
Design and Implementation of Low Power Generic Reversible Binary-Coded Decimal Adder

on Artix-7 FPGA

Kanchan S. Tiwari1* , Revati M. Wahul2 , Sagar D. Shinde3 , Manisha A. Dudhedia4 , Varsha P. Gaikwad5 ,

Pranav Bhalerao1 , Simrit Kaur Gill1 , Neeraj Chhajed1 , Christy Daniel1 , Shravan H. Gawande6

1 Department of Electronics and Telecommunication, M. E. S. Wadia College of Engineering, S. P. Pune University, Pune

411001, India
2 Department of Computer Engineering, M. E. S. Wadia College of Engineering, S. P. Pune University, Pune 411001, India
3 Department of Mechanical Engineering, Shree Ramchandra College of Engineering, Pune, S. P. Pune University, Pune

411001, India
4 Department of Electronics and Telecommunication, Marathwada Mitra Mandal’s College of Engineering, Pune 411052, India
5 Department of Information Technology, Government College of Engineering Aurangabad, Chh. Sambhajinagar 431005, India
6 Department of Mechanical Engineering, M. E. S. Wadia College of Engineering, S. P. Pune University, Pune 411001, India

Corresponding Author Email: kanchan.tiwari@mescoepune.org

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.120235 ABSTRACT

Received: 5 October 2024

Revised: 18 December 2024

Accepted: 26 December 2024

Available online: 28 February 2025

Reversible logic has emerged as a transformative approach to energy-efficient

computing by enabling reversible computations and minimizing information loss,

thereby reducing energy dissipation to negligible levels. This innovation is particularly

relevant in the era of low-power and sustainable system design. Among its applications,

the Binary-Coded Decimal (BCD) adder, a cornerstone of digital arithmetic, plays a

vital role in domains such as financial modeling, signal processing, and embedded

systems. This study introduces a novel reversible BCD adder that leverages Feynman,

Toffoli, Haghparast–Navi Gate (HNG), Haghparast–Navi Full Gate (HNFG),

Thapliyal–Sreenivas Gate (TSG), Peres, etc., gates to achieve exceptional energy

efficiency and scalability. Designed using a generic programming methodology, the

adder supports seamless adaptability to varying input sizes, scaling efficiently up to 512

bits without requiring redesign. The proposed design achieves a significant reduction in

quantum cost (50), garbage outputs (14), and power dissipation (24 mW), while

maintaining competitive delay (1.555 ns) and gate count (11), demonstrating superior

efficiency compared to existing 8-bit reversible BCD adders. These findings have

significant implications for power-sensitive applications, including portable devices,

Internet of Things (IoT) systems, data centers, and quantum computing architectures.

This work demonstrates the feasibility of high-performance, sustainable arithmetic

operations for next-generation computing systems.

Keywords:

reversible logic, generic Binary-Coded Decimal

adder, quantum cost, garbage output, Artix-7

FPGA, power, delay

1. INTRODUCTION

In the era of energy-efficient computing, minimizing power

consumption has become a critical priority, particularly for

applications in portable electronics, IoT devices, and green

technology. Reversible logic has emerged as a key enabler for

achieving this goal, addressing energy dissipation by

preventing information loss during computation.

Mollick [1] formulated a hypothesis suggesting that

computing power would experience significant growth while

costs would decrease proportionately. His forecasting

predicted that all the transistors present on a semiconductor

chip shall get two folded in every one and a half or two years,

maintaining minimal cost increments. This forecast was

known to be Moore's law and it also anticipated that

substantial amount of heat would be generated as a result of

certain information being lost. This heat dissipation, in turn,

could lead to a drastic reduction in circuit performance and

lifespan. Keeping that in mind, Landauer's [2] research

elucidated that conventional gates dissipate energy at a

minimum rate of kTln2 joules per bit of information loss,

wherein k represents the Boltzmann constant

(1.38064852×10−23 joule/kelvin) and T signifies absolute

temperature in kelvin during operations. Following this,

Bennett [3] demonstrated in 1973 that to circumvent this

energy dissipation, circuits must be constructed using

reversible logic. Consequently, various reversible gates

namely the Fredkin Gate, Peres Gate, Toffoli Gate and

Feynman Gate were devised with the intention of achieving

this objective [4]. Unlike traditional logic circuits, which

generate heat by erasing information, reversible gates allow

input data to be fully reconstructed from outputs, adhering to

Landauer's principle. This reduces energy dissipation to

negligible levels, making reversible logic a cornerstone of

sustainable computing.

A reversible gate establishes a bijective relationship

Mathematical Modelling of Engineering Problems
Vol. 12, No. 2, February, 2025, pp. 730-744

Journal homepage: http://iieta.org/journals/mmep

730

https://orcid.org/0009-0002-1275-6705
https://orcid.org/0000-0003-2747-7557
https://orcid.org/0009-0000-4399-666X
https://orcid.org/0000-0002-1945-0285
https://orcid.org/0000-0002-0638-424X
https://orcid.org/0009-0000-4837-3699
https://orcid.org/0009-0002-8287-8636
https://orcid.org/0009-0006-5308-8730
https://orcid.org/0009-0008-3702-5187
https://orcid.org/0000-0001-5537-0971
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.120235&domain=pdf

between the input and output vectors. This capability allows

for the generation of inputs from outputs and the ability to

backtrack to any point in the computation. This characteristic

is termed logical reversibility. However, the advantages of this

are contingent upon achieving physical reversibility, which

refers to a procedure that expends nil energy as heat. While

achieving total perfect physical reversibility is nearly

unattainable, efforts can be made to minimize or even

eliminate energy dissipation by ensuring that computations are

information lossless [5]. A qubit represents a fundamental unit

of information, capable of existing in a state of 0, 1, or a

superposition of both [6]. Any manipulation performed on

individual qubits can be designed to be reversible, allowing for

the preservation of information integrity. This is explained

with an example given below in Figure 1.

Upon examining the AND Gate shown in Figure 1, which

comprises two inputs and one output, and referring to the

corresponding truth table given in Table 1, it is evident that an

input combination, such as '00,' yields an output of '0,' as does

'01' and '10.' Consequently, discerning the specific input

combination resulting in the output '0' proves challenging.

Contrary to the CNOT Gate as depicted in Figure 2, this is

additionally known as the Feynman Gate features two inputs

and two outputs. Notably, when the inputs are '00,' the output

is exclusively '00,' and no other input configuration produces

this output. Similarly, for input '01,' the output is '01.' Thus,

each input corresponds to a distinct output, unlike the

conventional AND Gate, mitigating the complexity of

prediction. This characteristic aligns with the principle of

reversibility. Its truth table is shown in Table 2.

Figure 1. AND Gate

Table 1. AND Gate truth table

Input Output

A B Y

0 0 0

0 1 0

1 0 0

1 1 1

Figure 2. CNOT Gate

Table 2. CNOT Gate truth table

Input Output

X Y X X⊕Y

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

Figure 3. Basic reversible gate

In an N×N reversible gate, as shown in Figure 3, the input

vector (Iv) and output vector (Ov) are represented as

sequences of elements (I1, I2, I3, ... IN) and (O1, O2, O3, ... ON)

respectively. To construct reversible circuits, a set of

reversible gates is required, ensuring that each input vector

corresponds uniquely to an output vector, and vice versa, thus

maintaining a one-to-one mapping between them. This

distinction between reversible and arbitrary logic circuits rests

on the key properties:

(i) The equality of input and output bit counts,

(ii) The guarantee that each input pattern corresponds to a

unique output pattern,

(iii) No fan-out allowed.

According to the study conducted by Nayak et al. [7], there

exist various terminologies and parameters associated with

reversible logics.

Constant Inputs (CI): Inputs set to 0 or 1 to synthesize non-

reversible Boolean functions into reversible forms.

