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Reversible logic has emerged as a transformative approach to energy-efficient 

computing by enabling reversible computations and minimizing information loss, 

thereby reducing energy dissipation to negligible levels. This innovation is particularly 

relevant in the era of low-power and sustainable system design. Among its applications, 

the Binary-Coded Decimal (BCD) adder, a cornerstone of digital arithmetic, plays a 

vital role in domains such as financial modeling, signal processing, and embedded 

systems. This study introduces a novel reversible BCD adder that leverages Feynman, 

Toffoli, Haghparast–Navi Gate (HNG), Haghparast–Navi Full Gate (HNFG), 

Thapliyal–Sreenivas Gate (TSG), Peres, etc., gates to achieve exceptional energy 

efficiency and scalability. Designed using a generic programming methodology, the 

adder supports seamless adaptability to varying input sizes, scaling efficiently up to 512 

bits without requiring redesign. The proposed design achieves a significant reduction in 

quantum cost (50), garbage outputs (14), and power dissipation (24 mW), while 

maintaining competitive delay (1.555 ns) and gate count (11), demonstrating superior 

efficiency compared to existing 8-bit reversible BCD adders. These findings have 

significant implications for power-sensitive applications, including portable devices, 

Internet of Things (IoT) systems, data centers, and quantum computing architectures. 

This work demonstrates the feasibility of high-performance, sustainable arithmetic 

operations for next-generation computing systems. 
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adder, quantum cost, garbage output, Artix-7 
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1. INTRODUCTION

In the era of energy-efficient computing, minimizing power 

consumption has become a critical priority, particularly for 

applications in portable electronics, IoT devices, and green 

technology. Reversible logic has emerged as a key enabler for 

achieving this goal, addressing energy dissipation by 

preventing information loss during computation. 

Mollick [1] formulated a hypothesis suggesting that 

computing power would experience significant growth while 

costs would decrease proportionately. His forecasting 

predicted that all the transistors present on a semiconductor 

chip shall get two folded in every one and a half or two years, 

maintaining minimal cost increments. This forecast was 

known to be Moore's law and it also anticipated that 

substantial amount of heat would be generated as a result of 

certain information being lost. This heat dissipation, in turn, 

could lead to a drastic reduction in circuit performance and 

lifespan. Keeping that in mind, Landauer's [2] research 

elucidated that conventional gates dissipate energy at a 

minimum rate of kTln2 joules per bit of information loss, 

wherein k represents the Boltzmann constant 

(1.38064852×10−23 joule/kelvin) and T signifies absolute 

temperature in kelvin during operations. Following this, 

Bennett [3] demonstrated in 1973 that to circumvent this 

energy dissipation, circuits must be constructed using 

reversible logic. Consequently, various reversible gates 

namely the Fredkin Gate, Peres Gate, Toffoli Gate and 

Feynman Gate were devised with the intention of achieving 

this objective [4]. Unlike traditional logic circuits, which 

generate heat by erasing information, reversible gates allow 

input data to be fully reconstructed from outputs, adhering to 

Landauer's principle. This reduces energy dissipation to 

negligible levels, making reversible logic a cornerstone of 

sustainable computing. 

A reversible gate establishes a bijective relationship 
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between the input and output vectors. This capability allows 

for the generation of inputs from outputs and the ability to 

backtrack to any point in the computation. This characteristic 

is termed logical reversibility. However, the advantages of this 

are contingent upon achieving physical reversibility, which 

refers to a procedure that expends nil energy as heat. While 

achieving total perfect physical reversibility is nearly 

unattainable, efforts can be made to minimize or even 

eliminate energy dissipation by ensuring that computations are 

information lossless [5]. A qubit represents a fundamental unit 

of information, capable of existing in a state of 0, 1, or a 

superposition of both [6]. Any manipulation performed on 

individual qubits can be designed to be reversible, allowing for 

the preservation of information integrity. This is explained 

with an example given below in Figure 1. 

Upon examining the AND Gate shown in Figure 1, which 

comprises two inputs and one output, and referring to the 

corresponding truth table given in Table 1, it is evident that an 

input combination, such as '00,' yields an output of '0,' as does 

'01' and '10.' Consequently, discerning the specific input 

combination resulting in the output '0' proves challenging. 

Contrary to the CNOT Gate as depicted in Figure 2, this is 

additionally known as the Feynman Gate features two inputs 

and two outputs. Notably, when the inputs are '00,' the output 

is exclusively '00,' and no other input configuration produces 

this output. Similarly, for input '01,' the output is '01.' Thus, 

each input corresponds to a distinct output, unlike the 

conventional AND Gate, mitigating the complexity of 

prediction. This characteristic aligns with the principle of 

reversibility. Its truth table is shown in Table 2. 

 

 
 

Figure 1. AND Gate 

 

Table 1. AND Gate truth table 

 
Input Output 

A B Y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 

 
 

Figure 2. CNOT Gate 

 

Table 2. CNOT Gate truth table 

 
Input Output 

X Y X X⊕Y 

0 0 0 0 

0 1 0 1 

1 0 1 1 

1 1 1 0 

 
 

Figure 3. Basic reversible gate 

 

In an N×N reversible gate, as shown in Figure 3, the input 

vector (Iv) and output vector (Ov) are represented as 

sequences of elements (I1, I2, I3, ... IN) and (O1, O2, O3, ... ON) 

respectively. To construct reversible circuits, a set of 

reversible gates is required, ensuring that each input vector 

corresponds uniquely to an output vector, and vice versa, thus 

maintaining a one-to-one mapping between them. This 

distinction between reversible and arbitrary logic circuits rests 

on the key properties:  

(i) The equality of input and output bit counts,  

(ii) The guarantee that each input pattern corresponds to a 

unique output pattern,  

(iii) No fan-out allowed. 

According to the study conducted by Nayak et al. [7], there 

exist various terminologies and parameters associated with 

reversible logics. 

Constant Inputs (CI): Inputs set to 0 or 1 to synthesize non-

reversible Boolean functions into reversible forms. 

Garbage Outputs (GO): Unused outputs essential for 

achieving reversibility, ensuring the sum of inputs and 

constant inputs equals the sum of outputs and garbage outputs. 

Gate Count: The number of reversible logic gates used in 

the circuit. 

Quantum Cost (QC): Indicates the overall usage of 2×2 

quantum primitives to form an equivalent circuit. 

Delay. Based on the majority of gates from an input line to 

an output line, assuming that each gate operates in a single 

time unit and all inputs are available before computation starts. 

Hardware Complexity. The number of logical operations 

(AND, OR, EX-NOR) within the circuit. 

