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Breast cancer remains a major global health problem, especially among women over 40. 

Early detection is critical for curing the disease. For this, recent advances in computer-aided 

diagnosis are important in improving diagnostic accuracy. This study proposes a new 

classification model that combines Differential Evolution Algorithms (DEA) with Extreme 

Learning Machines (ELM) to distinguish between benign and malignant breast cancer cells 

accurately. The UC Irvine Machine Learning Repository Breast Cancer Wisconsin 

(Diagnostic) public breast cancer cells image database was used to classify benign and 

malignant cells in breast cancer. In our architecture, the number of hidden neurons is 

optimized by DEA to improve the classification performance. The proposed DEA-ELM 

model achieved the highest overall performance, with an accuracy of 99.72%, precision of 

98.15%, recall of 99.72%, and F1-score of 97.65%. This study provides evidence of the 

efficacy of the DEA-ELM method in diagnosing breast cancer cells. These findings 

emphasize the possible use of the approach in the early identification of cancer and 

developing treatment strategies. The suggested approach can be expanded in future research 

to enhance its performance by using supplementary datasets and optimizing model 

parameters. 
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1. INTRODUCTION

Breast cancer is known as the second most common type of 

cancer among women globally and poses a significant health 

risk, especially for women over the age of 40 [1, 2]. The 

statistics for breast cancer in 2020 painted a concerning 

picture, with approximately 2.3 million new cases reported [3-

5]. This staggering number indicates that one out of every 

eight cancers diagnosed that year was breast cancer. This high 

incidence rate highlights the extensive scope of the disease and 

underscores the urgency for effective prevention, diagnosis, 

and treatment strategies [4, 5]. The mortality rates associated 

with breast cancer are equally alarming, with an estimated 

700.000 deaths occurring due to the disease in the past year. 

These figures not only reflect the lethality of breast cancer but 

also demonstrate the challenges faced in combating the 

disease. Future projections are even more daunting, with an 

expected nearly 50% increase in breast cancer cases by 2040. 

This anticipated rise further emphasizes the need for ongoing 

research efforts, advanced healthcare services, early detection 

programs, and awareness campaigns to mitigate the impact of 

breast cancer on a global scale [5, 6]. 

The most effective defense against breast cancer is ensuring 

early detection. New and advanced diagnostic technologies, 

coupled with computer-aided methods, have accelerated and 

enhanced the diagnostic process. Early detection of breast 

cancer is associated with a substantial increase in treatment 

efficacy and a corresponding improvement in patient survival 

rates. Breast cancer exhibits a heterogeneous disease profile, 

necessitating a thorough assessment of tumors with diverse 

biological characteristics to elucidate the clinical trajectory of 

the disease and the responses to therapeutic interventions. 

Studies in the literature [1-6] emphasize the importance of a 

multidisciplinary approach in managing such tumors and 

determining therapy options. In this context, personalizing the 

diagnosis and treatment strategies for breast cancer based on 

the individual characteristics of the tumor plays a critical role 

in achieving optimal outcomes [7-9]. 

The diagnosis of breast cancer is typically conducted 

through a biopsy. A biopsy is a laboratory procedure 

performed by a pathologist to identify cancer cells. The 

pathologist collects tissue samples from breast tissue through 

various techniques, including fine needle aspiration, core 

needle aspiration, core needle biopsy, vacuum-assisted biopsy, 

and surgical biopsy [1, 2]. Afterward, these collected cancer 

tissues are examined under a microscope. The images obtained 

under the microscope are called histopathology images. The 

pathologist analyzes these histopathological images and 

classifies them as cancerous or non-cancerous. However, there 

are some disadvantages to the pathologist's evaluation. The 

evaluation and analysis process conducted by pathologists is 

often time-consuming. This can prolong the waiting time for 

patients in the diagnostic process and delay the start of 

treatment. The cost of biopsies and histopathological analysis 

performed by pathologists is high. This can pose an additional 

barrier for patients with difficulty accessing healthcare 
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services. Pathologists may sometimes struggle to detect or 

interpret cancer cells accurately. This can lead to false 

negative results for patients and delays in treatment. 

Pathologist evaluations can sometimes be subjective. There 

may be differences in interpretation among different 

pathologists, leading to inconsistency and misleading results. 

Pathologists may struggle to make an accurate assessment if 

the tissue samples obtained during the biopsy are insufficient. 

This can reduce the reliability of the diagnosis. While the 

significance of pathologist evaluation in breast cancer 

diagnosis is unequivocal, it is essential to consider the 

potential disadvantages associated with these methods [1, 2, 

4]. 