Garbage Outputs (GO): Unused outputs essential for

achieving reversibility, ensuring the sum of inputs and

constant inputs equals the sum of outputs and garbage outputs.

Gate Count: The number of reversible logic gates used in

the circuit.

Quantum Cost (QC): Indicates the overall usage of 2×2

quantum primitives to form an equivalent circuit.

Delay. Based on the majority of gates from an input line to

an output line, assuming that each gate operates in a single

time unit and all inputs are available before computation starts.

Hardware Complexity. The number of logical operations

(AND, OR, EX-NOR) within the circuit.

Flexibility. Indicates the universality of reversible logic

gates, aiming for minimal garbage output, minimal delay, and

no feedback/loops to achieve reversibility.

In hardware design, the preference for binary computing

over decimal computing arises from the simplicity of

constructing hardware based on the binary number system.

Despite the convenience of building binary hardware,

challenges emerge when representing fractional decimal

numbers, like 0.110, precisely in binary form. Consequently,

approximate values are employed for computational purposes

within binary hardware. Acknowledging the limited tolerance

of commercial, financial, and net-based platforms for blunders

stemming from conversions among binary and decimal

formats, there has been a significant shift towards prioritizing

decimal arithmetic. Binary Coded Decimal (BCD) is a

representation technique utilized for encoding decimal digits

(0-9) in binary form. Ongoing efforts are aimed at accelerating

the development of dedicated hardware specifically designed

for decimal arithmetic. So, there is great emphasis on the

design of low-power hardware implementation of decimal

arithmetic circuits based on reversible logic.

The Binary-Coded Decimal (BCD) adder, a fundamental

arithmetic component, is widely used in digital systems that

require precise decimal computations, such as financial

systems, digital clocks, IoT devices, quantum computing, and

731

calculators. However, traditional BCD adders, designed using

irreversible logic, are inherently energy-intensive and face

scalability challenges. These limitations hinder their

deployment in power-sensitive applications and emerging

fields like quantum computing. A reversible BCD adder

provides a compelling solution by combining the benefits of

energy efficiency, scalability, and minimal hardware

overhead.

This paper presents a low-power reversible BCD adder

implemented on an Artix-7 FPGA, designed to address these

limitations. Existing methods [8-13] have utilized various

reversible gates such as the Toffoli Gate (TG) [14], New Gate

(NG) [15], HNFG Gate [11], Feynman Gate [16], etc., for the

implementation of a reversible BCD adder. The

implementation of the BCD adder typically involves three key

stages. First, a binary-centric 4-bit parallel adder performs

addition on the two BCD numbers in their binary

representation. Next, the result is evaluated by a Six Converter

Module (SCM) to ensure accuracy [17]. If the outcome

exceeds '1001' or generates a carry, it is identified as invalid

and requires adjustment. Finally, the correction is made by

adding '0110' to the sum using a 4-bit parallel adder.

The proposed architecture utilizes a combination of

Fredkin, Toffoli, and Peres Gate, ensuring a bijective mapping

between inputs and outputs while minimizing quantum cost

(QC), garbage output (GO), and constant input (CI). The

modular design is scalable to input sizes up to 512 bits,

enabling seamless adaptation to various applications without

frequent redesigns.

Compared to conventional designs [18, 19], the proposed

BCD adder achieves a 70% reduction in power dissipation

while maintaining comparable delay performance, enhanced

scalability for large datasets, and applications requiring high

precision, and simplified arithmetic processes for frequent

decimal computations.

By implementing the design on an Artix-7 FPGA, this study

combines energy efficiency with the benefits of high

performance, flexibility, and rapid prototyping. The FPGA's

architecture further enables potential parallel processing,

making it ideal for applications such as financial systems, IoT

devices, and advanced embedded systems.

The proposed design addresses the trade-offs in existing

approaches, which often compromise on key metrics like QC

and GC. It sets a benchmark for energy-efficient computing,

paving the way for future advancements in reversible

arithmetic circuits and their integration into low-power digital

systems.

The structure of this paper is as follows: Section 2 provides

an overview of reversible logic gates and prior work. Section

3 details the design methodologies of the proposed BCD

adder. Section 4 discusses the verification and implementation

using VHDL, and Section 5 concludes with key findings and

future directions.

2. LITERATURE SURVEY

Numerous reversible gates have been developed and widely

utilized by researchers [20-22] for designing various

combinational and sequential circuits. This section provides a

concise overview of the reversible gates employed in the

proposed BCD adder design, followed by a discussion of the

current state-of-the-art advancements in BCD adder designs

[23-25].

2.1 Basic reversible gates

Exploring different reversible gates holds paramount

importance in digital circuitry, given their role in enabling

bidirectional information flow. This attribute holds significant

importance in fields such as quantum computing, designing

circuits with low power consumption, and applications

involving cryptography. A comprehensive comprehension of

the various types of reversible gates is fundamental for

engineers and researchers, as they form the cornerstone for

building reliable and efficient digital systems. A few of these

basic gates and their types are mentioned below:

2.1.1 Feynman/CNOT Gate

The 2×2 Feynman Gate, also acknowledged as the

controlled NOT (1-CNOT) Gate, depicted in Figure 4,

operates based on logic operations where P is equivalent to B,

and Q is identical to the XOR of A and B. This gate is highly

efficient for managing a single bit, guaranteeing that if the

second input is '0', the first input will be mirrored in both

outputs. Consequently, the Feynman Gate is recognized as the

utmost appropriate option for the single-bit operations, as it

prevents the creation of unnecessary outputs, thereby ensuring

processing efficiency. It will implement the logical functions:

P=A and Q=A⊕B.

2.1.2 Toffoli Gate

A Toffoli Gate as depicted in Figure 5 is designed for 3

inputs and typically includes 3 outputs. In a three-input and

three-output Toffoli Gate, inputs A and B correspond to the

first as well as second outputs, and the third output depends on

the states of inputs A and B, serving to invert input C and it

executes the logical functions: P=A, Q=B, and R=AB⊕C.

2.1.3 New Gate

The New Gate as depicted in Figure 6, is characterized by

its ability to process multiple input variables and generate

corresponding output variables based on predefined logical

rules. The specifics of these logical rules, such as AND, OR,

XOR operations, or more complex combinations, depend on

the intended functionality of the gate within a given digital

circuit. Designers often use NG Gates as building blocks for

more complex digital systems. It executes the logical

functions: P=A, Q=AB⊕C, and R=A′C′⊕B′. It works as a

half adder when B is made ‘0’. The sum value will be obtained

on R.

2.1.4 Haghparast–Navi Gate (HNG)

The HNG Gate as depicted in Figure 7, which is also known

as the Hadamard-NAND Gate, combines two fundamental

logic operations - the Hadamard operation and the NAND

operation. It executes the logical functions: P=A, Q=B, Sum

=A⊕B⊕C in and Cout =(A⊕B). C in ⊕AB⊕D. It works as

a full adder when D is set to ‘0’, in that case, R gives sum and

S gives carry generated out of it.

2.1.5 Hadamard Nand Fanout Gate (HNFG)

HNFG as depicted in Figure 8, extends the functionality of

the HNG gate by incorporating certain fanout capabilities.

Each HNFG Gate functions effectively as two 2×2 Feynman

gates and can also serve as a "Copying Circuit" to address the

fan-out limitation in reversible circuits. It enables a single

duplication of two bits without generating any garbage

outputs, making it highly efficient for this purpose. It not only

732

performs NAND operations but it also facilitates the

distribution of output to multiple destinations within the

circuit. It executes the logical functions: P=A, Q=A⊕C, R=B

and S=B⊕D.

