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 Natural calamities like storms and earthquakes can pose a threat to bridges. The main 

technique for finding imperfections in bridges is observing them with unequipped eyes. This 

approach is laborious, risky, and exposes testers to the dangers of falling. Consequently, 

digital bridge inspections are required. Reports of inspection for bridges typically 

concentrate on fractures. Many building materials with fractured surfaces are situated at high 

elevations or over fluid, making them difficult for a bridge inspector to reach. Lack of 

illumination beneath bridges and a complicated visual backdrop might make it more difficult 

for testers to see and quantify cracks. A novel approach Improved Weighed Quantum 

Particle Swarm Optimisation (IWQPSO) with Deep Convolutional Neural Network 

(DCNN) method with Gazebo robot simulators proposed to enhance automated concrete 

surface defect detection in bridge inspections. It makes use of border trading, and stochastic 

change, including predictable initialization. This study proposes an approach for Unmanned 

Aerial Vehicle (UAV) photogrammetry-based bridge inspections regarding communication 

channels. This allows for secure and uninterrupted access to the higher levels of the 

buildings without causing traffic problems. Information is acquired using a unique image 

acquisition procedure that has been systematized and standardized.  
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1. INTRODUCTION 

 

UAVs are aircraft that function without an actual human 

operator present. To convey private information during the 

procedure of aerial surveillance and structural surveillance, 

UAV networks are built and deployed [1]. A novel dynamic 

planning of paths and an obstacle-avoiding technique for 

UAVs have been presented. UAVs are also a practical option 

for business and civil uses. UAVs can be utilized for in-storm 

weather tests, obstacle rescue operations, real-time hazard 

surveillance, and vital infrastructure surveillance [2]. In 

situations where manned helicopters are at present utilized, 

such as field surveillance, getting a bird's-eye view of a 

significant exercise or information incident, determining the 

progression of forests, tracking speeds chase, pursuing fleeing 

lawbreakers, or keeping an eye on the progress of city 

demonstrations, UAVs might be able to provide a low-cost 

alternative [3]. Many of these uses for tiny UAVs necessitate 

that they be able to negotiate in difficult terrain, where routing 

or installation might include a high number of obstacles of 

various sizes or orientations. The context of rescue and search 

operations is one instance when remote vehicle operation 

could be acceptable [4]. Few research has examined 

panoramic image merging for bridge inspection, even though 

many have concentrated on creating computational image 

processing and algorithms for machine learning for 

autonomous hazard diagnosis [5]. Regular monitoring and 

inspections of these kinds of buildings are necessary both 

before and following development [6]. A variety of 

stakeholders, including the shareholders, managers of 

projects, designers, engineers, builders, suppliers, consumers, 

and managers of facilities, frequently inspect the construction 

to monitor and evaluate it. Personality and a large degree of 

heterogeneity in evaluation quality are further characteristics 

of inspection by hand [7]. Certain circumstances could be 

dangerous for people, like a bridge's decking, something that 

is vulnerable to a storm or earthquake, or an examination at an 

elevated level. The needs and difficulties faced by various 

inspection and surveillance tasks vary [8]. Cracks can be found 

manually by observing and evaluating shown in Figure 1. 

Infrastructure inspectors use conventional detection 

techniques to assess the degree of degradation based on their 

expertise. The procedure is time-consuming, laborious, along 

risky. It is necessary to create automatic and impartial 

procedures to circumvent the limitations of the current 

standard approach [9]. UAVs can effortlessly fly near 

connected elements that would be challenging for humans to 

reach. By using the included camera on the UAV, bridge 

cracks may be detected through UAV footage. The recording 

device can be operated remotely from the ground's perspective 

[10]. Finding concrete surface defects during bridge 

examinations is essential to preserving the structural 
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soundness and security of the structures supporting bridges 

[11].  

Infrastructure maintenance, particularly bridge inspections, 

is critical for ensuring public safety and infrastructure 

longevity. Concrete structures, the backbone of many bridges, 

are prone to surface defects such as cracks, spalling, scaling, 

and delamination due to environmental exposure, load stress, 

and aging. Bridge inspections are conducted manually by 

skilled inspectors, but these methods are time-intensive, 

subjective, and prone to human error. Manual inspections can 

pose safety risks, especially in hard-to-reach areas, and are 

often unable to comprehensively cover large bridge structures 

within limited timeframes. Automated defect detection using 

computer vision and machine learning (ML) has emerged as a 

promising alternative, offering scalability, speed, and 

consistent results. Among these, DCNNs are particularly 

effective due to their ability to learn hierarchical features from 

raw image data, achieving state-of-the-art performance in 

many image-based classification and localization tasks.  

