, 𝜍) = lim
𝑀→∞

∑ 𝜉𝑚(𝜚, 𝜍)

𝑀

𝑚=0

 (25) 

 

We use the convergence control parameter h to ensure that 

the series solution always converges. The convergence 

analysis for Caputo fractional PDEs is discussed in reference 

[27]. Subsequently, we delve into the convergence analysis of 

CSHAM for conformable PDEs.  

 

 

4. TWO DIMENSIONS BLACK-SCHOLES EQUATION 

FOR EUROPEAN CALL 

 

Following the procedures outlined in reference [15], we 

derive the two dimensions Black-Scholes Eq. (3) for European 

call options with 𝜇 in the range of (0,1]. The corresponding 

initial and boundary conditions Eqs. (4) and (5) are specified 

as follows: 

 

𝐷𝜏
𝜇

𝜙 =
1

2
𝜁1

2
𝜕2𝜙

𝜕𝑥2
+

1

2
𝜁2

2
𝜕2𝜙

𝜕𝑦2
+ 𝜔𝜁1𝜁2

𝜕2𝜙

𝜕𝑥𝜕𝑦
 

(𝑥, 𝑦, 𝜏) ∈ ℝ × ℝ × [0, 𝑇] 
(26) 

 

With the initial conditions:  

 

𝜙(𝑥, 𝑦, 0) = max{𝜂̃1𝑒𝑥 + 𝜂̃2𝑒𝑦 − 𝐾, 0} (27) 

 

and boundary conditions: 

 

{
𝜙 = 0,                                                         𝑎𝑠 (𝑥, 𝑦) → −∞

𝜙 = 𝜂̃1𝑒𝑥+
1
2

𝜁1
2𝜏 + 𝜂̃2𝑒𝑦+

1
2

𝜁2
2𝜏 − 𝐾, 𝑎𝑠 𝑥 → ∞ 𝑜𝑟 𝑦 → ∞

 

 

where, 

 

𝜂̃1 = 𝜂1𝑒
(𝑟−

1
2

𝜁1
2)𝑇 , 

 𝜂̃2 = 𝜂2𝑒
(𝑟−

1
2

𝜁2
2)𝑇

 
(28) 

 

 

5. SOLVING TWO DIMENSIONAL BLACK-SCHOLES 

EQUATION BY CSHAM 

 

In this context, we employ the CSHAM to analyze the two 

dimensions Black-Scholes equation for European call options 

presented in Eq. (26) in accordance with the condition Eq. 
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(27). 

Theorem 5.1 The solution to the time-fractional-order 

Black-Scholes model for European call options in two-

dimension Eq. (26) is expressed as:  

 

𝜙(𝑥, 𝑦, 𝜏) = max{𝜂̃1𝑒𝑥 + 𝜂̃2𝑒𝑦 − 𝐾, 0} + 𝑒𝑥+𝑦𝜏𝜇 

+ ∑ {
𝜏(𝑚+1)𝜇

(𝑚 + 1)! 𝜇(𝑚+1)
× (

1

2(𝑚+1)
𝜁1

2(𝑚+1)
max{𝜂̃1𝑒𝑥, 0} +

1

2(𝑚+1)
𝜁2

2(𝑚+1)
max{𝜂̃2𝑒𝑦, 0})

∞

𝑚=0

+ 𝑒𝑥+𝑦 ((
𝜏(𝑚+2)𝜇

(𝑚 + 2)! 𝜇(𝑚+2)
) (

𝜁1
2

2
+

𝜁2
2

2
+ 𝜔𝜁1𝜁2)

(𝑚+1)

− (
𝜏(𝑚+1)𝜇

(𝑚 + 1)! 𝜇(𝑚+1)
) (

𝜁1
2

2
+

𝜁2
2

2
+ 𝜔𝜁1𝜁2)

𝑚

)} 

(29) 

 

Proof: Let, the Eq. (26) undergoes transformation into Eq. 