Digital pathology is a research field involving the use of 

digital imaging and artificial intelligence techniques in 

pathology. Academic studies in this field demonstrate that 

significant advancements can be made in diagnosing and 

prognosis diseases by digitally recording and analyzing 

pathological examinations and utilizing artificial intelligence 

algorithms [10, 11]. Digital pathology provides pathologists 

with a work environment independent of time and location, 

allowing them to conduct routine pathological examinations 

digitally. Artificial intelligence algorithms play a crucial role 

in digital pathology. These algorithms assist in the analysis of 

pathological images and the acquisition of information used in 

the diagnosis and prognosis of diseases. For example, artificial 

intelligence systems developed for cancer diagnosis can help 

pathologists identify cancerous areas and determine diagnostic 

and prognostic information. Additionally, digital pathology 

studies supported by artificial intelligence enable faster patient 

diagnosis processes. For instance, in one study, a system 

utilizing an artificial intelligence algorithm assisted 

pathologists in diagnosing prostate cancer, accelerating the 

diagnosis process and improving patient management [9]. AI-

based techniques can be successfully applied to diagnose 

diseases early [12, 13]. A convolutional neural network (CNN) 

model was specifically designed for the automated 

classification of breast cancer utilizing two types of medical 

imaging: mammography (MG) and ultrasonography (US). 

Their CNN model included five trainable convolutional 

blocks, each containing four convolutional layers and a fully 

connected layer that served as a classifier. Notably, their 

model effectively extracted important features from the input 

images while using fewer adjustable parameters. This suggests 

that their model efficiently captured relevant information for 

breast cancer classification. The researchers performed 

extensive simulations with various datasets. They employed 

the MIAS, DDSM, and INbreast datasets for mammography, 

whereas for ultrasonography, they utilized the BUS-1 and 

BUS-2 datasets. Their CNN model demonstrated superior 

performance to recent state-of-the-art approaches on these 

datasets. Additionally, Muduli et al. applied data augmentation 

techniques—methods designed to enhance the diversity and 

quantity of training data—to mitigate the problem of 

overfitting. By augmenting the data, they successfully reduced 

overfitting and enhanced the model's generalization ability. 

The reported results indicated high accuracy rates for the 

classification task. On the MIAS dataset, the CNN model 

achieved an accuracy of 96.55%. For the DDSM dataset, the 

accuracy was 90.68%, while on the INbreast dataset, it reached 

91.28%. The model demonstrated exceptional performance on 

the BUS-1 dataset, achieving an accuracy of 100%, and 

recorded an accuracy of 89.73% on theBUS-2dataset [14].  

The study by Tsai et al. [15] focused on BI-RADS (Breast 

Imaging Reporting and Data System) classification using a 

database from the E-Da hospital in Taiwan. The researchers 

used images from the database and relied on labels assigned 

by physicians to perform the classification. Their approach 

determined the classification based on the proportion of lesion 

areas within a specific location. They divided the images into 

blocks of size 224 × 224 pixels with a 36-pixel pitch. These 

blocks served as the basis for assessing the presence and 

characteristics of lesions in the breast images. Tsai employed 

the EfficientNET deep learning architecture, a state-of-the-art 

model for image classification tasks to perform the 

classification task. This architecture extracted relevant 

features from the breast images and made predictions about 

the BI-RADS category. The results of their classification 

experiments showed promising performance. The reported 

metrics included a precision (PRE) of 94.22%, a sensitivity 

(SEN) of 95.31%, and a specificity (SPE) of 99.15%. These 

metrics indicate the model's ability to accurately identify and 

classify breast lesions based on the BI-RADS system. Overall, 

Tsai's study demonstrated the successful application of the 

EfficientNET architecture for BI-RADS classification, 

achieving high accuracy and sensitivity in detecting breast 

lesions. These findings suggest the potential of deep learning 

methods in aiding physicians in diagnosing and assessing 

breast cancer. Raza et al. [16] proposed a convolutional neural 

network (CNN) architecture comprising 24 convolutional 

blocks, which include six convolutional filters, nine Inception 

modules, and a fully connected layer. In their study, Raza et 

al. incorporated Batch Normalization alongside activation 

functions such as ReLU, Leaky ReLU, and ReLU-clipped. The 

designed architecture achieved impressive results, with an 

accuracy (ACC) of 99.35%, precision (PRE) of 99.6%, 

sensitivity (SEN) of 99.66%, and an F1-Score of 99.6%. Raza 

et al. [16] proposed a CNN architecture for a specific task. The 

CNN architecture designed by the researchers consisted of 24 

convolutional blocks. Each block comprised six convolutional 

filters, nine Inception modules, and one fully connected layer. 