Flexibility. Indicates the universality of reversible logic 

gates, aiming for minimal garbage output, minimal delay, and 

no feedback/loops to achieve reversibility. 

In hardware design, the preference for binary computing 

over decimal computing arises from the simplicity of 

constructing hardware based on the binary number system. 

Despite the convenience of building binary hardware, 

challenges emerge when representing fractional decimal 

numbers, like 0.110, precisely in binary form. Consequently, 

approximate values are employed for computational purposes 

within binary hardware. Acknowledging the limited tolerance 

of commercial, financial, and net-based platforms for blunders 

stemming from conversions among binary and decimal 

formats, there has been a significant shift towards prioritizing 

decimal arithmetic. Binary Coded Decimal (BCD) is a 

representation technique utilized for encoding decimal digits 

(0-9) in binary form. Ongoing efforts are aimed at accelerating 

the development of dedicated hardware specifically designed 

for decimal arithmetic. So, there is great emphasis on the 

design of low-power hardware implementation of decimal 

arithmetic circuits based on reversible logic. 

The Binary-Coded Decimal (BCD) adder, a fundamental 

arithmetic component, is widely used in digital systems that 

require precise decimal computations, such as financial 

systems, digital clocks, IoT devices, quantum computing, and 
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calculators. However, traditional BCD adders, designed using 

irreversible logic, are inherently energy-intensive and face 

scalability challenges. These limitations hinder their 

deployment in power-sensitive applications and emerging 

fields like quantum computing. A reversible BCD adder 

provides a compelling solution by combining the benefits of 

energy efficiency, scalability, and minimal hardware 

overhead. 

This paper presents a low-power reversible BCD adder 

implemented on an Artix-7 FPGA, designed to address these 

limitations. Existing methods [8-13] have utilized various 

reversible gates such as the Toffoli Gate (TG) [14], New Gate 

(NG) [15], HNFG Gate [11], Feynman Gate [16], etc., for the 

implementation of a reversible BCD adder. The 

implementation of the BCD adder typically involves three key 

stages. First, a binary-centric 4-bit parallel adder performs 

addition on the two BCD numbers in their binary 

representation. Next, the result is evaluated by a Six Converter 

Module (SCM) to ensure accuracy [17]. If the outcome 

exceeds '1001' or generates a carry, it is identified as invalid 

and requires adjustment. Finally, the correction is made by 

adding '0110' to the sum using a 4-bit parallel adder. 

The proposed architecture utilizes a combination of 

Fredkin, Toffoli, and Peres Gate, ensuring a bijective mapping 

between inputs and outputs while minimizing quantum cost 

(QC), garbage output (GO), and constant input (CI). The 

modular design is scalable to input sizes up to 512 bits, 

enabling seamless adaptation to various applications without 

frequent redesigns. 

Compared to conventional designs [18, 19], the proposed 

BCD adder achieves a 70% reduction in power dissipation 

while maintaining comparable delay performance, enhanced 

scalability for large datasets, and applications requiring high 

precision, and simplified arithmetic processes for frequent 

decimal computations. 

By implementing the design on an Artix-7 FPGA, this study 

combines energy efficiency with the benefits of high 

performance, flexibility, and rapid prototyping. The FPGA's 

architecture further enables potential parallel processing, 

making it ideal for applications such as financial systems, IoT 

devices, and advanced embedded systems. 

The proposed design addresses the trade-offs in existing 

approaches, which often compromise on key metrics like QC 

and GC. It sets a benchmark for energy-efficient computing, 

paving the way for future advancements in reversible 

arithmetic circuits and their integration into low-power digital 

systems. 

The structure of this paper is as follows: Section 2 provides 

an overview of reversible logic gates and prior work. Section 

3 details the design methodologies of the proposed BCD 

adder. Section 4 discusses the verification and implementation 

using VHDL, and Section 5 concludes with key findings and 

future directions. 

 

 

2. LITERATURE SURVEY 

 

Numerous reversible gates have been developed and widely 

utilized by researchers [20-22] for designing various 

combinational and sequential circuits. This section provides a 

concise overview of the reversible gates employed in the 

proposed BCD adder design, followed by a discussion of the 

current state-of-the-art advancements in BCD adder designs 

[23-25]. 

2.1 Basic reversible gates 

 

Exploring different reversible gates holds paramount 

importance in digital circuitry, given their role in enabling 

bidirectional information flow. This attribute holds significant 

importance in fields such as quantum computing, designing 

circuits with low power consumption, and applications 

involving cryptography. A comprehensive comprehension of 

the various types of reversible gates is fundamental for 

engineers and researchers, as they form the cornerstone for 

building reliable and efficient digital systems. A few of these 

basic gates and their types are mentioned below: 

 

2.1.1 Feynman/CNOT Gate 

The 2×2 Feynman Gate, also acknowledged as the 

controlled NOT (1-CNOT) Gate, depicted in Figure 4, 

operates based on logic operations where P is equivalent to B, 

and Q is identical to the XOR of A and B. This gate is highly 

efficient for managing a single bit, guaranteeing that if the 

second input is '0', the first input will be mirrored in both 

outputs. Consequently, the Feynman Gate is recognized as the 

utmost appropriate option for the single-bit operations, as it 

prevents the creation of unnecessary outputs, thereby ensuring 

processing efficiency. It will implement the logical functions: 

P=A and Q=A⊕B. 

 

2.1.2 Toffoli Gate 

A Toffoli Gate as depicted in Figure 5 is designed for 3 

inputs and typically includes 3 outputs. In a three-input and 

three-output Toffoli Gate, inputs A and B correspond to the 

first as well as second outputs, and the third output depends on 

the states of inputs A and B, serving to invert input C and it 

executes the logical functions: P=A, Q=B, and R=AB⊕C. 

 

2.1.3 New Gate 

The New Gate as depicted in Figure 6, is characterized by 

its ability to process multiple input variables and generate 

corresponding output variables based on predefined logical 

rules. The specifics of these logical rules, such as AND, OR, 

XOR operations, or more complex combinations, depend on 

the intended functionality of the gate within a given digital 

circuit. Designers often use NG Gates as building blocks for 

more complex digital systems. It executes the logical 

functions: P=A, Q=AB⊕C, and R=A′C′⊕B′. It works as a 

half adder when B is made ‘0’. The sum value will be obtained 

on R. 

 

2.1.4 Haghparast–Navi Gate (HNG) 

The HNG Gate as depicted in Figure 7, which is also known 

as the Hadamard-NAND Gate, combines two fundamental 

logic operations - the Hadamard operation and the NAND 

operation. It executes the logical functions: P=A, Q=B, Sum 

=A⊕B⊕C in and Cout =(A⊕B). C in ⊕AB⊕D. It works as 

a full adder when D is set to ‘0’, in that case, R gives sum and 

S gives carry generated out of it. 