Figure 4. Feynman Gate

Figure 5. Toffoli Gate

Figure 6. New Gate

Figure 7. HNG Gate

Figure 8. HNFG Gate

Figure 9. Thapliyal-Srinivas Gate

Figure 10. Six Correction Logic Gate

Figure 11. Peres Gate

Figure 12. Universal Programmable Gate

2.1.6 Thapliyal-Srinivas Gate (TSG)

The TSG as shown in Figure 9 is a 4×4 reversible gate that

functions as a versatile building block, capable of

implementing all Boolean functions and operating as a

reversible full adder, AND Gate, or half adder. The TSG is

instrumental in designing efficient adder units, reversible 4:2

compressors, and 8×8 reversible Wallace tree multipliers. It

offers significant optimization over existing architectures by

reducing the number of reversible gates and garbage outputs,

making it a highly efficient choice for advanced reversible

computing designs. The equations for the TSG are P=A,

Q=A′C′⊕B′, R=(A′C′⊕B′)⊕D, S=(A′C′⊕B′)D⊕(AB⊕C).

FEYNMAN

GATE

P=A A

B Q=(A⊕B)

TOFFOLI

GATE

A

B

C

P=A

Q=B

R=A⋅B⊕C

NG GATE

A

B

C

P=A

Q=A⋅B⊕C

R=A′C′⊕B′

D

(A⊕B)C in ⊕AB⊕D

HNG GATE

A

B

C

P=A

Q=B

R=A⊕B⊕C

D

HNFG GATE

A

B

C

P=A

Q=A⊕C

R=B

Z=B⊕D

D Z=(A′C′⊕B′)D⊕(AB⊕C)

TSG GATE

A

B

C

P=A

Q=A′C′⊕B′

R=(A′C′⊕B′)⊕D

D

SCL GATE

A

B

C

P=A

Q=B

R=C

Z=A(B+C) ⊕D

PERES

GATE

A

B

C

P=A

Q=(A⊕B)

R=A⋅B⊕C

UPG GATE

A

B

C

P=A

Q=(A⊕B)⊕(A⋅B⊕C)

R

+++++++++++++

733

2.1.7 Six Correction Logic Gate (SCLG)

The SCLG is a 4×4 reversible gate specifically designed for

correction in BCD addition. Its outputs are defined as P=A,

Q=B, R=C, and S=A(B+C)⊕D. The primary output S is used

for applying the correction factor of 6 ("0110") when the sum

of two BCD digits exceeds 9 or generates a carry, ensuring

valid BCD representation. The term A(B+C) detects

conditions requiring correction, while ⊕D adjusts the output

accordingly. The remaining three outputs (P, Q, R) propagate

the inputs A, B, C, which is critical in reversible circuits where

fan-out is not permitted. These outputs can be connected to

other gates or used in subsequent stages to build complex

circuits without requiring additional duplication logic. By

facilitating correction and enabling seamless integration, the

SCLG ensures efficient and reversible BCD addition. It is

shown in Figure 10.

2.1.8 Peres Gate

The Peres Gate is a 3-input, 3-output reversible gate used in

reversible logic circuits, particularly for BCD addition as

shown in Figure 11. It operates as follows: the outputs are

P=A, Q=A⊕B, and R=AB⊕C where A, B, C are the inputs,

and P, Q, and R are the outputs. The gate computes the sum

bit Q as the XOR of A and B, while the carry bit R is generated

by the AND of A and B, adjusted by the previous carry C. The

output P simply passes through the control input A. This

functionality makes the Peres Gate efficient for BCD addition,

enabling the simultaneous computation of sum and carry

without additional resources, making it ideal for reversible,

low-power arithmetic circuits.

2.1.9 Universal Programmable Gate (UPG)

A 3×3 UPG, as shown in Figure 12 implements the logical

operations P=A, Q=(A⊕B)⊕(A⋅B⊕C), R=AB⊕C.

The quantum cost and delay for the UPG are both 4. This

gate is termed the UPG because it can be configured as a

programmable 3×3 gate that implements logical functions

such as AND, NAND, OR, and NOR by using input C as the

fixed selection line, and Q and R as fixed output lines. When

C=0, the gate performs AND and OR operations. When C=1,

it produces NAND and NOR operations.

The UPG offers a significant advantage over the Peres Gate

in that when used in its programmable configuration, the UPG

can produce four distinct logical operations, while the Peres

Gate can only produce three (XOR, AND, and NAND). This

flexibility makes the UPG a more versatile and efficient

component in reversible logic circuits.

2.2 A survey on existing BCD adder

The Table 3, presents current state of art in design of BCD

adder using reversible gates. Various researchers have

designed optimized BCD adders [26-28]. Akilandeswari [29]

implemented an 8-bit reversible ripple carry adder with a delay

of 5.885 ns but did not discuss quantum cost or power

dissipation, leaving a gap in comprehensive performance

analysis. In the study [30], a novel approach for multi-digit

Binary Coded Decimal (BCD) adders using quantum-dot

cellular automata (QCA) technology was proposed. The delay

values reported were 6.50 clock cycles for a 4-bit adder and

10.50 clock cycles for an 8-bit adder. As QCA designer was

used, delay is the only parameter suitable for comparison.

Borodzhieva et al. [31] implemented 1-, 2-, and 3-digit BCD

adders without reversible logic and omitted any mention of

performance metrics. Similarly, the work conducted by

Ykuntam and Prasad [32] focuses on conventional BCD

adders instead of reversible ones, reporting a delay of 17.7 ns

for an 8-bit BCD adder.

Krishna and Uma [33] designed, simulated, and tested

reversible logic-based full adders/subtractors for different

sizes. While their 8-bit binary reversible adder achieved a

delay of 3.2 ns, the gate count disparity between binary and

BCD circuits explains the lower delays for binary adders.

However, their proposed design for a 64-bit binary reversible

adder has a high quantum cost of 640. As reported by Kumar

et al. [34], a novel reversible BCD adder design was

introduced using ASK and New Gate (NG) logic, achieving

significant efficiency improvements with a gate count of 11,

13 ancilla inputs, and 22 garbage outputs, representing a

63.33% reduction in gate count compared to existing

architectures. The design, validated using Xilinx Vivado

2022.2, demonstrates the effectiveness of reversible logic in

optimizing resource utilization and energy efficiency.

Table 3. Survey of BCD adders

Authors Observations

Akilandeswari

[29]

This work explored the design of reversible

logic-based adders in CMOS VLSI design. It

investigates techniques for implementing adders

using reversible logic, aiming to achieve

efficient and low-power designs suitable for

VLSI applications.

Chu et al. [30]

This paper presented various BCD adder

implementations based on the three input XOR

and other majority gates. By utilizing these

gates, the design aims to achieve optimized

performance in terms of speed and area

efficiency for BCD addition operations.

Borodzhieva et

al. [31]

This paper discusses the use of inquiry-based

study for implementing BCD adders. It presents

a pedagogical approach aimed at enhancing

students' understanding and skills in designing

BCD adders through hands-on learning

experiences.

Ykuntam and

Prasad [32]

The paper proposed a modified architecture for

BCD adders utilizing a Mirror adder to enhance

speed and reduce area. The approach aims to

improve the efficiency of BCD addition

operations by leveraging innovative design

techniques.

Krishna and

Uma [33]

Discusses the design, implementation, and

analysis of low power-based adder/ subtractor

circuits that are reversible.

3. PROPOSED GENERIC REVERSIBLE BCD ADDER

This paper discusses the design and implementation of a

generic reversible BCD adder using four different

architectures. BCD addition involves the addition of two BCD

digits to yield an output BCD digit, each within the range of 0

to 9. This addition process adheres to specific rules of binary-

centred addition, wherein correction logic is only required if

the sum exceeds 9 or if a carry is present. Unlike traditional

binary adders, BCD addition requires additional correction

logic due to the limited range of BCD numbers (0 to 9).