(30) through the utilization of the Definition (2.3) and the 

Theorem (2.2)  

 

𝕊𝜇[𝜙(𝑥, 𝑦, 𝜏)] −
𝑏

𝑎
max{𝜂̃1𝑒𝑥 + 𝜂̃2𝑒𝑦 − 𝐾, 0} 

−
𝑏

𝑎
𝕊𝜇 [

1

2
𝜁1

2
𝜕2𝜙

𝜕𝑥2
+

1

2
𝜁2

2
𝜕2𝜙

𝜕𝑦2
+ 𝜔𝜁1𝜁2

𝜕2𝜙

𝜕𝑥𝜕𝑦
] = 0 

(30) 

 

and the nonlinear operator 

 

ℕ[Φ(𝑥, 𝑦, 𝜏; 𝑞)] = 𝕊𝜇[Φ(𝑥, 𝑦, 𝜏; 𝑞)]

−
𝑏

𝑎
max{𝜂̃1𝑒𝑥 + 𝜂̃2𝑒𝑦 − 𝐾, 0}

−
𝑏

𝑎
𝕊𝜇 [

1

2
𝜁1

2
𝜕2Φ(𝑥, 𝑦, 𝜏)

𝜕𝑥2

+
1

2
𝜁2

2
𝜕2Φ(𝑥, 𝑦, 𝜏)

𝜕𝑦2

+ 𝜔𝜁1𝜁2

𝜕2Φ(𝑥, 𝑦, 𝜏)

𝜕𝑥𝜕𝑦
] 

(31) 

 

The homotopy is constructed by decomposing the non-

linear components in Eq. (31) as follows: 

 

(1 − 𝑞)𝕊𝜇[Φ(𝑥, 𝑦, 𝜏; 𝑞) − ϕ̃0(𝑥, 𝑦, 𝜏)] 

= ℎ𝑞𝐻(𝑥, 𝑦, 𝜏)ℕ[Φ(𝑥, 𝑦, 𝜏; 𝑞)] 
(32) 

 

where, q ∈  [0,1] is an embedded parameter and 𝜙̃0(𝑥, 𝑦, 𝜏) 

serves as an initial approximation for Eq. (32), which can be 

freely chosen [28]. In this model, we define 𝜙̃0(𝑥, 𝑦, 𝜏) as: 

 

𝜙̃0(𝑥, 𝑦, 𝜏) = 𝑚𝑎𝑥{𝜂̃1𝑒𝑥 + 𝜂̃2𝑒𝑦 − 𝐾, 0} + 𝑒𝑥+𝑦𝜏𝜇 

𝛷(𝑥, 𝑦, 𝜏; 0) = 𝜙̃0(𝑥, 𝑦, 𝜏) 

𝛷(𝑥, 𝑦, 𝜏; 1) = 𝜙(𝑥, 𝑦, 𝜏) 

(33) 

 

by differentiating Eq. (32) m-times with respect to the 

embedding parameter q, setting q=0, and then dividing by m, 

we derive the mth-order deformation equation. 

 

𝕊𝜇[𝜙𝑚(𝑥, 𝑦, 𝜏) − 𝜒𝑚𝜙𝑚−1(𝑥, 𝑦, 𝜏)] 

= ℎ𝐻(𝑥, 𝑦, 𝜏)𝑅𝑚 (𝜙̅𝑚−1(𝑥, 𝑦, 𝜏)) 
(34) 

 

By finding the inverse Shehu transform of Eq. (34), we can 

 

𝜙𝑚(𝑥, 𝑦, 𝜏) = 𝜒𝑚𝜙𝑚−1(𝑥, 𝑦, 𝜏) 

+𝕊𝜇
−1 [ℎ𝐻(𝑥, 𝑦, 𝜏)𝑅𝑚 (𝜙̅𝑚−1(𝑥, 𝑦, 𝜏))] 

(35) 

 

whereas, 
 

𝑅𝑚 (𝜙̅𝑚−1(𝑥, 𝑦, 𝜏)) = 𝕊𝜇[𝜙𝑚−1(𝑥, 𝑦, 𝜏)] − (1 − 𝜒𝑚)
𝑏

𝑎
𝑚𝑎𝑥{𝜂̃1𝑒𝑥 + 𝜂̃2𝑒𝑦 − 𝐾, 0} 

−
𝑏

𝑎
𝕊𝜇 [

1

2
𝜁1

2
𝜕2𝛷𝑚−1(𝑥, 𝑦, 𝜏)