The motivation for this work stems from the pressing need 

to enhance the accuracy, efficiency, and reliability of detecting 

concrete surface defects in bridge inspections. Traditional 

manual methods are labour-intensive, prone to human error, 

and often inconsistent, particularly in large-scale or complex 

infrastructures. Automated systems leveraging deep learning 

models, such as DCNNs have shown promise in defect 

detection but face challenges like sensitivity to 

hyperparameters, difficulty handling environmental noise, and 

scalability issues [12, 13].  

The main contributions of this work are: 

Development of the IWQPSO algorithm for efficient 

hyperparameter tuning, leveraging quantum-inspired 

weighted mechanisms for faster and more accurate 

optimization. 

Design and implementation of a DCNN model tailored for 

defect detection in concrete surfaces, incorporating advanced 

feature extraction techniques and regularization strategies. 

Integration of the IWQPSO-DCNN hybrid framework to 

address challenges like defect variability, environmental 

noise, and scalability. 

Extensive evaluation of real-world datasets, demonstrating 

superior accuracy, efficiency, and robustness compared to 

baseline methods. 

 

 

2. PROPOSED SYSTEM 

 

The novel method IWQPSO-DCNN proposed to prevent 

inaccurate information and/or data loss. A systematized and 

standardized recommended image capture technique is used 

for information collecting in this research. Integrating Gazebo 

with UAVs opens up a wide range of possibilities for 

simulating and testing UAV-related algorithms and 

applications [14-16]. Both simulators provide realistic 

environments where UAVs can be virtually deployed, 

allowing researchers and developers to experiment with 

various scenarios without the cost and risk associated with 

real-world testing. In these simulations, users can model 

different types of UAVs, such as quadcopters, fixed-wing 

aircraft, or even hybrid designs, along with their sensors, 

actuators, and control systems. Simulate tasks like navigation, 

path planning, obstacle avoidance, surveillance, and payload 

delivery in diverse environments. Gazebo being open-source 

and highly customizable is widely used in the robotics 

community for simulating UAVs. It offers a rich set of 

features, including physics engines for realistic flight 

dynamics, sensor simulation (e.g., cameras, LiDAR, GPS), 

and integration with Robot Operating System (ROS) for 

seamless development and testing of UAV control algorithms. 

It also supports UAV simulation and offers a user-friendly 

graphical interface for building complex robotic systems. It 

provides a variety of pre-built models and environments, 

making it easier to get started with UAV simulations [16]. 

 

 
 

Figure 1. The overall scheme of the proposed method 

 

Figure 1 depicts the general layout of the proposed strategy, 

which is broken down into three phases. A quick and 

inexpensive Image Capturing and Geo-Tagging (ICGT) that 

can effectively handle intermediary operations was created to 

gather referencing information from photos concurrently [17, 

18]. The proposed system is for rapidly identifying cracks and 

harm recognition in the subsequent phase of crack-damaged 

recognition for offline inspection images. Every image's 

DCNN outcomes are obtained using its geotagged place. To 

create a Global Bridge Damage Map (GBDM), the images are 

immediately projected onto a global location. Machines have 

been implemented for five distinct purposes in the context of 

infrastructure and buildings project inspection and 

observation: (a) preservation inspection; (b) quality control 

during construction examination; (c) Model built; (d) progress 

observation; and (e) security examination.  

 

2.1 Dataset collection 

 

Similar to photogrammetry, visual imaging focuses on the 

collection of images, videos, and other types of visual data. 

Typically, still image cameras, video cameras, smartphones, 

and other devices are used to obtain these. A sample of the 

information gathered and information gathered utilizing a 

UAV equipped with visual imagery technology is shown in 

Figure 2. Data collection within Gazebo involves capturing 

sensor readings, images, and telemetry data generated by the 

virtual UAVs during their missions. Annotations may also be 

added to the data to indicate target objects, waypoints, or other 

relevant information. Gazebo provides a powerful platform for 

generating high-fidelity UAV datasets that can facilitate the 

development and evaluation of robust machine-learning 

algorithms for UAV applications. An investigation showed 

that aerial images obtained from Gazebo through the UAV 

system for pavement fracture inspection were more reliable 
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than those gathered from more conventional sources, such as 

static photos and crack depth measurement instruments [19-

20]. The research used a five-stage inspection process that 

included damage proof of identity, drone-enabled bridge 

evaluation, data inspection, and location risk evaluation. 