Nevertheless, challenges arise in the context of BCD addition,

necessitating the incorporation of correction logic. The

proposed design emphasizes modularity and scalability,

making it adaptable for higher bit-widths beyond 8 bits. The

734

foundation of the design lies in the use of a 4-bit reversible

BCD adder as a building block, which can be combined

iteratively to construct adders of larger sizes. For example, an

8-bit BCD adder is implemented by cascading two 4-bit BCD

adders, as shown in Figure 13 and Figure 14. This hierarchical

approach enables scalability to higher bit widths, such as 16-

bit or 32-bit, by simply integrating additional blocks. The

major advantages of scalability are:

Modular design: The use of 4-bit adders as primitive blocks

simplifies the construction of higher-order adders without

significant redesign.

Reusability: The correction logic and carry propagation

mechanism remain consistent across different bit-widths.

Reduced development effort: The same design methodology

can be extended to larger sizes, reducing implementation

complexity.

The limitations and challenges in scaling are:

Delay accumulation: As shown in Table 4, the

combinational path delay increases with the bit-width due to

the propagation of carry signals across multiple blocks. For

instance, the delay for a 64-bit adder is significantly higher

compared to smaller sizes. This limits the practicality of the

design for applications requiring ultra-low latency.

Power dissipation: Power consumption grows as additional

blocks are added. Although reversible logic reduces overall

power dissipation, the complexity of managing carry and

correction logic in higher-order designs results in incremental

power usage, as indicated in Table 5.

Increased resource utilization: Scaling requires more gates,

leading to an increase in garbage outputs, constant inputs, and

quantum costs. While the design strives for optimization, these

parameters grow linearly or sub linearly with the number of

bits, impacting efficiency. Table 6 highlights the resource

usage for smaller designs, which would proportionally

increase for larger sizes.

FPGA resource constraints: Larger bit-width designs may

exceed the available hardware resources of certain FPGAs,

such as the Artix-7 board used for implementation. Optimizing

the design to fit within these constraints could require

additional effort or design trade-offs.

To address these challenges and facilitate future

improvements in scalability, the following strategies can be

explored:

Optimized gate design: Developing more efficient

reversible gates with reduced quantum costs and garbage

outputs.

Parallel carry management: Employing carry-look ahead

or carry-save methods in reversible logic to minimize delay.

Resource-aware mapping: Tailoring the design for specific

FPGA architectures to maximize resource utilization

efficiency.

Table 4. Combinational path delay for all design

 Combinational Path Delay (ns)

Adder

Size

Conventional

Adder

Algorithm

1

Algorithm

2

Algorithm

3

Kogge

Stone

Adder

4 2.267 2.537 2.34 2.256 0.948

8 3.468 3.743 3.96 3.721 1.555

16 5.605 8.682 7.781 6.653 2.901

32 9.905 15.51 10.192 12.517 6.001

64 18.494 30.492 19.015 24.244 12.11

Table 5. Power dissipation for all design

Sr. No. Adder Type
Power Dissipation

(mW)

1 Conventional (Irreversible) 80.2

2 Algorithm1 78

3 Algorithm 2 189

4 Algorithm 3 90

5 Kogge Stone BCD adder 55

6
Reversible Kogge Stone BCD

adder
24

Table 6. Comparison of reversible adder algorithms

Algorithms
Garbage

Output

Quantum

Cost

Constant

Inputs

Gate

Count

Algorithm 1 24 60 24 16

Algorithm 2 22 55 30 12

Algorithm 3 10 45 21 8

Reversible Kogge

Stone adder

(Proposed)

14 37 14 11

Overall, the proposed design is inherently generic and

scalable but requires careful consideration of resource usage,

delay, and power as bit widths increase. By addressing these

limitations through optimization strategies, the design can be

effectively extended to higher-order BCD adders.

3.1 BCD adder design 1: Implementation details

Figure 13 illustrates the block diagram of the basic 4-bit

reversible BCD adder. In this design, both the input and output

have an equal bit count. The inputs, labelled as A, B, C, and

D, each consist of four bits, while the outputs, represented by

W, X, Y, and Z, also consist of four bits. In this configuration,

Y denotes the sum, Z represents the carry, and W and X are

garbage outputs. The implementation of the proposed

reversible BCD adder follows a systematic, multi-stage design

process. It begins with the construction of a single-bit adder

using HNG gates, followed by the development of a 4-bit

adder using four HNG gates. This initial 4-bit BCD adder

serves as a foundational building block for higher-order BCD

adders. In addition, a correction logic block, comprising NG,

FG, and TG gates, is added to refine the output for BCD

correctness.

Figure 13. 4-bit reversible BCD adder

Figure 14. 4-bit parallel adder

735

Figure 15. Decomposition of an 8-bit reversible Binary-

Coded Decimal (BCD) using two 4-bit reversible BCD

adders

Figure 16. Correction logic

Each HNG gate functions as a full adder, producing both

sum and carry outputs akin to a conventional full adder,

thereby constituting a one-bit adder. By connecting four such

one-bit adders, a four-bit adder is formed. This is shown in

Figure 14. However, to adapt this binary adder into a BCD

adder, integration of correction logic becomes necessary.

Block diagram shown in Figure 15 comprises of two 4-bit

inputs labelled "A" and "B." The reversible adder block

operates by adding the individual bits of the inputs.

Specifically, it adds A (0) with B (0), and if there's a carry

resulting from the addition, it's internally propagated, as

illustrated in the "4-bit Parallel Adder" section. Any temporary

carry generated is directed to the NG gate. Another 4-bit

reversible adder block is employed, which takes inputs from

the sum output of the first adder block and four inputs from

the FG gate. The output comprises 4 bits of sum and 1 bit of

carry. Furthermore, two NG gates and one TG gate function as

correction logic for the BCD adder. Correction logic is

designed using NG, TG and FG gates as shown in Figure 16.

The main purpose of correction logic is to add “0110”,

whenever sum is greater than 9 or carry is generated [34, 35].

The diagram shown in Figure 15 illustrates the

decomposition of an 8-bit BCD adder using two 4-bit

Reversible BCD adders. The initial adder computes the partial

sum and carry, directing the partial carry to the subsequent

BCD adder. Concurrently, the second BCD adder processes

the inputs, generating the final sum and carry. The higher order

adders can be subsequently created using this basic building

block as shown in Figure 17.

Figure 17. 8-bit reversible BCD adder using 4-bit BCD

adder

Figure 18. Detailed schematic of 4-bit BCD adder

736

In Figure 18, a 4-bit reversible BCD adder block diagram is

shown with all blocks integrated. The circuit consists of

multiple HNG based adders, along with various auxiliary gates

for managing BCD correction and carry propagation. The

components description and working are as follows:

1) HNG Based 4-bit Reversible Adder (Upper Section):

• Inputs: Y3, Y2, Y1, Y0, X3, X2, X1, X0

• Outputs: Intermediate sums (S3', S2', S1', S0') and

carry-out (CARRYout)

• Function: This module performs the initial addition

of two 4-bit BCD numbers and generates

intermediate sum outputs along with the carry-out bit.

• Logic Equations for Upper Section:

o Sum Output: Sn'=An⊕Bn⊕Cin

o Carry Output:

Cout=(An⋅Bn)+(An⋅Cin)+(Bn⋅Cin)

Where An, Bn are the n-th bits of inputs X

and Y, Cin is the carry-in from the previous

stage, and Sn' is the sum.

2) HNG Based 4-bit Reversible Adder (Lower Section):

• Inputs: Intermediate sums from the upper adder (S3',

S2', S1', S0')

• Outputs: Final BCD sum (S3, S2, S1, S0) and carry-

out (Cout)

• Function: This module performs the final addition,

ensuring that the result is a valid BCD number.