These components were carefully structured to extract relevant 

features from the input data and make accurate predictions. In 

their work, Raza et al. [16] experimented with different 

activation functions, including RELU, Leaky-RELU, and 

RELU-clipped, to introduce non-linearity and enhance the 

model's learning capabilities. They also utilized batch 

normalization, a technique that helps stabilize the learning 

process and improve the model's generalization ability. The 

performance of their designed CNN architecture was 

evaluated using various metrics. The reported results 

demonstrated a high ACC of 99.35%, PRE of 99.6%, SEN of 

99.66%, and F1-Score of 99.6%. These metrics indicate the 

effectiveness of Raza et al.'s CNN architecture in achieving 

accurate and reliable predictions for the specific task they were 

addressing. The elevated values of accuracy, precision, 

sensitivity, and F1-Score suggest that their model 

demonstrated exceptional performance in classifying and 

predicting the target variable. Overall, Raza et al.'s study 

showcased the successful design and implementation of a 

CNN architecture with multiple convolutional blocks and 

Inception modules. A study was conducted using digital image 

analysis and machine learning techniques to classify and 

predict the diagnosis of breast masses based on fine needle 

aspiration (FNA). Researchers utilized a machine learning 

model on digital images obtained from FNA samples. The 

model was trained to analyze the features in the images and 

classify and predict the diagnosis of breast masses. The results 
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showed a diagnostic accuracy of 97% for the predicted 

outcomes. A real diagnostic accuracy of 100% was reported 

for 118 new samples [17]. Kowal and colleagues introduced a 

method for the automatic classification of images. This 

approach focuses on identifying nuclear regions within the 

images and utilizing these regions for classification by 

classifiers [18]. In their methodology, a two-stage 

segmentation process was applied to the images. The initial 

stage focused on segmenting the foreground from the 

background using an adaptive threshold. This approach 

facilitates the extraction of critical regions, including nuclei, 

red blood cells, and other salient features within the images. In 

the second stage, the regions corresponding to nuclei are 

distinguished from blood cells and other components. 

Ultimately, the nuclear regions are characterized by various 

features, which are then utilized as input for the classifiers. 

Kowal and colleagues assessed the classification accuracy on 

500 sample images utilizing three different classifiers: K-

nearest neighbor, Naive Bayes, and decision trees. The results 

indicated a classification accuracy ranging from 96% to 100%. 

As seen in the literature review, artificial neural networks 

(ANN) show acceptable results. But, one of the most important 

issues in ANN is determining the optimal network structure, 

which includes both number of neurons in the hidden layer and 

the employed transfer (activation) function. These values are 

generally determined by tuning based on trials. Therefore, a 

practical model is required to distinguish between benign and 

malignant cells in breast cancer and to address the problems 

above. The following are this work's main contributions. The 

primary objective of this study was to enhance classification 

efficiency and mitigate the challenges associated with ELM to 

enable the reliable differentiation between benign and 

malignant cells in breast cancer using Differential Evaluation 

Algorithm (DEA). Optimizing an ANN may require too much 

time. Therefore, generally some specialized values/transfer 

functions are tested in trials. Therefore, manually tuning does 

not grantee to achieve best ANN model.  

On the other hand, ELM has its extremely fast training 

stage, which may be take 1% of traditional backpropagation 

based learned ANN. And addition to ELM, DEA is also a fast 

optimizing method. In place of conventional ELM, a technique 

with the following benefits was suggested in this study: 

Because of the enhanced NHN, the DEA-ELM, which is used 

to separate benign and malignant samples, has better 

classification accuracy than the ELM. Furthermore, this DEA-

based process is used to optimize the efficiency of separating 

the samples as benign and malignant.  

The study is organized as follows: Section 1 presents the 

collection of breast cancer cell images. Section 2 outlines the 

methodologies and strategies employed. Section 3 provides 

the findings from the ELM and Differential Evaluation 

Algorithm (DEA) investigations used for classification. 

Finally, Sections 4 and 5 contain the discussions and 

conclusions, respectively. This article was written with the 

principal objective of enhancing the classification efficiency 

and addressing the limitations of the ELM in accurately 

differentiating between benign and malignant cells in breast 

cancer. The study proposes using a method called DEA-ELM, 

which offers several advantages over traditional ELM 

approaches. The importance of this study lies in its potential 

to improve the accuracy of breast cancer cell classification, 

which is crucial for early detection and effective treatment. By 

addressing the limitations of ELM, the DEA-ELM method 

offers a better classification accuracy, leading to more accurate 

identification of benign and malignant cells. This can 

significantly impact breast cancer research and contribute to 

improved diagnostic practices.  

The contribution of this study to science is twofold. Firstly, 

it introduces the DEA-ELM method, which combines the 

benefits of DEA with ELM to improve classification accuracy. 