 

2.1.5 Hadamard Nand Fanout Gate (HNFG)  

HNFG as depicted in Figure 8, extends the functionality of 

the HNG gate by incorporating certain fanout capabilities. 

Each HNFG Gate functions effectively as two 2×2 Feynman 

gates and can also serve as a "Copying Circuit" to address the 

fan-out limitation in reversible circuits. It enables a single 

duplication of two bits without generating any garbage 

outputs, making it highly efficient for this purpose. It not only 
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performs NAND operations but it also facilitates the 

distribution of output to multiple destinations within the 

circuit. It executes the logical functions: P=A, Q=A⊕C, R=B 

and S=B⊕D. 

 

 
 

Figure 4. Feynman Gate 

 

 
 

Figure 5. Toffoli Gate 

 

 
 

Figure 6. New Gate 

 

 
 

Figure 7. HNG Gate 

 

 
 

Figure 8. HNFG Gate 

 

 

 
 

Figure 9. Thapliyal-Srinivas Gate 

 

 
 

Figure 10. Six Correction Logic Gate 

 

 
 

Figure 11. Peres Gate 

 

 
 

Figure 12. Universal Programmable Gate 

 

2.1.6 Thapliyal-Srinivas Gate (TSG) 

The TSG as shown in Figure 9 is a 4×4 reversible gate that 

functions as a versatile building block, capable of 

implementing all Boolean functions and operating as a 

reversible full adder, AND Gate, or half adder. The TSG is 

instrumental in designing efficient adder units, reversible 4:2 

compressors, and 8×8 reversible Wallace tree multipliers. It 

offers significant optimization over existing architectures by 

reducing the number of reversible gates and garbage outputs, 

making it a highly efficient choice for advanced reversible 

computing designs. The equations for the TSG are P=A, 

Q=A′C′⊕B′, R=(A′C′⊕B′)⊕D, S=(A′C′⊕B′)D⊕(AB⊕C). 

FEYNMAN 

GATE 

P=A A 

B Q=(A⊕B) 
 

TOFFOLI 

GATE 

A 

B 

C 

P=A 

Q=B 

 

R=A⋅B⊕C 

NG GATE 

A 

B 

C 

P=A 

Q=A⋅B⊕C 

 

R=A′C′⊕B′ 

D

 

(A⊕B)C in ⊕AB⊕D 

HNG GATE 

A 

B 

C

P=A 

Q=B 

 

R=A⊕B⊕C 

D

 

HNFG GATE 

A 

B 

C

 

P=A 

Q=A⊕C 

 

R=B 

Z=B⊕D 

D Z=(A′C′⊕B′)D⊕(AB⊕C) 

TSG GATE 

A 

B 

C

 

P=A 

Q=A′C′⊕B′ 

R=(A′C′⊕B′)⊕D 

D

 

SCL GATE 

A 

B 

C

 

P=A 

Q=B 

R=C 

Z=A(B+C) ⊕D 

PERES 

GATE 

A 

B 

C 

P=A 

Q=(A⊕B) 

R=A⋅B⊕C 

UPG GATE 

A 

B 

C 

P=A 

Q=(A⊕B)⊕(A⋅B⊕C) 

R 

+++++++++++++
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2.1.7 Six Correction Logic Gate (SCLG)  

The SCLG is a 4×4 reversible gate specifically designed for 

correction in BCD addition. Its outputs are defined as P=A, 

Q=B, R=C, and S=A(B+C)⊕D. The primary output S is used 

for applying the correction factor of 6 ("0110") when the sum 

of two BCD digits exceeds 9 or generates a carry, ensuring 

valid BCD representation. The term A(B+C) detects 

conditions requiring correction, while ⊕D adjusts the output 

accordingly. The remaining three outputs (P, Q, R) propagate 

the inputs A, B, C, which is critical in reversible circuits where 

fan-out is not permitted. These outputs can be connected to 

other gates or used in subsequent stages to build complex 

circuits without requiring additional duplication logic. By 

facilitating correction and enabling seamless integration, the 

SCLG ensures efficient and reversible BCD addition. It is 

shown in Figure 10. 

 

2.1.8 Peres Gate 

The Peres Gate is a 3-input, 3-output reversible gate used in 

reversible logic circuits, particularly for BCD addition as 

shown in Figure 11. It operates as follows: the outputs are 

P=A, Q=A⊕B, and R=AB⊕C where A, B, C are the inputs, 

and P, Q, and R are the outputs. The gate computes the sum 

bit Q as the XOR of A and B, while the carry bit R is generated 

by the AND of A and B, adjusted by the previous carry C. The 

output P simply passes through the control input A. This 

functionality makes the Peres Gate efficient for BCD addition, 

enabling the simultaneous computation of sum and carry 

without additional resources, making it ideal for reversible, 

low-power arithmetic circuits. 

 

2.1.9 Universal Programmable Gate (UPG)  

A 3×3 UPG, as shown in Figure 12 implements the logical 

operations P=A, Q=(A⊕B)⊕(A⋅B⊕C), R=AB⊕C. 

The quantum cost and delay for the UPG are both 4. This 

gate is termed the UPG because it can be configured as a 

programmable 3×3 gate that implements logical functions 

such as AND, NAND, OR, and NOR by using input C as the 

fixed selection line, and Q and R as fixed output lines. When 

C=0, the gate performs AND and OR operations. When C=1, 

it produces NAND and NOR operations. 

The UPG offers a significant advantage over the Peres Gate 

in that when used in its programmable configuration, the UPG 

can produce four distinct logical operations, while the Peres 

Gate can only produce three (XOR, AND, and NAND). This 

flexibility makes the UPG a more versatile and efficient 

component in reversible logic circuits. 

 

2.2 A survey on existing BCD adder 

 

The Table 3, presents current state of art in design of BCD 

adder using reversible gates. Various researchers have 

designed optimized BCD adders [26-28]. Akilandeswari [29] 

implemented an 8-bit reversible ripple carry adder with a delay 

of 5.885 ns but did not discuss quantum cost or power 

dissipation, leaving a gap in comprehensive performance 

analysis. In the study [30], a novel approach for multi-digit 

Binary Coded Decimal (BCD) adders using quantum-dot 

cellular automata (QCA) technology was proposed. The delay 

values reported were 6.50 clock cycles for a 4-bit adder and 

10.50 clock cycles for an 8-bit adder. As QCA designer was 

used, delay is the only parameter suitable for comparison. 