• HNFG and FG gates: These gates ensure the

reversible logic gates condition that fan-out is not

permissible. It is acting as a buffer and simply

replicates inputs at the outputs to facilitate further

processing.

• Logic Equations for Lower Section:

o Final Sum Output: Sn=Sn′ ⊕ Cout

(corrected if necessary)

o Carry Output: Cout=(Sn′⋅Cout)

3) Correction Logic:

• Components: OR Gate (NG), AND Gate (TG), and

FG Gate (AS COPY Gate)

• Function: This logic checks if the intermediate sum

exceeds the BCD digit limit (9) and corrects the sum

by adding "0110" (6) when necessary. The correction

logic triggers the addition of "0110" to the binary sum

if:

• There is a carry-out from the initial addition

(C′).

• The two most significant bits of the sum (S3′

and S2′) are both 1.

• The most significant bit and the second least

significant bit of the sum (S3′ and S1′) are

both 1.

• Logic Equations for Correction logic

To determine when to add "0110", any one of these

conditions being true is sufficient. The combined Boolean

logic is C′+(S3′⋅S2′)+(S3′⋅S1′)=1.

The correction logic implements this Boolean equation with

the help above mentioned components. The NG gate works as

an OR gate and generates the term (S2′+S1′). The TG gate then

ANDs the term S3′ to it resulting in (S3′⋅S2′)+(S3′⋅S1′). The

NG gate further ORs this expression with C′ yielding the final

term C′ (S3′⋅S2′)+(S3′⋅S1′) However, since fanout is

prohibited in reversible circuits, an FG gate is used to copy this

term and pass it on as the final carry.

The 4-bit reversible BCD adder described in the diagram

exemplifies a sophisticated approach to BCD addition using

reversible logic gates. The integration of HNG gates and

dedicated correction logic ensures efficient and accurate BCD

computation. The FG gate effectively manages fan-out issues,

making the circuit practical for implementation. Future

improvements could focus on further optimizing the quantum

cost and garbage outputs to enhance the circuit's practical

applicability.

Figure 19. Algorithm 2 schematic

737

3.2 BCD adder design 2: Implementation details

Figure 19 represents a reversible 4-bit BCD adder circuit

implemented using Thapliyal Srinivasan Gate (TSG) gates,

supplemented by three NG gates. This proposed configuration

includes eleven ancillary input lines and generates a total of

twenty-two garbage output lines, which are considered non-

essential to the main computational function but necessary for

maintaining reversibility in logic operations.

The circuit has the following components:

1) Four TSG gates (TSG1, TSG2, TSG3, and TSG4)

that perform the initial addition of the 4-bit BCD

inputs X3 X2 X1 X0 and Y3 Y2 Y1 Y0, along with

the carry input (Cin). These gates produce the

following outputs:

o S (Sum)

o R (Garbage output)

o Q (Garbage output)

o P (Carry Out)

2) Five additional TSG gates (TSG5, TSG6, TSG7, and

TSG8) that perform the BCD correction step by

adding the necessary correction factor (e.g., 0×06 or

0×60) to the intermediate sum if it exceeds the BCD

range.

3) The role of the new gates’ module is critical in this

architecture. It evaluates the carry bit status and

decides whether the addition of “0110” to the

intermediate sum is necessary. New gates used here

implement the carry Boolean expression which

basically is sum of products equation.

The operation of the circuit is as follows:

1) The 4-bit BCD inputs X3 X2 X1 X0 and Y3 Y2 Y1

Y0, along with the carry input (Cin), are fed into

TSG1, TSG2, TSG3, and TSG4.

2) These gates perform the initial addition, producing

the sum (S), carry out (P), and garbage outputs (R and

Q).

3) The sum outputs (S) from the initial addition stage,

along with the carry signals (CARRYout, G8, G7,

G6, G5), are fed into TSG5, TSG6, TSG7, and TSG8.

4) These gates perform the BCD correction by adding

the necessary correction factor to the intermediate

sum if required.

5) The final BCD sum is obtained from the sum outputs

(S) of TSG5, TSG6, TSG7, and TSG8.

When assessing the efficiency of the proposed design, it is

observed that the quantum cost of the circuit is 55 and garbage

outputs is 22. This metric provides an insight into the resource

utilization and complexity of the circuit, highlighting its

computational efficiency. However, a significant drawback of

this design is its susceptibility to the fan-out problem. In

reversible logic circuits, fan-out, or the duplication of output

signals, is generally impermissible as it contradicts the

principles of reversibility.

Figure 20. Algorithm 3

738

3.3 BCD adder design 3: Implementation details

The design in Figure 20 features a four-bit reversible adder,

which employs four HNG gates, along with additional

elements such as a Peres Gate, a Feynman Gate, and an SCLG.

Moreover, it integrates an extra HNG Gate, expanding its

capability to process information effectively. One notable

advantage of this design is its ability to address the fan-out

limitation. By utilizing six ancillary input lines and generating

ten garbage output lines, it demonstrates a marked

improvement in handling data flow and output distribution.

It’s worth mentioning that the quantum cost of this circuit

remains unspecified, leaving room for further evaluation and

optimization. Nonetheless, its innovative configuration

showcases a promising approach to mitigating computational

constraints and advancing quantum computing capabilities.

Components

1) HNG Gate Based 4-bit Reversible Adder:

o Inputs: X3, X2, X1, X0 (first BCD number)

and Y3, Y2, Y1, Y0 (second BCD number).

o Outputs: S3', S2', S1', S0' (intermediate

sum) and CARRYout (carry out from the 4-

bit adder).

o Description: This block consists of 4 HNFG

gates, each taking four constant inputs and

producing eight garbage outputs, to perform

the 4-bit addition. The intermediate sum

(S3', S2', S1', S0') and the carry output

(CARRYout) are generated here.

2) SCL Gate:

o Inputs: S3', S2', S1', S0' (intermediate sum)

and CARRYout.

o Outputs: Q, R, S, P.

o Description: The SCL gate performs

correction logic to ensure the sum is within

the BCD range. If the intermediate sum

exceeds 9, correction logic is applied.

3) Peres Gate (as Half Adder):

o Inputs: S1', S2' and constant 0.

o Outputs: P, Q, R.

o Description: This gate is used to perform the

half addition needed during the correction

process. It generates a partial corrected sum

and intermediate carry.

4) HNG Gate (as Full Adder):

o Inputs: The outputs of the Peres Gate, the

intermediate sum S2', and the carry output

from the SCL gate.

o Outputs: P, Q, R, S (final corrected sum).

o Description: This gate finalizes the BCD

correction by acting as a full adder,

combining partial sums and carries to

produce the final corrected BCD output.

5) CNOT Gate:

o Inputs: Outputs from the HNG gate.

o Outputs: Corrected sum bits.

o Description: The CNOT gate is used for

further logical operations necessary for the

BCD correction and final sum generation.

Output

The final outputs of the circuit are the corrected BCD sum

(C4, S3, S2, S1, and S0).

3.4 BCD adder design 4: Implementation details

Ripple Carry Adders (RCA) are simple but slow due to

linear carry propagation. Their delay is linear, O(n). Carry-

Lookahead Adders (CLA) improve speed by computing

carries in advance, reducing delay but increasing complexity.

Carry-Save Adders (CSA) are efficient for multi-operand

addition, though additional steps are needed for the final sum.

Parallel prefix adders, including Kogge-Stone, Brent-Kung,

and Sklansky, offer logarithmic delay (O(logn)) by computing

carries in parallel, with Kogge-Stone being the fastest due to

minimal logic depth and balanced load, albeit at a higher gate

count. Kogge-Stone is particularly superior for high-speed

applications, offering significant performance improvements

over other adders.