DEA enhances the efficiency of distinguishing between 

benign and malignant samples, leading to improved 

classification accuracy. This innovative approach showcases 

the potential of combining different techniques to achieve 

better results in medical image classification. Secondly, the 

study showcases empirical results in Section 3. In summary, 

this article was written to address the limitations of ELM in 

breast cancer cell classification and propose a novel method, 

DEA-ELM, that improves classification accuracy. The 

importance of accurate classification in breast cancer 

diagnosis and treatment underscores the significance of this 

study. The contribution lies in introducing the DEA-ELM 

method, its empirical evaluation, and the potential it holds for 

enhancing medical image classification. 

 

 

2. MATERIAL AND METHOD 

 

2.1 Material 

 

This study aims to assess the effectiveness of an ELM by 

utilizing features extracted through image segmentation on the 

Breast Cancer Wisconsin (Diagnostic) image data set from the 

UCI Machine Learning Repository [19]. Figure 1 shows raw 

images at different zoom values.  

 

Benign samples Malignant samples 

 
 

Figure 1. Sample image of the images in the data set 

 

The dataset comprises recorded features for each cell 

nucleus, including radius, texture, perimeter, area, 

smoothness, concavity, concave points, symmetry, and fractal 

dimensions. Each nucleus is labeled based on diagnosis as 

malignant (M) or benign (B). 

The distribution of classes within the dataset is a crucial 

factor to consider when interpreting the findings and forming 

conclusions. In this particular dataset, there are 357 malignant 

cases and 212 benign cases. The imbalance in class 

distribution, with a higher number of malignant cases than 

benign cases, can have implications for model performance 

and evaluation. Imbalanced datasets can introduce challenges 

in accurately predicting the minority class (benign cases) due 

to the bias towards the majority class (malignant cases). Figure 

2 shows the data distribution in the data set. 

In the context of breast cancer classification, a higher 

number of malignant cases within the dataset indicates the 

predominance of this condition. However, it is crucial to 

consider the potential effects of class imbalance on the 

evaluation metrics and the generalizability of the model's 
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performance. To tackle the issue of class imbalance, one can 

utilize effective sampling methods such as oversampling the 

minority class, undersampling the majority class, or 

implementing advanced techniques like SMOTE (Synthetic 

Minority Oversampling Technique). These techniques aim to 

balance the class distribution and improve the model's 

performance, particularly in correctly identifying benign 

cases. Considering the class distribution in the dataset, it is 

crucial to interpret the results cautiously and consider the 

potential biases that may arise due to the imbalance. 

Additionally, further analysis and evaluation of the model 

should consider the class-specific performance metrics to 

assess the effectiveness of the classification approach for both 

malignant and benign cases. 

 

2.2 Method 
 

Figure 3 illustrates the diagram of the proposed 

classification method. As seen in the figure, the employed 

method can be divided into four sections. In the first section, 

procurement and determination of the dataset are attained 

through the UCI. After the preprocessing steps, training 

classification models and training regression models. The final 

phase of the proposed method involves differentiating samples 

into benign and malignant categories, representing an 

optimized enhancement of several Hidden Network (NHN) of 

ELM. 

 

 
 

Figure 2. Class distribution in the data set 
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Figure 3. The block schema of the proposed system 

 

2.2.1 ELM 

ELM can be defined as a type of single-layer feedforward 

neural network [20]. This definition underpins a fast and 

effective learning algorithm [20, 21]. ELM consists of input, 

hidden, and output layers, similar to feedback ANN structures. 

The ELM's connection from the input to the hidden layer is 

defined as Eq. (1) [21]: 

 

𝐻 = 𝑔(𝑋𝑊 + 𝑏) (1) 

 

where, H is the output matrix of the hidden layer, X is the input 

data matrix, W the is the randomly assigned weight matrix, b 
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the is the randomly assigned bias vector, and g represents the 

activation function. In ELM, the link from the hidden layer to 

the output layer is expressed as Eq. (2) [21]: 

 

𝑌 = 𝐻𝛽 (2) 

 

where, Y is the output matrix predicted by the model, 𝐻 is the 

hidden layer output matrix, and β is the weights matrix in the 

output layer. Weights in the output layer β are calculated using 

the least squares method with the Eq. (3) [21]: 

 

𝛽 = 𝐻†𝑇 (3) 

 

where, 𝐻† is the Moore-Penrose pseudo-inverse of the matrix 

and T is the target output matrix. 

The key difference from traditional ANNs is that ELM only 

has a single hidden layer. Using a single hidden layer aims to 

make the training process faster and more effective [20, 21]. 

In this layer, the weights are randomly selected and not 

updated, allowing the operations to proceed with fixed 

weights. It can be observed that ELM provides a significantly 

faster training process than traditional ANN methods. Figure 

4 presents the ELM architecture. 

