APPENDIX

In nature, we find mostly two geometries in the seeds:

- 1. Spherical shape
- 2. Ellipsoidal shape

Our analysis holds well both for spherical and non-spherical seeds when the equivalent diameter is considered for ellipsoidal seeds. The analysis is formulated for spherical geometries. However, for ellipsoidal geometry the equivalent diameter as a first approximation is to be employed.

1. Spherical seed

Spherical seed radius = R

R=Radius of the Spherical seed:

VOLUME =
$$\frac{4}{3} \pi R^3$$
: D=2R

2. Ellipsoidal seed - (equivalent diameter)

where the geometry of the seed is defined by the coordinate

system
$$(-a < X < a)$$
: $(-b < Y < b)$
Volume of the seed =
$$\int_{-b}^{b} \pi x^{2} dy$$
where $x^{2} = a^{2} \left(1 - \frac{y^{2}}{b^{2}}\right)$

where
$$x^2 = a^2 \left(1 - \frac{y^2}{b^2}\right)$$

Volume =
$$\frac{4}{3}\pi b^2 a$$

On simplification
$$D_{eq} = 2(b^2 \ a)^{1/3}$$
Y

$$D=D_{eq}=2[b^2a]^{1/3}$$