Figure 21 represents a 4-bit Kogge-Stone adder, which is a

type of parallel prefix adder used for binary addition. The

Kogge-Stone adder is known for its logarithmic depth and

regular structure, making it efficient for high-speed arithmetic

operations. The Kogge-Stone Adder (KSA) operates in three

distinct stages: pre-processing, carry look-ahead computation,

and post-processing.

Figure 21. 4-bit Kogge Stone adder

Figure 22. 4-bit reversible Kogge Stone adder

Each stage plays a critical role in the overall functionality

and high performance of the adder. In this paper binary Kogge

Stone adder is designed using reversible gates as shown in

Figure 22. The output is converted in BCD form using a binary

to BCD module. A detailed explanation of each stage is as

follows:

1) Pre-processing

In the pre-processing stage, generate (G) and propagate (P)

signals are computed for each bit pair in the input numbers A

and B. This is implemented using Peres Gate.

• Generate Signal (G): This signal indicates whether

a given bit pair will generate a carry.

Gi=Ai.Bi

o If both bits Ai and Bi are 1, a carry

will be generated, thus Gi=1.

o If either bit is 0, Gi=0.

• Propagate Signal (P): This signal indicates whether

a given bit pair will propagate a carry from a lower

bit to a higher bit.

Pi=Ai⊕Bi

739

o If Ai and Bi different, Pi=1

meaning the carry from the

previous bit will be propagated.

o If Ai and Bi are the same, Pi=0.

2) Carry look-ahead computation

This stage is the core of the Kogge-Stone adder, enabling

fast carry computation by combining generate and propagate

signals using a parallel prefix network. The network consists

of multiple levels of logic that combine these signals over

increasing ranges of bits. This is implemented using three

UPG gates.

• Combine Propagate Signals (P):

Pi:j=Pi:k−1 and Pk:j

o This formula computes the

propagate signal for a range of bits

from i to j.

o If all bits in the range propagate a

carry, then the overall propagate

signal for the range is 1.

• Combine Generate Signals (G):

Gi:j=Gi:k−1 or (Pi:k−1 and Gk:j)

o This formula computes the

generate signal for a range of bits

from i to j.

o A carry is generated for the range

if either:

▪ A carry is generated within the

lower part of the range (Gi:k−1).

▪ Or a carry is propagated through

the lower part (Pi:k−1) and

generated in the upper part (Gk:j).

3) Post-processing

In the post-processing stage, the final sum bits are

calculated using the propagate signals and the carry-in values

computed in the carry look-ahead stage. This is implemented

using Peres Gates.

• Sum Bit (S): Si=Pi⊕Ci−1

o The sum for each bit position i is calculated

by XORing the propagate signal for that bit

with the carry-in from the previous bit

position.

Binary to BCD Converter: This module converts the final

sum and carry in BCD form using state machine for

segregating digits of different places.

The 4-bit Kogge-Stone adder is designed to perform fast

binary addition through efficient carry propagation across

multiple stages. Initially, in Stage 0, the adder computes the

generate (G[i]=A[i] & B[i]) and propagate (P[i]=A[i]^B[i])

signals for each bit using Peres Gates. These signals indicate

whether a carry is generated or propagated for each bit of the

input operands A and B. In Stage 1, UPG gates are used to

combine the generate and propagate signals from adjacent bits,

producing new generate and propagate signals (G1 and P1) for

pairs of bits. This process is further refined in Stage 2, where

UPG gates combine the results from Stage 1 to handle carry

propagation over wider groups of bits, producing G2 and P2

signals. In Stage 3, the final carry signals are determined using

AND and OR gates based on the outputs from Stage 2 and the

initial carry input (Cin). The final carry-out is produced from

these signals. Lastly, in the Sum Calculation stage, the sum for

each bit is computed using XOR gates. The propagate signals

from Stage 0 are XORed with the carry-out signals to produce

the final sum (Sum). This method ensures a fast and efficient

addition process by minimizing the delay typically caused by

carry propagation, making the Kogge-Stone Adder a highly

effective design for high-speed arithmetic operations in digital

circuits.

4. RESULTS AND DISCUSSION

The evaluation methodology for the proposed reversible

BCD adder designs focuses on delay, power dissipation, and

resource utilization. The design is implemented using Xilinx

Vivado software, with functional verification performed using

its inbuilt ISIM simulator. The FPGA device used was the

Artix-7 (device name: xc7a35tcpg236-1), which operates at a

frequency of 100MHz. The design was programmed using

VHDL/Verilog and synthesized within Vivado, with

configuration and bitstream generation executed through the

Vivado toolchain. Testing was conducted at the specified

100MHz clock frequency to validate the performance of the

design. To strengthen the analysis, experimental results are

presented using waveform diagrams, FPGA implementation,

and detailed comparisons against existing designs using Xilinx

Vivado tool and Artix -7 FPGA board.

Figure 23. Waveform of 8 Bit BCD adder Algo 1

740

Figure 24. Results on Artix-7 FPGA board

Figure 25. Kogge Stone adder 4 bit

From Figure 23, it is evident that register A contains the

BCD value of 51 along with several other values, while

register B also holds the BCD value of 49. Following BCD

addition principles, the addition operation yields a sum of 00

and generates a carry of 1. Consequently, the final addition

result is calculated as 100, as depicted in the waveform

analysis. In this waveform A, B, C, zero all are inputs whereas

W, X, Sum and carry are all outputs. Zero represents constant

inputs set to 0 whereas W and X are garbage outputs. The

results are tested on FPGA BASYS 3 [36] board hosting Artix-

7 device. The results corresponding to inputs 51 and 49 are

shown in Figure 24.

The Figure 25 shows the simulation of Reversible Kogge

Stone adder of 4 bit. The inputs are a, b, cin and sum and cout

are output. A is fed 9 and B is fed 9 so sum is 8 and cout is 1.

This adder is using binary addition rules, but the sum obtained

is converted into BCD form using binary to BCD converter

module.

Table 4 presents the combinational path delay for varying

adder sizes across different algorithms and designs.

The results highlight the following observations:

• The Kogge-Stone adder consistently achieves the

lowest path delay due to its efficient parallel-prefix

structure, with a delay of 0.948 ns for 4 bits and 12.11

ns for 64 bits.

• While other algorithms (1, 2, and 3) show a

progressive increase in delay with the size of the

adder, the percentage increase is not significant.

• Algorithm 3 demonstrates improved performance

compared to Algorithm 1 and Algorithm 2 for larger

bit sizes, making it a competitive option for scalable

designs.

• By optimizing circuit design to reduce the number of

garbage outputs and gate counts, the delay parameter

is significantly minimized.

Table 5 presents the power dissipation of various adder

designs as synthesized by Xilinx tools. The reversible Kogge-

Stone BCD adder exhibits the least power dissipation,

consuming only 24 mW. This is a 70% reduction compared to

the conventional irreversible BCD adder, which consumes

80.2 mW. Among the proposed designs, Algorithm 2 has the

highest power dissipation at 189 mW, while Algorithm 3

demonstrates better power efficiency at 90 mW. The use of

reversible logic in the Kogge-Stone BCD adder drastically

reduces power dissipation, aligning with the design's low-

energy goals.

Table 6 summarizes resource utilization in terms of garbage

values, quantum cost, and constant inputs. The Reversible

Kogge-Stone Adder is the most efficient in terms of quantum

741

cost (37) and garbage output (14), offering a good balance

between complexity and resource use. Algorithm 3 also shows

strong efficiency with low quantum cost (45), garbage output

(10), and gate count (8), making it a well-balanced design.

Algorithm 2 and Algorithm 1 are more complex, with higher

quantum costs (55 and 60, respectively) and garbage outputs

(22 and 24), indicating less optimization compared to the other

designs.