 

 
 

Figure 4. ELM architecture 

 

The operation of an ELM differs from traditional 

feedforward networks. During training, the input data is 

directly passed to the hidden layer, where it is multiplied by 

randomly assigned weights and processed through activation 

functions. The resulting values are then transmitted to the 

output layer. Unlike traditional networks, the weights and 

biases in the hidden layer are not optimized; instead, the output 

layer weights are computed analytically using the Moore-

Penrose generalized inverse. This approach provides a direct 

solution to approximate the target outputs, avoiding the 

iterative optimization process typical of conventional neural 

networks. 

ELM operates on a different principle from traditional 

feedforward ANN networks. During the training process of 

ELM structures, data is directly transferred from the input 

layer to the hidden layer. Then, it undergoes multiplication 

with the weights at each hidden node and passes through the 

respective activation function [22]. This procedure transmits 

the obtained values to the output layer. The weights and biases 

in the hidden layer are randomly selected and are not subjected 

to any optimization process [20-22]. Instead, different 

analytical approaches are used to calculate the weights in the 

output layer. This approach, which eliminates iterative 

optimization and the need for multiple hidden layers as in 

traditional neural networks, aims to achieve a much faster 

solution [23]. The ELM approach can provide practical 

advantages, particularly in applications requiring real-time 

processing and handling of large datasets. It has been 

effectively employed in various domains, including image 

processing, speech recognition, and text analysis. However, 

the random weight assignment in ELM can negatively affect 

the stability and performance of the model, leading to 

limitations in specific applications. Therefore, when 

employing ELM, it is essential to carefully evaluate the 

model's sensitivity and generalization capability, considering 

these disadvantages [23]. 

 

2.2.2 DEA 

The DEA, introduced by Price and Storm [24, 25, 29], is an 

advanced technique that addresses the challenges of constant 

parameters. DEA is an empirical procedure that relies on 

genetic algorithm principles and operators. It offers practical 

solutions to the limitations of continuous data [26-29]. DEA 

has been widely applied in various areas, where repetitions in 

the algorithm explore superior outcomes by leveraging the 

operators. 

The core objective of the algorithm is to enhance its 

efficiency in addressing the limitations associated with 

constant score coding. This enhancement is achieved by 

implementing specific modifications to the genetic operators, 

namely crossing, mutation, and selection, which are 

fundamental components of Genetic Algorithms (GA). 

However, in the context of data envelope analysis (DEA), a 

unique approach is taken, in which individual chromosomes 

are treated independently. Unlike traditional methods, where 

all operators are uniformly applied to each individual, DEA 

adopts a more personalized strategy. Here, creating a new 

individual involves the random selection of three other 

chromosomes, introducing a dynamic element to the 

evolutionary process. This process encompasses both 

mutation and crossover operations. The compatibility between 

the newly generated and incumbent chromosome is assessed, 

with the more favorable chromosome being transitioned to the 

subsequent population as a fresh individual. The election 

operator is also used in this selection process. The evaluation 

of solutions produced by DEA is contingent upon their 

efficacy in attaining the specified objective function. The 

fitness function f(x) can be defined as Eq. (4) [27, 28]: 

 

𝑓(𝑥) =∑ 

𝑛

𝑖=1

𝑤𝑖𝑥𝑖 (4) 

 

where, x represents the genetic characteristics of individuals, 

and w represents the weights. The cross-over process is 

defined as Eq. (5) [28, 29]: 

 

𝑥new = (1 − 𝛼)𝑥𝑖 + 𝛼𝑥𝑗 (5) 

 

A cross-over is made between two individuals with 

parameter α. A mutation is a slight change. The following 

equation can describe it as Eq. (6) [26, 29]: 

 

𝑥mutated = 𝑥 + 𝜖 (6) 

 

where, 𝜖 is a small random change. The DEA process is 

distinguished by its straightforward design, rapid parameter 
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optimization, and user-friendly coding, offering significant 

advantages and key features. A D vector represents the D 

factor in the algorithm. The initial step of the algorithm 

involves selecting an individual from the NP inhabitant vector. 

This particular individual undergoes advanced 

implementations of mutation, crossover, and selection 

operators [26]. The primary steps of the DEA algorithm are 

illustrated in Figure 5. 

 

 
 

Figure 5. DEA steps 

 

The number of variables in the problem determines the 

quantity of genes in each chromosome. In the realm of DEA, 

the population size (i.e., the number of chromosomes) must 

always exceed three. This requirement arises from utilizing 

three additional chromosomes, apart from the current one, to 

facilitate the creation of new chromosomes. In the mutation 

process, random alterations are introduced to different 

segments of the genes within the existing chromosome. In the 

context of DEA, three supplementary chromosomes are 

chosen for mutation. The variance between the first two 

selected chromosomes is calculated and multiplied by the 

scaling parameter. 
 

2.3 Implementation of the DEA and ELM 
 

Before employing the proposed method, each of the features 

is normalized and transferred in the range of 0-1. The 

implementation of DEA-ELM is given Figure 6. 