Borodzhieva et al. [31] implemented 1-, 2-, and 3-digit BCD 

adders without reversible logic and omitted any mention of 

performance metrics. Similarly, the work conducted by 

Ykuntam and Prasad [32] focuses on conventional BCD 

adders instead of reversible ones, reporting a delay of 17.7 ns 

for an 8-bit BCD adder. 

Krishna and Uma [33] designed, simulated, and tested 

reversible logic-based full adders/subtractors for different 

sizes. While their 8-bit binary reversible adder achieved a 

delay of 3.2 ns, the gate count disparity between binary and 

BCD circuits explains the lower delays for binary adders. 

However, their proposed design for a 64-bit binary reversible 

adder has a high quantum cost of 640. As reported by Kumar 

et al. [34], a novel reversible BCD adder design was 

introduced using ASK and New Gate (NG) logic, achieving 

significant efficiency improvements with a gate count of 11, 

13 ancilla inputs, and 22 garbage outputs, representing a 

63.33% reduction in gate count compared to existing 

architectures. The design, validated using Xilinx Vivado 

2022.2, demonstrates the effectiveness of reversible logic in 

optimizing resource utilization and energy efficiency. 

 

Table 3. Survey of BCD adders 

 
Authors Observations 

Akilandeswari 

[29] 

This work explored the design of reversible 

logic-based adders in CMOS VLSI design. It 

investigates techniques for implementing adders 

using reversible logic, aiming to achieve 

efficient and low-power designs suitable for 

VLSI applications. 

Chu et al. [30] 

This paper presented various BCD adder 

implementations based on the three input XOR 

and other majority gates. By utilizing these 

gates, the design aims to achieve optimized 

performance in terms of speed and area 

efficiency for BCD addition operations. 

Borodzhieva et 

al. [31] 

This paper discusses the use of inquiry-based 

study for implementing BCD adders. It presents 

a pedagogical approach aimed at enhancing 

students' understanding and skills in designing 

BCD adders through hands-on learning 

experiences. 

Ykuntam and 

Prasad [32] 

The paper proposed a modified architecture for 

BCD adders utilizing a Mirror adder to enhance 

speed and reduce area. The approach aims to 

improve the efficiency of BCD addition 

operations by leveraging innovative design 

techniques. 

Krishna and 

Uma [33] 

Discusses the design, implementation, and 

analysis of low power-based adder/ subtractor 

circuits that are reversible. 

 

 

3. PROPOSED GENERIC REVERSIBLE BCD ADDER 

 

This paper discusses the design and implementation of a 

generic reversible BCD adder using four different 

architectures. BCD addition involves the addition of two BCD 

digits to yield an output BCD digit, each within the range of 0 

to 9. This addition process adheres to specific rules of binary-

centred addition, wherein correction logic is only required if 

the sum exceeds 9 or if a carry is present. Unlike traditional 

binary adders, BCD addition requires additional correction 

logic due to the limited range of BCD numbers (0 to 9). 

Nevertheless, challenges arise in the context of BCD addition, 

necessitating the incorporation of correction logic. The 

proposed design emphasizes modularity and scalability, 

making it adaptable for higher bit-widths beyond 8 bits. The 
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foundation of the design lies in the use of a 4-bit reversible 

BCD adder as a building block, which can be combined 

iteratively to construct adders of larger sizes. For example, an 

8-bit BCD adder is implemented by cascading two 4-bit BCD 

adders, as shown in Figure 13 and Figure 14. This hierarchical 

approach enables scalability to higher bit widths, such as 16-

bit or 32-bit, by simply integrating additional blocks. The 

major advantages of scalability are: 

Modular design: The use of 4-bit adders as primitive blocks 

simplifies the construction of higher-order adders without 

significant redesign. 

Reusability: The correction logic and carry propagation 

mechanism remain consistent across different bit-widths. 

Reduced development effort: The same design methodology 

can be extended to larger sizes, reducing implementation 

complexity. 

The limitations and challenges in scaling are: 

Delay accumulation: As shown in Table 4, the 

combinational path delay increases with the bit-width due to 

the propagation of carry signals across multiple blocks. For 

instance, the delay for a 64-bit adder is significantly higher 

compared to smaller sizes. This limits the practicality of the 

design for applications requiring ultra-low latency. 

Power dissipation: Power consumption grows as additional 

blocks are added. Although reversible logic reduces overall 

power dissipation, the complexity of managing carry and 

correction logic in higher-order designs results in incremental 

power usage, as indicated in Table 5. 

Increased resource utilization: Scaling requires more gates, 

leading to an increase in garbage outputs, constant inputs, and 

quantum costs. While the design strives for optimization, these 

parameters grow linearly or sub linearly with the number of 

bits, impacting efficiency. Table 6 highlights the resource 

usage for smaller designs, which would proportionally 

increase for larger sizes. 

FPGA resource constraints: Larger bit-width designs may 

exceed the available hardware resources of certain FPGAs, 

such as the Artix-7 board used for implementation. Optimizing 

the design to fit within these constraints could require 

additional effort or design trade-offs. 

To address these challenges and facilitate future 

improvements in scalability, the following strategies can be 

explored: 

Optimized gate design: Developing more efficient 

reversible gates with reduced quantum costs and garbage 

outputs. 

Parallel carry management: Employing carry-look ahead 

or carry-save methods in reversible logic to minimize delay. 

Resource-aware mapping: Tailoring the design for specific 

FPGA architectures to maximize resource utilization 

efficiency. 

 

Table 4. Combinational path delay for all design 

 
 Combinational Path Delay (ns) 

Adder 

Size 

Conventional 

Adder 

Algorithm 

1 

Algorithm 

2 

Algorithm 

3 

Kogge 

Stone 

Adder 

4 2.267 2.537 2.34 2.256 0.948 

8 3.468 3.743 3.96 3.721 1.555 

16 5.605 8.682 7.781 6.653 2.901 

32 9.905 15.51 10.192 12.517 6.001 

64 18.494 30.492 19.015 24.244 12.11 

 

 

Table 5. Power dissipation for all design 

 

Sr. No. Adder Type 
Power Dissipation 

(mW) 

1 Conventional (Irreversible) 80.2 

2 Algorithm1 78 

3 Algorithm 2 189 

4 Algorithm 3 90 

5 Kogge Stone BCD adder 55 

6 
Reversible Kogge Stone BCD 

adder 
24 

 

Table 6. Comparison of reversible adder algorithms 

 

Algorithms 
Garbage 

Output 

Quantum 

Cost 

Constant 

Inputs 

Gate 

Count 

Algorithm 1 24 60 24 16 

Algorithm 2 22 55 30 12 

Algorithm 3 10 45 21 8 

Reversible Kogge 

Stone adder 

(Proposed) 

14 37 14 11 

 

Overall, the proposed design is inherently generic and 

scalable but requires careful consideration of resource usage, 

delay, and power as bit widths increase. By addressing these 

limitations through optimization strategies, the design can be 

effectively extended to higher-order BCD adders. 