𝜕𝑥2
+

1

2
𝜁2

2
𝜕2𝛷𝑚−1(𝑥, 𝑦, 𝜏)

𝜕𝑦2
+ 𝜔𝜁1𝜁2

𝜕2𝛷𝑚−1(𝑥, 𝑦, 𝜏)

𝜕𝑥𝜕𝑦
] 

(36) 

 

By selecting 𝐻(𝑥, 𝑦, 𝜏) = 1, we iteratively solve Eq. (35) 

for m ≥ 1, derive the subsequent outcomes 

 

 

𝜙0(𝑥, 𝑦, 𝜏) = max{𝜂1𝑒𝑥 + 𝜂2𝑒𝑦 − 𝐾, 0} + 𝑒𝑥+𝑦𝜏𝜇 
 

𝜙1(𝑥, 𝑦, 𝜏) = ℎ [
𝜏𝜇

𝜇
(−

1

2
𝜁1

2 max{𝜂1𝑒𝑥 , 0} −
1

2
𝜁2

2 max{𝜂2𝑒𝑦 , 0}) − 𝑒𝑥+𝑦 (𝜏𝜇 (
𝜁1

2

2
+

𝜁2
2

2
+ 𝜔𝜁1𝜁2) − 𝜏𝜇)] 

 

𝜙2(𝑥, 𝑦, 𝜏) = (ℎ + 1)𝜙1(𝑥, 𝑦, 𝜏) 

+ℎ2 [
𝜏2𝜇

2! 𝜇2
(

1

4
𝜁1

4 max{𝜂1𝑒𝑥 , 0} +
1

4
𝜁2

4 max{𝜂2𝑒𝑦 , 0}) + 𝑒𝑥+𝑦 (
𝜏2𝜇

2! 𝜇2
(

𝜁1
4

4
+

𝜁2
4

4
+ 𝜔2𝜁1

2𝜁2
2) − 𝜏𝜇 (

𝜁1
2

2
+

𝜁2
2

2
+ 𝜔𝜁1𝜁2))] 

 

𝜙3(𝑥, 𝑦, 𝜏) = (ℎ + 1)𝜙2(𝑥, 𝑦, 𝜏) 

−ℎ2(ℎ + 1) [
𝜏2𝜇

2! 𝜇2 (
1

4
𝜁1

4 max{𝜂1𝑒𝑥 , 0} +
1

4
𝜁2

4 max{𝜂2𝑒𝑦 , 0}) + 𝑒𝑥+𝑦 (
𝜏2𝜇

2! 𝜇2 (
𝜁1

4

4
+

𝜁2
4

4
+ 𝜔2𝜁1

2𝜁2
2) − 𝜏𝜇 (

𝜁1
2

2
+

𝜁2
2

2
+ 𝜔𝜁1𝜁2))] 

+ℎ3 [
𝜏3𝜇

3! 𝜇3
(−

1

8
𝜁1

6 max{𝜂1𝑒𝑥, 0} −
1

8
𝜁2

6 max{𝜂2𝑒𝑦 , 0}) − 𝑒𝑥+𝑦 (
𝜏3𝜇

3! 𝜇3
(

𝜁1
6

8
+

𝜁2
6

8
+ 𝜔3𝜁1

3𝜁2
3) −

𝜏2𝜇

2! 𝜇2
(

𝜁1
4

4
+

𝜁2
4

4
+ 𝜔2𝜁1

2𝜁2
2))] 

 

Similarly, 𝜙4 , 𝜙5,… are estimated and the series solution is 

obtained, that is: 

𝜙(𝑥, 𝑦, 𝜏) = ∑ 𝜙𝑚(𝑥, 𝑦, 𝜏)∞
𝑚=0   (37) 

 

If ℎ = −1, Eq. (37) can be expressed as 
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𝜙(𝑥, 𝑦, 𝜏) = max{𝜂̃1𝑒𝑥 + 𝜂̃2𝑒𝑦 − 𝐾, 0} + 𝑒𝑥+𝑦𝜏𝜇 