The results shown in Table 7 shows that the Proposed 8-bit

adder shows a significant improvement in quantum cost (50),

garbage output (14), gate count (11), and power dissipation (24

mW) compared to the designs from [33, 34], while

maintaining a similar delay (1.555 ns). This indicates a more

efficient design in terms of both resource utilization and power

consumption.

Table 7. Resource utilization for all design

Algorithms
Delay

(ns)

Quantum

Cost

Garbage

Output

Gate

Count

Power

Dissipation

8-bit 3.623 165 40 64 0.107 W

8-bit 1.55 157 22 11 42 mW

Proposed 1.555 50 14 11 24 mW

Implementing the proposed reversible BCD adder on the

Artix-7 FPGA significantly impacts design choices,

scalability, and performance due to the specific characteristics

of the FPGA. The Artix-7 FPGA provides high-performance,

low-power logic resources, making it an ideal platform for

validating the proposed design. However, certain

considerations must be addressed during the design process.

Resource utilization is a critical factor, as FPGA logic

resources such as lookup tables (LUTs), flip-flops, and routing

channels directly influence scalability. To ensure efficient

utilization of these resources, especially for higher bit-width

adders, it is essential to optimize gate counts and minimize

garbage outputs. Delay optimization is another important

aspect, as the FPGA’s architecture introduces specific routing

delays between logic blocks. Techniques such as placement

constraints and pipelining can be employed to minimize

critical path delays, thereby improving performance for larger

designs.

Power dissipation is also a key consideration. The Artix-7

FPGA is optimized for low power, which makes it a suitable

platform for evaluating the energy-saving benefits of

reversible circuits. The proposed design, characterized by

reduced gate complexity and fewer garbage outputs, aligns

well with the FPGA's capabilities for efficient energy

computation. While the design is theoretically scalable to

higher bit-widths, practical limitations arise from the finite

number of FPGA resources and increased routing congestion

in larger circuits. Addressing these challenges may require

partitioning the design into modular blocks or exploring

hierarchical placement strategies. Furthermore, FPGA-

specific optimizations such as utilizing DSP slices for

arithmetic operations and customizing carry chains to

accelerate carry propagation can enhance performance.

Techniques like constraint-driven synthesis in Vivado 14.6

can also help tailor the design to the FPGA’s architecture,

improving its area, delay, and power metrics.

Testing and ensuring fault tolerance in reversible circuits

pose unique challenges due to their inherent characteristics.

One challenge lies in the input/output dependency, as

reversible circuits require a one-to-one mapping between

inputs and outputs. This necessitates testing all possible input

combinations to ensure correctness across all output states.

Additionally, the presence of garbage outputs complicates

fault diagnosis, as it can be difficult to identify whether faults

originate in the main functional logic or in the garbage output

logic. Despite these challenges, reversible circuits offer

opportunities for improved fault tolerance. Error detection is

facilitated by the inherent preservation of information in

reversible circuits, where faults in outputs often manifest as

imbalances in garbage values or unexpected input-output

mappings. Fault recovery is another advantage, as reversibility

allows circuits to trace operations backward, enabling error

correction.

To address these challenges, testing strategies can be

employed. Built-in self-test (BIST) circuits embedded within

the FPGA implementation can automate fault detection,

leveraging the deterministic behavior of reversible circuits.

Extensive simulation and validation, including corner-case

testing and waveform analysis using Vivado 14.6, ensure

functionality under diverse conditions. Physical testing on the

Artix-7 FPGA further validates the circuit’s fault tolerance and

power-performance trade-offs in real-world scenarios. By

addressing these testing and fault-tolerance considerations, the

reliability and robustness of the proposed reversible design can

be significantly enhanced. Although the current work

primarily focuses on the design and implementation of the

proposed reversible BCD adder, testing and fault tolerance

have been identified as important areas for future exploration.

These aspects will be thoroughly investigated and addressed

in subsequent research efforts.

5. CONCLUSION

In this study, the performance of a Generic Reversible BCD

adder, with a focus on the Kogge-Stone design, is thoroughly

evaluated in terms of delay, power dissipation, and resource

utilization. The results show that the Reversible Kogge-Stone

Adder outperforms other algorithms across all key metrics.

Specifically, it achieves a significant reduction in delay (1.555

ns for 8-bit design) compared to conventional designs (3.623

ns), and reduces power dissipation by 70%, achieving only

24mW compared to 0.107W for the conventional 8-bit design.

Additionally, it demonstrates a quantum cost of 50, garbage

output of 14, and a gate count of 11, all of which are more

efficient than other algorithms such as Algorithm 1 (with

quantum cost 60, garbage output 24, and gate count 16).

While the proposed design shows a slightly higher delay

compared to conventional designs, especially as the adder size

increases, the reduction in power consumption due to the

reversible nature of the logic operations offers a substantial

advantage. The results highlight the trade-offs between delay,

power, and resource utilization, providing insight for

optimizing designs based on specific application needs. The

proposed design also offers a balance between performance

and energy efficiency, paving the way for high-performance,

sustainable computing systems.

REFERENCES

[1] Mollick, E. (2006). Establishing Moore's Law. IEEE

Annals of the History of Computing, 28(3): 62-75.

https://doi.org/10.1109/MAHC.2006.45

[2] Landauer, R. (1961). Irreversibility and heat generation

742

in the Computational Process. IBM Journal of Research

and Development, 5(3): 183-191.

https://doi.org/10.1147/rd.53.0183

[3] Bennett, C.H. (1973). Logical reversibility of

computation. IBM Journal of Research and

Development, 17(6): 525-532.

https://doi.org/10.1147/rd.176.0525

[4] Rani, S., Bhandari, A.S. (2015). A survey on reversible

logic gates. International Journal of Computer

Applications, 7: 1-3.

https://www.ijcaonline.org/proceedings/icaet2015/numb

er7/22249-4086/.

[5] Yelekar, P.R., Chiwande, S.S. (2011). Introduction to

reversible logic gates and its application. In 2nd National

Conference on Information and Communication

Technology (NCICT), pp. 5-9.

[6] Biswas, P., Gupta, N., Patidar, N. (2014). Basic

reversible logic gates and it’s QCA implementation.

International Journal of Engineering Research and

Applications, 4(6): 12-16.

[7] Nayak, S., Nayak, S., Singh, J.P. (2013). An introduction

to basic logic gates for quantum computer. International

Journal of Advanced Research in Computer Science and

Software Engineering, 3(10): 163-171.

[8] Thapliyal, H., Ranganathan, N. (2010). Design of

reversible sequential circuits optimizing quantum cost,

delay, and garbage outputs. ACM Journal on Emerging

Technologies in Computing Systems, 6(4): 1-31.

https://doi.org/10.1145/1877745.1877748

[9] Babu, H.M.H., Chowdhury, A.R. (2005). Design of a

reversible binary coded decimal adder by using

reversible 4-bit parallel adder. In 18th International

Conference on VLSI Design Held Jointly with 4th

International Conference on Embedded Systems Design,

Kolkata, India, pp. 255-260.

https://doi.org/10.1109/ICVD.2005.74

[10] Thapliyal, H., Kotiyal, S., Srinivas, M.B. (2006). Novel

BCD adders and their reversible logic implementation

for IEEE 754r format. In 19th International Conference

on VLSI Design Held Jointly with 5th International

Conference on Embedded Systems Design (VLSID'06),

Hyderabad, India, p. 6.

https://doi.org/10.1109/VLSID.2006.122

[11] James, R.K., Shahana, T.K., Jacob, K.P., Sasi, S. (2007).

A new look at reversible logic implementation of decimal

adder. In 2007 International Symposium on System-on-

Chip Tampere, Finland, pp. 1-4.

https://doi.org/10.1109/ISSOC.2007.4427442

[12] Haghparast, M., Navi, K. (2008). A novel reversible

BCD adder for nanotechnology-Based systems.