 

3.1 BCD adder design 1: Implementation details 

 

Figure 13 illustrates the block diagram of the basic 4-bit 

reversible BCD adder. In this design, both the input and output 

have an equal bit count. The inputs, labelled as A, B, C, and 

D, each consist of four bits, while the outputs, represented by 

W, X, Y, and Z, also consist of four bits. In this configuration, 

Y denotes the sum, Z represents the carry, and W and X are 

garbage outputs. The implementation of the proposed 

reversible BCD adder follows a systematic, multi-stage design 

process. It begins with the construction of a single-bit adder 

using HNG gates, followed by the development of a 4-bit 

adder using four HNG gates. This initial 4-bit BCD adder 

serves as a foundational building block for higher-order BCD 

adders. In addition, a correction logic block, comprising NG, 

FG, and TG gates, is added to refine the output for BCD 

correctness. 

 

 
 

Figure 13. 4-bit reversible BCD adder 

 

 
 

Figure 14. 4-bit parallel adder 
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Figure 15. Decomposition of an 8-bit reversible Binary-

Coded Decimal (BCD) using two 4-bit reversible BCD 

adders 

 

 
 

Figure 16. Correction logic 

 

Each HNG gate functions as a full adder, producing both 

sum and carry outputs akin to a conventional full adder, 

thereby constituting a one-bit adder. By connecting four such 

one-bit adders, a four-bit adder is formed. This is shown in 

Figure 14. However, to adapt this binary adder into a BCD 

adder, integration of correction logic becomes necessary. 

Block diagram shown in Figure 15 comprises of two 4-bit 

inputs labelled "A" and "B." The reversible adder block 

operates by adding the individual bits of the inputs. 

Specifically, it adds A (0) with B (0), and if there's a carry 

resulting from the addition, it's internally propagated, as 

illustrated in the "4-bit Parallel Adder" section. Any temporary 

carry generated is directed to the NG gate. Another 4-bit 

reversible adder block is employed, which takes inputs from 

the sum output of the first adder block and four inputs from 

the FG gate. The output comprises 4 bits of sum and 1 bit of 

carry. Furthermore, two NG gates and one TG gate function as 

correction logic for the BCD adder. Correction logic is 

designed using NG, TG and FG gates as shown in Figure 16. 

The main purpose of correction logic is to add “0110”, 

whenever sum is greater than 9 or carry is generated [34, 35]. 

The diagram shown in Figure 15 illustrates the 

decomposition of an 8-bit BCD adder using two 4-bit 

Reversible BCD adders. The initial adder computes the partial 

sum and carry, directing the partial carry to the subsequent 

BCD adder. Concurrently, the second BCD adder processes 

the inputs, generating the final sum and carry. The higher order 

adders can be subsequently created using this basic building 

block as shown in Figure 17. 
 

 
 

Figure 17. 8-bit reversible BCD adder using 4-bit BCD 

adder 

 

 
 

Figure 18. Detailed schematic of 4-bit BCD adder 
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In Figure 18, a 4-bit reversible BCD adder block diagram is 

shown with all blocks integrated. The circuit consists of 

multiple HNG based adders, along with various auxiliary gates 

for managing BCD correction and carry propagation. The 

components description and working are as follows: 

 

1) HNG Based 4-bit Reversible Adder (Upper Section): 

• Inputs: Y3, Y2, Y1, Y0, X3, X2, X1, X0 

• Outputs: Intermediate sums (S3', S2', S1', S0') and 

carry-out (CARRYout) 

• Function: This module performs the initial addition 

of two 4-bit BCD numbers and generates 

intermediate sum outputs along with the carry-out bit. 

• Logic Equations for Upper Section: 

o Sum Output: Sn'=An⊕Bn⊕Cin 

o Carry Output: 

Cout=(An⋅Bn)+(An⋅Cin)+(Bn⋅Cin) 

Where An, Bn are the n-th bits of inputs X 

and Y, Cin is the carry-in from the previous 

stage, and Sn' is the sum. 

2) HNG Based 4-bit Reversible Adder (Lower Section): 

• Inputs: Intermediate sums from the upper adder (S3', 

S2', S1', S0') 

• Outputs: Final BCD sum (S3, S2, S1, S0) and carry-

out (Cout) 

• Function: This module performs the final addition, 

ensuring that the result is a valid BCD number. 

• HNFG and FG gates: These gates ensure the 

reversible logic gates condition that fan-out is not 

permissible. It is acting as a buffer and simply 

replicates inputs at the outputs to facilitate further 

processing. 

• Logic Equations for Lower Section: 

o Final Sum Output: Sn=Sn′ ⊕ Cout 

(corrected if necessary) 

o Carry Output: Cout=(Sn′⋅Cout) 

3) Correction Logic: 

• Components: OR Gate (NG), AND Gate (TG), and 

FG Gate (AS COPY Gate) 

• Function: This logic checks if the intermediate sum 

exceeds the BCD digit limit (9) and corrects the sum 

by adding "0110" (6) when necessary. The correction 

logic triggers the addition of "0110" to the binary sum 

if: 

• There is a carry-out from the initial addition 

(C′). 

• The two most significant bits of the sum (S3′ 

and S2′) are both 1. 

• The most significant bit and the second least 

significant bit of the sum (S3′ and S1′) are 

both 1. 

• Logic Equations for Correction logic 

 

To determine when to add "0110", any one of these 

conditions being true is sufficient. The combined Boolean 

logic is C′+(S3′⋅S2′)+(S3′⋅S1′)=1. 

The correction logic implements this Boolean equation with 

the help above mentioned components. The NG gate works as 

an OR gate and generates the term (S2′+S1′). The TG gate then 

ANDs the term S3′ to it resulting in (S3′⋅S2′)+(S3′⋅S1′). The 

NG gate further ORs this expression with C′ yielding the final 

term C′ (S3′⋅S2′)+(S3′⋅S1′) However, since fanout is 

prohibited in reversible circuits, an FG gate is used to copy this 

term and pass it on as the final carry. 

The 4-bit reversible BCD adder described in the diagram 

exemplifies a sophisticated approach to BCD addition using 

reversible logic gates. The integration of HNG gates and 

dedicated correction logic ensures efficient and accurate BCD 

computation. The FG gate effectively manages fan-out issues, 

making the circuit practical for implementation. Future 

improvements could focus on further optimizing the quantum 

cost and garbage outputs to enhance the circuit's practical 

applicability. 