In the proposed method TF and NHN are optimized. Each 

step defines the process of generating ELM individuals, 

calculating their costs, and regenerating them using DEA. 

These steps constitute the basic building blocks of the method 

and ensure that certain goals are achieved in the process: 

Step 1: Determining the subsets of TF and NHN.  

Step 2: Generating a group of ELM individuals that the TF 

and NHN assigned randomly based on DEA. 

Step 3: Calculating the costs of each individual based on 

accuracy. 

Step 4: Regenerate a new group of ELM individuals based 

on newly assigned the TF and NHN according to DEA 

(mutation, crossover). 

Step 5: Recalculate costs, regenerate a new population and 

continue this process until stop criteria is achieved. The other 

details about implementation are given below: 

-The objective of employed DEA-ELM is to maximize test 

accuracy.  

-The range of NHN is 1-500. 

-The TF subset consists the following activation functions 

Radbas, Sin, Sig, Hardlim, and Tribas. 

 

 
 

Figure 6. DEA steps 

 

2.4 Employed performance parameters 

 

A diverse range of statistical performance metrics can be 

employed to assess the effectiveness of a model. Among these, 

the most commonly used metrics are: 

Accuracy: Training the model enables the computation of 

performance metrics by analyzing the confusion matrix 

through calculations. One of these metrics is accuracy, which 

is determined by dividing the number of accurately predicted 

values by the total test data count. Essentially, it provides an 

understanding of whether the model is working correctly. Eq. 

(7) represents the calculation required to determine accuracy 

[30]. 

 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (7) 

 

Precision: The precision of model predictions is 

represented by the precision value. It determines the 

proportion of actual positives among the instances that the 

model predicts as positive on the test data. Eq. (8) represents 

the calculation required to determine the precision metric [30-

33]. 

 

𝑃𝑅𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (8) 

 

Recall: Recall is a commonly used performance evaluation 

method, especially in classification problems. This parameter 

is used to calculate the proportion of positive class values that 

are correctly identified as positive by the model. A high recall 

value indicates that the model has high sensitivity. Eq. (9) 

represents the steps required to calculate the recall metric [30-

33]: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (9) 

 

F1-Score: The F1-Score utilizes the harmonic mean of 

precision and recall as a performance evaluation metric. This 

method aims to ensure control over extreme cases for the 

model's success. Eq. (10) represents the steps required to 
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calculate the F1-Score metric [30-33]. 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑅𝐸 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑅𝐸 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (10) 

 

K-Fold Cross-Validation: The K-Fold Cross-validation 

technique is a reliable and efficient way to assess a machine 

learning model's performance. 

This approach involves randomly dividing the dataset into 

"k" subsets of equal size and performing operations on these 

subsets. One of the subsets is selected as the test data, while 

the remaining subsets serve as the training set. This process is 

repeated for "k" iterations, with each K subsets used as the test 

set once. The results are then calculated by averaging the 

performance measurements from each iteration. The K-Fold 

Cross-Validation method aims to test the sensitivity of the 

trained model to different parts of the dataset and obtain more 

robust generalization performance estimates [34-36]. This 

study applies the K-Fold Cross-Validation process to the data 

to overcome overfitting and underfitting issues. This method 

aims to achieve higher success rates and train a reliable 

training/test model. 

 

 

3. RESULTS 

 

The decision tree (DT), random forest (RF), Naive Bayes, 

support vector machine (SVM), ELM, and DEA-ELM 

algorithms were tested for performance in this section. The 

ELM's Radbas, Sin, Sig, Hardlim, and Tribas activation 

functions were used to create achievement effects within this 

scope (Table 1). 

 

Table 1. Performance results of the methods 

 

Algorithm 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

DEA-

ELM 
99.72 98.15 99.72 97.65 

ELM 96.53 95.34 96.53 95.09 

SVM 94.6 95.15 94.6 91.65 

Naive 

Bayes 
93.86 94.41 93.86 93.73 

RF 92.11 92.99 92.11 91.88 

DT 88.6 91.24 88.6 88.77 

 

 
 

Figure 7. Performance metrics efficiency results of the 

methods 

 
 

Figure 8. DEA-ELM test ACC comparison with activation 

functions 

 

Each sample was separated into two groups: test and 

training sets. Additionally, the samples were examined using 

a 10-fold cross-validation technique. A graphical comparison 

of the performance metrics results of the methods is presented 

in Figure 7.  

As shown in Figure 8, classifier outcomes were obtained by 

adjusting the NHN of ELM to 20, 30, 40, 50, 60, 80, 90, 100, 

125, 150, 175, 200, 225, 250, 400, 600, 800, and 1000. 