American Journal of Applied Sciences, 5(3): 282-288.

https://doi.org/10.3844/ajassp.2008.282.288

[13] Islam, M.S., Hafiz, M.Z., Begum, Z. (2012). Quantum

cost efficient reversible BCD adder for nanotechnology-

Based systems. International Journal of Computer and

Electrical Engineering, 4.

https://doi.org/10.7763/IJCEE.2012.V4.443

[14] Toffoli, T. (1980). Reversible computing. Lab for

Computer Science, Massachusetts Institute of

Technology, Cambridge, MA. MIT/LCS/TM-151.

https://publications.csail.mit.edu/lcs/pubs/pdf/MIT-

LCS-TM-151.pdf.

[15] Nagamani, A.N., Ashwin, S., Agrawal, V.K. (2015).

Design of optimized reversible binary and BCD adders.

In 2015 International Conference on VLSI Systems,

Architecture, Technology and Applications (VLSI-

SATA), Bengaluru, India, pp. 1-5.

https://doi.org/10.1109/VLSI-SATA.2015.7050488

[16] Feynman, R.P. (1985). Quantum mechanical computers.

Optics News, 11(2): 11-20.

https://doi.org/10.1364/ON.11.2.000011

[17] Mamtaj, S., Saha, D., Banu, N. (2014). A review of

reversible gates and its application in Logic Design.

American Journal of Engineering Research, 3(4): 151-

161.

[18] Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.

(2003). Synthesis of reversible logic circuits. IEEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 22(6): 710-722.

https://doi.org/10.1109/TCAD.2003.811448

[19] Tiwari, K., Khopade, A., Jadhav, P. (2011). Optimized

carry look-ahead BCD adder using reversible logic. In

Technology Systems and Management: First

International Conference, ICTSM 2011, Mumbai, India,

pp. 260-265. https://doi.org/10.1007/978-3-642-20209-

4_37

[20] NagaBabu, T., Sounder, D., Rao, B.S., Babu, P.B.

(2012). A low power adder using reversible logic gates.

International Journal of Research in Engineering and

Technology, 1(3): 244-247.

https://doi.org/10.15623/ijret.2012.0103007

[21] Khan, M.M.A. (2002). Design of full-adder with

reversible gates. In International Conference on

Computer and Information Technology, Dhaka,

Bangladesh, pp. 515-519.

[22] Bruce, J.W., Thornton, M.A., Shivakumaraiah, L.,

Kokate, P.S., Li, X. (2002). Efficient adder circuits based

on a conservative reversible logic gate. In Proceedings

IEEE Computer Society Annual Symposium on VLSI.

New Paradigms for VLSI Systems Design. ISVLSI 2002,

Pittsburgh, PA, USA, pp. 83-88.

https://doi.org/10.1109/ISVLSI.2002.1016879

[23] Kamalakannan, V., Shilpakala, V., Ravi, H.N. (2013).

Design of adder/subtractor circuits based on reversible

gates. International Journal of Advanced Research in

Electrical, Electronics and Instrumentation Engineering,

2(8): 3796-3804.

[24] Vanusha, P., Vally, K.A. (2014). Low power computing

logic gates design using reversible logic. International

Journal of Application or Innovation in Engineering &

Management, 3(10): 123-129.

[25] Lala, P.K., Parkerson, J.P., Chakraborty, P. (2010).

Adder designs using reversible logic gates. WSEAS

Transactions on Circuits and Systems, 9(6): 369-378.

[26] Babu, H.M.H., Islam, M.R., Chowdhury, A.R.,

Chowdhury, S.M.A. (2003). Reversible logic synthesis

for minimization of full-adder circuit. In Euromicro

Symposium on Digital System Design, 2003.

Proceedings. Belek-Antalya, Turkey, pp. 50-54.

https://doi.org/10.1109/DSD.2003.1231899

[27] Mishra, N., Wairya S., Sen, B., (2018). Design of

conservative, reversible sequential logic for cost efficient

emerging nano circuits with enhanced testability. Ain

Shams Engineering Journal, 9(4): 2027-2037.

https://doi.org/10.1016/j.asej.2017.02.005

[28] Krishnaveni, D., Geetha Priya, M. (2011). Novel design

of reversible serial and parallel adder/subtractor.

International Journal of Engineering Science and

743

https://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TM-151.pdf
https://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TM-151.pdf

Technology, 3(3).

https://www.researchgate.net/publication/50984906.

[29] Akilandeswari, A. (2021). Reversible logic design for

adder in CMOS VLSI design. International Journal of

Creative Research Thoughts, 9(2): 118-139.

https://ijcrt.org/papers/IJCRT2102016.pdf.

[30] Chu, Z., Li, Z., Xia, Y., Wang, L., Liu, W. (2020). BCD

adder designs based on three-input XOR and majority

gates. IEEE Transactions on Circuits and Systems II:

Express Briefs, 68(6): 1942-1946.

https://doi.org/10.1109/TCSII.2020.3047393

[31] Borodzhieva, A., Tsvetkova, I., Zaharieva, S., Dimitrov,

D., Mutkov, V. (2021). Inquiry-Based learning used for

implementation of BCD adders in the Course" digital

electronics". In 2021 IEEE 27th International

Symposium for Design and Technology in Electronic

Packaging (SIITME), Timisoara, Romania, pp. 150-155.

https://doi.org/10.1109/SIITME53254.2021.9663683

[32] Ykuntam, Y.D., Prasad, S.H. (2021). A modified high

speed and less area BCD adder architecture using Mirror

adder. In 2021 2nd International Conference on Smart

Electronics and Communication (ICOSEC), Trichy,

India, pp. 624-627.

https://doi.org/10.1109/ICOSEC51865.2021.9591842

[33] Krishna, N., Uma, A. (2020). Design and analysis of low

power reversible adder/subtractor circuits. International

Journal of Engineering Research & Technology, 9(9):

576-585. https://doi.org/10.17577/IJERTV9IS090366

[34] Kumar, A.S., Pratap, N.L., Ramya, A., Upendra, V.,

Venugopal, E., Abhishek, P. (2024). An efficient BCD

adder design utilizing reversible logic techniques. In

2024 International Conference on Intelligent Algorithms

for Computational Intelligence Systems (IACIS),

Hassan, India, pp. 1-5.

https://doi.org/10.1109/IACIS61494.2024.10721687

[35] Tiwari, K.S., Kadam, R.S., Dudhedia, M.A., Pansare,

J.R., Khedkar, S.P., Gawande, S.H. (2024). Reversible

logic gates and applications-A low power solution to

VLSI chips. Mathematical Modelling of Engineering

Problems, 11(3): 705-720.

https://doi.org/10.18280/mmep.110315

[36] Basys3™ FPGA Board Reference Manual.

https://www.amd.com/content/dam/amd/en/documents/

university/aup-

boards/XUPBasys3/documentation/Basys3_rm_8_22_2

014.pdf, accessed on Dec. 20, 2023.

744

https://ijcrt.org/papers/IJCRT2102016.pdf
https://doi.org/10.18280/mmep.110315
https://www.amd.com/content/dam/amd/en/documents/university/aup-boards/XUPBasys3/documentation/Basys3_rm_8_22_2014.pdf
https://www.amd.com/content/dam/amd/en/documents/university/aup-boards/XUPBasys3/documentation/Basys3_rm_8_22_2014.pdf
https://www.amd.com/content/dam/amd/en/documents/university/aup-boards/XUPBasys3/documentation/Basys3_rm_8_22_2014.pdf
https://www.amd.com/content/dam/amd/en/documents/university/aup-boards/XUPBasys3/documentation/Basys3_rm_8_22_2014.pdf