 

 
 

Figure 19. Algorithm 2 schematic 

737



3.2 BCD adder design 2: Implementation details 

 

Figure 19 represents a reversible 4-bit BCD adder circuit 

implemented using Thapliyal Srinivasan Gate (TSG) gates, 

supplemented by three NG gates. This proposed configuration 

includes eleven ancillary input lines and generates a total of 

twenty-two garbage output lines, which are considered non-

essential to the main computational function but necessary for 

maintaining reversibility in logic operations. 

The circuit has the following components: 

1) Four TSG gates (TSG1, TSG2, TSG3, and TSG4) 

that perform the initial addition of the 4-bit BCD 

inputs X3 X2 X1 X0 and Y3 Y2 Y1 Y0, along with 

the carry input (Cin). These gates produce the 

following outputs:  

o S (Sum) 

o R (Garbage output) 

o Q (Garbage output) 

o P (Carry Out) 

2) Five additional TSG gates (TSG5, TSG6, TSG7, and 

TSG8) that perform the BCD correction step by 

adding the necessary correction factor (e.g., 0×06 or 

0×60) to the intermediate sum if it exceeds the BCD 

range. 

3) The role of the new gates’ module is critical in this 

architecture. It evaluates the carry bit status and 

decides whether the addition of “0110” to the 

intermediate sum is necessary. New gates used here 

implement the carry Boolean expression which 

basically is sum of products equation. 

 

The operation of the circuit is as follows: 

1) The 4-bit BCD inputs X3 X2 X1 X0 and Y3 Y2 Y1 

Y0, along with the carry input (Cin), are fed into 

TSG1, TSG2, TSG3, and TSG4. 

2) These gates perform the initial addition, producing 

the sum (S), carry out (P), and garbage outputs (R and 

Q). 

3) The sum outputs (S) from the initial addition stage, 

along with the carry signals (CARRYout, G8, G7, 

G6, G5), are fed into TSG5, TSG6, TSG7, and TSG8. 

4) These gates perform the BCD correction by adding 

the necessary correction factor to the intermediate 

sum if required. 

5) The final BCD sum is obtained from the sum outputs 

(S) of TSG5, TSG6, TSG7, and TSG8. 

 

When assessing the efficiency of the proposed design, it is 

observed that the quantum cost of the circuit is 55 and garbage 

outputs is 22. This metric provides an insight into the resource 

utilization and complexity of the circuit, highlighting its 

computational efficiency. However, a significant drawback of 

this design is its susceptibility to the fan-out problem. In 

reversible logic circuits, fan-out, or the duplication of output 

signals, is generally impermissible as it contradicts the 

principles of reversibility. 

 

 
 

Figure 20. Algorithm 3 
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3.3 BCD adder design 3: Implementation details 

 

The design in Figure 20 features a four-bit reversible adder, 

which employs four HNG gates, along with additional 

elements such as a Peres Gate, a Feynman Gate, and an SCLG. 

Moreover, it integrates an extra HNG Gate, expanding its 

capability to process information effectively. One notable 

advantage of this design is its ability to address the fan-out 

limitation. By utilizing six ancillary input lines and generating 

ten garbage output lines, it demonstrates a marked 

improvement in handling data flow and output distribution. 

It’s worth mentioning that the quantum cost of this circuit 

remains unspecified, leaving room for further evaluation and 

optimization. Nonetheless, its innovative configuration 

showcases a promising approach to mitigating computational 

constraints and advancing quantum computing capabilities. 

 

Components 

1) HNG Gate Based 4-bit Reversible Adder: 

o Inputs: X3, X2, X1, X0 (first BCD number) 

and Y3, Y2, Y1, Y0 (second BCD number). 

o Outputs: S3', S2', S1', S0' (intermediate 

sum) and CARRYout (carry out from the 4-

bit adder). 

o Description: This block consists of 4 HNFG 

gates, each taking four constant inputs and 

producing eight garbage outputs, to perform 

the 4-bit addition. The intermediate sum 

(S3', S2', S1', S0') and the carry output 

(CARRYout) are generated here. 

2) SCL Gate: 

o Inputs: S3', S2', S1', S0' (intermediate sum) 

and CARRYout. 

o Outputs: Q, R, S, P. 

o Description: The SCL gate performs 

correction logic to ensure the sum is within 

the BCD range. If the intermediate sum 

exceeds 9, correction logic is applied. 

3) Peres Gate (as Half Adder): 

o Inputs: S1', S2' and constant 0. 

o Outputs: P, Q, R. 

o Description: This gate is used to perform the 

half addition needed during the correction 

process. It generates a partial corrected sum 

and intermediate carry. 

4) HNG Gate (as Full Adder): 

o Inputs: The outputs of the Peres Gate, the 

intermediate sum S2', and the carry output 

from the SCL gate. 

o Outputs: P, Q, R, S (final corrected sum). 

o Description: This gate finalizes the BCD 

correction by acting as a full adder, 

combining partial sums and carries to 

produce the final corrected BCD output. 

5) CNOT Gate: 

o Inputs: Outputs from the HNG gate. 

o Outputs: Corrected sum bits. 

o Description: The CNOT gate is used for 

further logical operations necessary for the 

BCD correction and final sum generation. 

Output 

 

The final outputs of the circuit are the corrected BCD sum 

(C4, S3, S2, S1, and S0). 

3.4 BCD adder design 4: Implementation details 

 

Ripple Carry Adders (RCA) are simple but slow due to 

linear carry propagation. Their delay is linear, O(n). Carry-

Lookahead Adders (CLA) improve speed by computing 

carries in advance, reducing delay but increasing complexity. 

Carry-Save Adders (CSA) are efficient for multi-operand 

addition, though additional steps are needed for the final sum. 

Parallel prefix adders, including Kogge-Stone, Brent-Kung, 

and Sklansky, offer logarithmic delay (O(logn)) by computing 

carries in parallel, with Kogge-Stone being the fastest due to 

minimal logic depth and balanced load, albeit at a higher gate 

count. Kogge-Stone is particularly superior for high-speed 

applications, offering significant performance improvements 

over other adders. 

Figure 21 represents a 4-bit Kogge-Stone adder, which is a 

type of parallel prefix adder used for binary addition. The 

Kogge-Stone adder is known for its logarithmic depth and 

regular structure, making it efficient for high-speed arithmetic 

operations. The Kogge-Stone Adder (KSA) operates in three 

distinct stages: pre-processing, carry look-ahead computation, 

and post-processing. 