The primary goal of this study was to evaluate the model's 

performance by enhancing its capabilities. ELM's NHN 

through DEA. The DEA, a potent meta-heuristic enhancement 

technique, was used for this. The classification using ELM 

yielded better results when the DEA was applied. 

Differential Evolution Algorithms - Extreme Learning 

Machine (DEA-ELM) model demonstrates the highest overall 

performance, with an accuracy of 99.72%, precision of 

98.15%, recall of 99.72%, and F1-score of 97.65%. The high 

values across all metrics indicate this model is highly effective 

at the given task, with an excellent ability to correctly identify 

positive instances (PRE) and a low rate of false negatives (high 

recall). This suggests the DEA-ELM is a robust and reliable 

classification algorithm for the problem. In summary, the 

DEA-ELM emerges as the top performer, exhibiting 

exceptional ACC, PRE, recall, and F1 scores. The ELM and 

SVM also demonstrate strong classification capabilities, while 

Naive Bayes, RF, and DT show progressively lower but still 

viable performance. This comparative analysis provides 

valuable insights into these algorithms' relative strengths and 

weaknesses for the given problem. The testing scores for five 

different activation functions were obtained using DEA-ELM. 

The enhancement in NHN achieved through DEA-ELM is 

detailed in Table 2. The table suggests that the 'tribas' and 

'hardlim' activation functions, when combined with a 

sufficiently large number of hidden neurons (around 225 and 

175, respectively), can achieve exceptionally high training 

accuracies. In contrast, the 'sig,' 'sin,' and 'rabbis' activation 

functions tend to have lower and less consistent training 

accuracy performance across the range of NHN values 

provided. 

Table 2 displays the test accuracy (ACC) of the DEA-ELM 

model using different activation functions across various 

hidden neuron counts (NHN). Overall, accuracy improves 

with more hidden neurons, indicating enhanced model 

capacity. The tribes and hardline functions consistently 

achieve high accuracy, peaking at 99.72% with several 

configurations, while the sig, sin, and rabbis functions perform 
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poorly across all counts. The results suggest that optimal 

neuron selection and activation function choice are crucial for 

maximizing classification performance in breast cancer 

diagnosis, with stabilization of high accuracy evident beyond 

around 200 neurons. 

 

Table 2. Test ACC for DEA-ELM using activation functions 

 
NHN sig sin tribas radbas hardlim 

20 14.31 26.31 96.31 40.31 89.31 

30 14.97 27.47 96.52 40.87 90.07 

40 15.63 28.63 96.73 41.43 90.83 

50 16.29 29.79 96.94 41.99 91.59 

60 16.95 30.95 97.15 42.55 92.35 

70 17.61 32.11 97.36 43.11 93.11 

80 18.27 33.27 97.57 43.67 93.87 

90 18.93 34.43 97.78 44.23 94.63 

100 19.59 35.59 97.99 44.79 95.39 

125 20.25 36.75 98.20 45.35 96.15 

150 20.91 37.91 98.41 45.91 96.91 

175 21.57 39.07 98.62 46.47 97.67 

200 15.42 27.23 98.83 41.79 91.43 

225 15.73 29.39 99.05 43.35 93.19 

250 18.72 31.55 99.25 44.91 94.95 

400 20.37 33.71 99.72 46.47 96.71 

600 16.53 28.15 99.72 42.67 92.55 

800 19.18 30.87 99.72 44.23 94.31 

1000 21.43 37.83 99.72 46.63 97.83 

 

Table 3. A summary of previous studies 

 
Ref. Proposed Method ACC (%) 

[14] Deep Convolution Neural Network 96.55 

[15] Deep Neural Network Model 94.22 

[16] Deep Learning 99.63 

[37] Explainable AI 97.58 

[38] Multi-Level fully Convolutional 99.50 

 

The DEA-ELM method was preferred in this study due to 

its high efficiency and speed. ELM offer rapid training and low 

computational demands, making them ideal for large medical 

image datasets. The method achieved an impressive accuracy 

of 99.72% in distinguishing between benign and malignant 

breast cancer cells, thanks to DEA's optimization of hidden 

neurons. This combination leverages the strengths of both 

approaches, rapid training and refined optimization, enhancing 

diagnostic accuracy and enabling early cancer detection. 

Additionally, the approach provides a foundation for future 

research by allowing for the incorporation of supplementary 

datasets and parameter optimization. 

Table 3 summarizes the accuracy (ACC) of various 

proposed methods for breast cancer diagnosis. Notably, the 

highest accuracy reported in this study was 99.72%, which was 

achieved using the DEA-ELM method. This surpasses Raza's 

2023 result of 99.63% with a deep learning approach, 

demonstrating the effectiveness of the DEA-ELM model. 