+ ∑ {
𝜏(𝑚+1)𝜇

(𝑚 + 1)! 𝜇(𝑚+1)
× (

1

2(𝑚+1)
𝜁1

2(𝑚+1)
max{𝜂̃1𝑒𝑥, 0} +

1

2(𝑚+1)
𝜁2

2(𝑚+1)
max{𝜂̃2𝑒𝑦 , 0})

∞

𝑚=0

+ 𝑒𝑥+𝑦 ((
𝜏(𝑚+2)𝜇

(𝑚 + 2)! 𝜇(𝑚+2)
) (

𝜁1
2

2
+

𝜁2
2

2
+ 𝜔𝜁1𝜁2)

(𝑚+1)

− (
𝜏(𝑚+1)𝜇

(𝑚 + 1)! 𝜇(𝑚+1)
) (

𝜁1
2

2
+

𝜁2
2

2
+ 𝜔𝜁1𝜁2)

𝑚

)} 

(38) 

 

 

6. RESULT AND DISCUSSION 

 

In this numerical illustration providing explicit solutions, 

we employ the parameters specified in Table 1 to calculate the 

solution for the European call option. Regarding the call 

option. Figures 1-5 illustrate plots of the modified explicit 

solution across various parameters. Figure 1 exhibits solutions 

ranging from 0 to 5 for 𝑥  and 𝑦 . Figure 2 showcases the 

surface plot of the call option with 𝑥=2.7080 and time 0 ≤ 𝜏 ≤
1. The solution 𝜙 increases exponentially when 𝑦 is greater 

than 0. Figure 3 presents the surface plot of the call option with 

𝑦 =2.7080 and time 0 ≤ 𝜏 ≤ 1 . The solution 𝜙  grows 

exponentially when x exceeds 2. Within different orders of 𝜇 

in the context of 𝜙  , the values depicted in Figure 4 are 

𝑦 =3.091, and in Figure 5, 𝑥 =3.555. Through numerical 

simulations of Eq. (38), it is clear that the Laplace transform 

homotopy perturbation method [16], the ADM [18], the 

Generalized LHPM [20], all emerge as special cases of the 

CSHAM when the nonzero convergence-control parameter 

ℎ = −1 . Consequently, the CSHAM can be viewed as an 

enhancement of these existing methods. 

 

Table 1. Parameters of the numerical solution 

 
Parameters Values 

Strike price (K) 45 

Risk free interest rate (r) 5% 

Expiration date (T) (Month) 6 

Volatility of underlying asset (𝜁1) 5% 

Volatility of underlying asset (𝜁2) 10% 

The volatility 𝑆1 and 𝑆2 (𝜔) 1 

𝜂1, 𝜂2 3, 2 

 

 
 

Figure 1. The solution of 𝜙 when 𝑥, 𝑦 ∈ (0,5) 

 
 

Figure 2. The solution of 𝜙 for 𝜏 = 0 to 1 with 𝑥 = 2.7080 
 

 
 

Figure 3. The solution of 𝜙 for 𝜏 = 0 to 1 with 𝑥 = 3.21 
 

 
 

Figure 4. The solution of 𝜙 for various fractional-order 

values 𝑦 = 3.091 
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Figure 5. The solution of 𝜙 for various fractional-order 

values 𝑥 = 3.555 

 

 

7. CONCLUSIONS 

 

In our study, we successfully applied the conformable 

Shehu homotopy analysis technique to solve the two-

dimensional B–S equation for a European call option. 

Compared to existing methodologies for solving the two-

dimensional fractional Black-Scholes equation, the CSHAM 

decreases computational size, eliminates round-off errors, and 

ensures rapid convergence of series solutions within a few 

iterations, aided by the nonzero convergence-control 

parameter. The CSHAM, characterized by its simplicity, 

accuracy, adaptability, and efficiency, demonstrates 

significant advantages. Moreover, it is feasible to extend the 

application of the CSHAM to various types of ordinary and 

partial differential equations of non-integer order. Our future 

objective is to broaden the utilization of the CSHAM to 

address other systems of fractional ordinary differential 

equations (FODEs) encountered across different scientific 

domains.  
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