 

 
 

Figure 21. 4-bit Kogge Stone adder 

 

 
 

Figure 22. 4-bit reversible Kogge Stone adder 

 

Each stage plays a critical role in the overall functionality 

and high performance of the adder. In this paper binary Kogge 

Stone adder is designed using reversible gates as shown in 

Figure 22. The output is converted in BCD form using a binary 

to BCD module. A detailed explanation of each stage is as 

follows: 

 

1) Pre-processing 

In the pre-processing stage, generate (G) and propagate (P) 

signals are computed for each bit pair in the input numbers A 

and B. This is implemented using Peres Gate. 

• Generate Signal (G): This signal indicates whether 

a given bit pair will generate a carry. 

 

Gi=Ai.Bi 

 

o If both bits Ai and Bi are 1, a carry 

will be generated, thus Gi=1. 

o If either bit is 0, Gi=0. 

• Propagate Signal (P): This signal indicates whether 

a given bit pair will propagate a carry from a lower 

bit to a higher bit. 

 

Pi=Ai⊕Bi 
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o If Ai and Bi different, Pi=1 

meaning the carry from the 

previous bit will be propagated. 

o If Ai and Bi are the same, Pi=0. 

 

2) Carry look-ahead computation 

This stage is the core of the Kogge-Stone adder, enabling 

fast carry computation by combining generate and propagate 

signals using a parallel prefix network. The network consists 

of multiple levels of logic that combine these signals over 

increasing ranges of bits. This is implemented using three 

UPG gates. 

• Combine Propagate Signals (P): 

Pi:j=Pi:k−1 and Pk:j 

 

o This formula computes the 

propagate signal for a range of bits 

from i to j. 

o If all bits in the range propagate a 

carry, then the overall propagate 

signal for the range is 1. 

 

• Combine Generate Signals (G): 

Gi:j=Gi:k−1 or (Pi:k−1 and Gk:j) 

 

o This formula computes the 

generate signal for a range of bits 

from i to j. 

o A carry is generated for the range 

if either: 

▪ A carry is generated within the 

lower part of the range (Gi:k−1). 

▪ Or a carry is propagated through 

the lower part (Pi:k−1) and 

generated in the upper part (Gk:j). 

3) Post-processing 

In the post-processing stage, the final sum bits are 

calculated using the propagate signals and the carry-in values 

computed in the carry look-ahead stage. This is implemented 

using Peres Gates. 

• Sum Bit (S): Si=Pi⊕Ci−1 

o The sum for each bit position i is calculated 

by XORing the propagate signal for that bit 

with the carry-in from the previous bit 

position. 

Binary to BCD Converter: This module converts the final 

sum and carry in BCD form using state machine for 

segregating digits of different places. 

The 4-bit Kogge-Stone adder is designed to perform fast 

binary addition through efficient carry propagation across 

multiple stages. Initially, in Stage 0, the adder computes the 

generate (G[i]=A[i] & B[i]) and propagate (P[i]=A[i]^B[i]) 

signals for each bit using Peres Gates. These signals indicate 

whether a carry is generated or propagated for each bit of the 

input operands A and B. In Stage 1, UPG gates are used to 

combine the generate and propagate signals from adjacent bits, 

producing new generate and propagate signals (G1 and P1) for 

pairs of bits. This process is further refined in Stage 2, where 

UPG gates combine the results from Stage 1 to handle carry 

propagation over wider groups of bits, producing G2 and P2 

signals. In Stage 3, the final carry signals are determined using 

AND and OR gates based on the outputs from Stage 2 and the 

initial carry input (Cin). The final carry-out is produced from 

these signals. Lastly, in the Sum Calculation stage, the sum for 

each bit is computed using XOR gates. The propagate signals 

from Stage 0 are XORed with the carry-out signals to produce 

the final sum (Sum). This method ensures a fast and efficient 

addition process by minimizing the delay typically caused by 

carry propagation, making the Kogge-Stone Adder a highly 

effective design for high-speed arithmetic operations in digital 

circuits. 

 

 

4. RESULTS AND DISCUSSION 

 

The evaluation methodology for the proposed reversible 

BCD adder designs focuses on delay, power dissipation, and 

resource utilization. The design is implemented using Xilinx 

Vivado software, with functional verification performed using 

its inbuilt ISIM simulator. The FPGA device used was the 

Artix-7 (device name: xc7a35tcpg236-1), which operates at a 

frequency of 100MHz. The design was programmed using 

VHDL/Verilog and synthesized within Vivado, with 

configuration and bitstream generation executed through the 

Vivado toolchain. Testing was conducted at the specified 

100MHz clock frequency to validate the performance of the 

design. To strengthen the analysis, experimental results are 

presented using waveform diagrams, FPGA implementation, 

and detailed comparisons against existing designs using Xilinx 

Vivado tool and Artix -7 FPGA board. 

 

 

 
 

Figure 23. Waveform of 8 Bit BCD adder Algo 1 
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Figure 24. Results on Artix-7 FPGA board 

 

 
 

Figure 25. Kogge Stone adder 4 bit 

 

From Figure 23, it is evident that register A contains the 

BCD value of 51 along with several other values, while 

register B also holds the BCD value of 49. Following BCD 

addition principles, the addition operation yields a sum of 00 

and generates a carry of 1. Consequently, the final addition 

result is calculated as 100, as depicted in the waveform 

analysis. In this waveform A, B, C, zero all are inputs whereas 

W, X, Sum and carry are all outputs. Zero represents constant 

inputs set to 0 whereas W and X are garbage outputs. The 

results are tested on FPGA BASYS 3 [36] board hosting Artix-

7 device. The results corresponding to inputs 51 and 49 are 

shown in Figure 24. 

The Figure 25 shows the simulation of Reversible Kogge 

Stone adder of 4 bit. The inputs are a, b, cin and sum and cout 

are output. A is fed 9 and B is fed 9 so sum is 8 and cout is 1. 

This adder is using binary addition rules, but the sum obtained 

is converted into BCD form using binary to BCD converter 

module. 

Table 4 presents the combinational path delay for varying 

adder sizes across different algorithms and designs. 

The results highlight the following observations: 

• The Kogge-Stone adder consistently achieves the 

lowest path delay due to its efficient parallel-prefix 

structure, with a delay of 0.948 ns for 4 bits and 12.11 

ns for 64 bits. 

• While other algorithms (1, 2, and 3) show a 

progressive increase in delay with the size of the 

adder, the percentage increase is not significant.  

• Algorithm 3 demonstrates improved performance 

compared to Algorithm 1 and Algorithm 2 for larger 

bit sizes, making it a competitive option for scalable 

designs. 