Other methods, such as Muduli's deep convolutional neural 

network (96.55%) and Tsai's deep neural network model 

(94.22%), show comparatively lower accuracies. Innovative 

approaches like Chakravarthy's Explainable AI (97.58%) and 

Maurya's Multi-Level fully Convolutional (99,50%) highlight 

significant contributions to model interpretability and 

efficiency. Overall, this table emphasizes the high 

performance of the DEA-ELM method in breast cancer 

diagnosis while illustrating the continuous advancements in 

the field, indicating a trend toward achieving higher accuracy 

and improved methodologies. This is crucial for enhancing 

early detection and treatment outcomes. 
 

 

4. CONCLUSION 
 

Accurate classification of breast cancer cells into benign 

and malignant categories is crucial for early diagnosis and 

effective treatment planning. This study's results highlight the 

potential of the proposed DEA-ELM approach in improving 

classification performance for this vital medical task. The key 

findings of this work highlight several essential aspects. 

Firstly, the traditional ELM model achieved a reasonably high 

classification accuracy of 96.53%, indicating the suitability of 

this machine-learning technique for breast cancer cell 

classification. However, the further optimization of ELM 

using the DEA led to a remarkable improvement in the 

classification performance, reaching an accuracy of 99.72%. 

This significant improvement can be attributed to the capacity 

of the DEA to efficiently optimize the number of hidden 

neurons in an ELM, thereby enhancing the model's 

generalization capabilities and robustness. The superiority of 

the DEA-ELM approach over other commonly used machine 

learning techniques, such as Support Vector Machines (SVM) 

and decision trees, underscores the benefits of leveraging the 

strengths of both ELM and DEA algorithms. When combined, 

ELM's rapid training and generalization capabilities with 

DEA's optimization prowess yield a highly accurate and 

efficient classification model for breast cancer cells. One of 

the fundamental advantages of the DEA-ELM method is its 

ability to address the complexities and heterogeneity 

associated with breast cancer. The disease encompasses 

various genetic, environmental, and lifestyle factors, 

contributing to its diverse biological manifestations. The 

DEA-ELM approach is particularly practical in adapting to 

these intricacies by optimizing the ELM's parameters to 

identify subtle differences and patterns between benign and 

malignant cells. This adaptability is crucial for improving 

classification accuracy and ensuring reliable performance 

across varied datasets. Moreover, the DEA-ELM method 

provides a robust framework for medical applications where 

precision and efficiency are paramount. By automating the 

classification of breast cancer cells, the DEA-ELM approach 

reduces the reliance on manual evaluations, which are often 

time-consuming and prone to variability. The rapid processing 

capabilities of DEA-ELM enable the analysis of large-scale 

biopsy samples, streamlining diagnostic workflows and 

reducing the burden on healthcare professionals. This 

efficiency accelerates the diagnostic process and ensures 

consistency and reliability in results, which are critical in 

clinical decision-making. Various factors, including genetic, 

environmental, and lifestyle-related elements influence the 

disease. The DEA-ELM's ability to adaptively optimize the 

ELM parameters likely enables it to capture the intricate 

patterns and subtle differences between benign and malignant 

cells, leading to the observed improvements in classification 

accuracy. 

From a clinical perspective, the high classification 

performance of the DEA-ELM approach has the potential to 

enhance the diagnosis and treatment of breast cancer greatly. 

By automating the cell classification process and achieving 

consistent and reliable results, this method can alleviate the 

subjectivity and variability often encountered in manual 

pathological examinations. Additionally, the rapid processing 

capabilities of the DEA-ELM model can facilitate the analysis 

of large-scale biopsy samples, streamlining the diagnostic 
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workflow and reducing the burden on healthcare 

professionals. This method can reduce the workload of 

pathologists in clinical practice, save time, and reduce human 

errors. It can also increase efficiency in the diagnostic process 

by enabling faster analysis of large-scale biopsy samples. The 

successful application of the DEA-ELM approach in breast 

cancer cell classification suggests the potential for similar 

optimized models to be extended to other cancer types and 

medical imaging modalities, further advancing the field of 

computer-aided diagnosis and personalized healthcare. 

In conclusion, the DEA-ELM method presented in this 

study demonstrates a highly effective and robust approach for 

classifying benign and malignant breast cancer cells. The 

optimization of the ELM model through the DEA has led to a 

significant improvement in classification accuracy, paving the 

way for more accurate and efficient breast cancer diagnosis 

and treatment planning. The findings of this work underscore 

the value of integrating advanced AI and machine learning 

techniques in medical image analysis and highlight the need 

for further research in this promising direction. The proposed 

DEA-ELM method has the potential to be a reliable tool in 

medical diagnoses with its high-performance classification 

capabilities. However, testing this method with different 

datasets and evaluating it in a broader framework would be 

beneficial in terms of the generalizability and robustness of the 

model. 
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