• By optimizing circuit design to reduce the number of 

garbage outputs and gate counts, the delay parameter 

is significantly minimized. 

Table 5 presents the power dissipation of various adder 

designs as synthesized by Xilinx tools. The reversible Kogge-

Stone BCD adder exhibits the least power dissipation, 

consuming only 24 mW. This is a 70% reduction compared to 

the conventional irreversible BCD adder, which consumes 

80.2 mW. Among the proposed designs, Algorithm 2 has the 

highest power dissipation at 189 mW, while Algorithm 3 

demonstrates better power efficiency at 90 mW. The use of 

reversible logic in the Kogge-Stone BCD adder drastically 

reduces power dissipation, aligning with the design's low-

energy goals. 

Table 6 summarizes resource utilization in terms of garbage 

values, quantum cost, and constant inputs. The Reversible 

Kogge-Stone Adder is the most efficient in terms of quantum 
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cost (37) and garbage output (14), offering a good balance 

between complexity and resource use. Algorithm 3 also shows 

strong efficiency with low quantum cost (45), garbage output 

(10), and gate count (8), making it a well-balanced design. 

Algorithm 2 and Algorithm 1 are more complex, with higher 

quantum costs (55 and 60, respectively) and garbage outputs 

(22 and 24), indicating less optimization compared to the other 

designs. 

The results shown in Table 7 shows that the Proposed 8-bit 

adder shows a significant improvement in quantum cost (50), 

garbage output (14), gate count (11), and power dissipation (24 

mW) compared to the designs from [33, 34], while 

maintaining a similar delay (1.555 ns). This indicates a more 

efficient design in terms of both resource utilization and power 

consumption. 

 

Table 7. Resource utilization for all design 

 

Algorithms 
Delay 

(ns) 

Quantum 

Cost 

Garbage 

Output 

Gate 

Count 

Power 

Dissipation 

8-bit 3.623 165 40 64 0.107 W 

8-bit 1.55 157 22 11 42 mW 

Proposed 1.555 50 14 11 24 mW 

 

Implementing the proposed reversible BCD adder on the 

Artix-7 FPGA significantly impacts design choices, 

scalability, and performance due to the specific characteristics 

of the FPGA. The Artix-7 FPGA provides high-performance, 

low-power logic resources, making it an ideal platform for 

validating the proposed design. However, certain 

considerations must be addressed during the design process. 

Resource utilization is a critical factor, as FPGA logic 

resources such as lookup tables (LUTs), flip-flops, and routing 

channels directly influence scalability. To ensure efficient 

utilization of these resources, especially for higher bit-width 

adders, it is essential to optimize gate counts and minimize 

garbage outputs. Delay optimization is another important 

aspect, as the FPGA’s architecture introduces specific routing 

delays between logic blocks. Techniques such as placement 

constraints and pipelining can be employed to minimize 

critical path delays, thereby improving performance for larger 

designs. 

Power dissipation is also a key consideration. The Artix-7 

FPGA is optimized for low power, which makes it a suitable 

platform for evaluating the energy-saving benefits of 

reversible circuits. The proposed design, characterized by 

reduced gate complexity and fewer garbage outputs, aligns 

well with the FPGA's capabilities for efficient energy 

computation. While the design is theoretically scalable to 

higher bit-widths, practical limitations arise from the finite 

number of FPGA resources and increased routing congestion 

in larger circuits. Addressing these challenges may require 

partitioning the design into modular blocks or exploring 

hierarchical placement strategies. Furthermore, FPGA-

specific optimizations such as utilizing DSP slices for 

arithmetic operations and customizing carry chains to 

accelerate carry propagation can enhance performance. 

Techniques like constraint-driven synthesis in Vivado 14.6 

can also help tailor the design to the FPGA’s architecture, 

improving its area, delay, and power metrics. 

Testing and ensuring fault tolerance in reversible circuits 

pose unique challenges due to their inherent characteristics. 

One challenge lies in the input/output dependency, as 

reversible circuits require a one-to-one mapping between 

inputs and outputs. This necessitates testing all possible input 

combinations to ensure correctness across all output states. 

Additionally, the presence of garbage outputs complicates 

fault diagnosis, as it can be difficult to identify whether faults 

originate in the main functional logic or in the garbage output 

logic. Despite these challenges, reversible circuits offer 

opportunities for improved fault tolerance. Error detection is 

facilitated by the inherent preservation of information in 

reversible circuits, where faults in outputs often manifest as 

imbalances in garbage values or unexpected input-output 

mappings. Fault recovery is another advantage, as reversibility 

allows circuits to trace operations backward, enabling error 

correction. 

To address these challenges, testing strategies can be 

employed. Built-in self-test (BIST) circuits embedded within 

the FPGA implementation can automate fault detection, 

leveraging the deterministic behavior of reversible circuits. 

Extensive simulation and validation, including corner-case 

testing and waveform analysis using Vivado 14.6, ensure 

functionality under diverse conditions. Physical testing on the 

Artix-7 FPGA further validates the circuit’s fault tolerance and 

power-performance trade-offs in real-world scenarios. By 

addressing these testing and fault-tolerance considerations, the 

reliability and robustness of the proposed reversible design can 

be significantly enhanced. Although the current work 

primarily focuses on the design and implementation of the 

proposed reversible BCD adder, testing and fault tolerance 

have been identified as important areas for future exploration. 

These aspects will be thoroughly investigated and addressed 

in subsequent research efforts. 

 

 

5. CONCLUSION 

 

In this study, the performance of a Generic Reversible BCD 

adder, with a focus on the Kogge-Stone design, is thoroughly 

evaluated in terms of delay, power dissipation, and resource 

utilization. The results show that the Reversible Kogge-Stone 

Adder outperforms other algorithms across all key metrics. 

Specifically, it achieves a significant reduction in delay (1.555 

ns for 8-bit design) compared to conventional designs (3.623 

ns), and reduces power dissipation by 70%, achieving only 

24mW compared to 0.107W for the conventional 8-bit design. 

Additionally, it demonstrates a quantum cost of 50, garbage 

output of 14, and a gate count of 11, all of which are more 

efficient than other algorithms such as Algorithm 1 (with 

quantum cost 60, garbage output 24, and gate count 16). 

While the proposed design shows a slightly higher delay 

compared to conventional designs, especially as the adder size 

increases, the reduction in power consumption due to the 

reversible nature of the logic operations offers a substantial 

advantage. The results highlight the trade-offs between delay, 

power, and resource utilization, providing insight for 

optimizing designs based on specific application needs. The 

proposed design also offers a balance between performance 

and energy efficiency, paving the way for high-performance, 

sustainable computing systems. 
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