 

 
 

Figure 2. Equipment IR-UAV with Gazebo and its sample 

thermal data 

 

2.2 Infrared thermal imaging  

 

Equipment Gazebo with IR-UAV and its sample thermal 

data collected are shown in Figure 3. Due to the disruption of 

heat transfer caused by delamination areas above it will be 

determined to be hotter than similar areas above soundness 

concrete [19]. An infrared camera placed on a low-altitude 

airplane was used to capture thermal images of two concrete 

bridge decks. The underlying defect locations detected by the 

Gazebo with the IRT-UAV system have been verified by 

conventional methods including hammering sound and Half-

Cell Potential (HCP).  

 

 
 

Figure 3. Gazebo with UAV equipment model 

 

Table 1 provides the dataset format and information 

necessary for the development, testing, and validation of the 

creation and inspection of the DIWQPSO-DCNN method. The 

essential elements required for creating and evaluating the 

DIWQPSO-DCNN algorithm are included in the data table 

structure. Table 2 shows the sample data and its description for 

developing the algorithm, every column comprises an image 

sample together with its distinctive characteristics, raw image 

information, defect kind, defect location, seriousness straight, 

metadata, beforehand processed information, recovered 

vectors of characteristics, and real-world labeling [21]. 

 

Table 1. Dataset description 

 
Component Description 

Image ID Unique identifier for each image in the dataset. 

Image data High-resolution images of concrete surfaces captured using drones or cameras 

Defect type Label indicating the type of defect (e.g., crack, spalling, scaling). 

Defect location Coordinates or region in the image where the defect is located 

Defect severity Classification of defect severity (e.g., minor, moderate, severe). 

Metadata Additional information about the images (e.g., date, time, location of capture). 

Pre-processed data Images after preprocessing steps such as normalization, resizing, and augmentation 

Feature vectors Extracted features from images used for training the DCNN. 

Ground truth labels Manually annotated labels used for training and validation 

Training set Subset of the dataset used for training the DCNN, including image data and corresponding labels. 

Validation set The subset of the dataset used for tuning hyperparameters and validating model performance 

Test set Subset of the dataset used for evaluating the final model's performance 

Hyperparameters Parameters optimized using DIWQPSO for the DCNN (e.g., learning rate, number of layers, batch size). 

Performance metrics Metrics used to evaluate the model's performance (e.g., accuracy, precision, recall, F1-score). 

Optimization results 
Results of the DIWQPSO algorithm, including optimal hyperparameters 

 and feature selection outcomes. 

 

Table 2. Sample datasets 

 

Image 

ID 

Image 

Data 

Defect 

Type 

Defect 

Location 

Defect 

Severity 
Metadata 

Pre-processed 

Data 

Feature 

Vectors 

Ground 

Truth 

Labels 

IMG_001 

(image 

data 

binary) 

Crack 
(120, 80, 

150, 100) 
Moderate 

{date: "2024-01-01", 

location: "Bridge 

A"} 

(preprocessed 

data) 

[0.5, 0.3, 

0.8, ...] 
Crack 

IMG_002 

(image 

data 

binary) 

Spalling 
(60, 30, 

110, 90) 
Severe 

{date: "2024-01-02", 

location: "Bridge 

B"} 

(preprocessed 

data) 

[0.7, 0.4, 

0.9, ...] 
Spalling 

IMG_003 

(image 

data 

binary) 

Scaling 
(100, 50, 

130, 70) 
Minor 

{date: "2024-01-03", 

location: "Bridge 

C"} 

(preprocessed 

data) 

[0.6, 0.2, 

0.7, ...] 
Scaling 

IMG_004 (image Crack (140, 90, Severe {date: "2024-01-04", (preprocessed [0.8, 0.5, Crack 
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data 

binary) 

180, 120) location: "Bridge 

D"} 

data) 0.4, ...] 

IMG_005 

(image 

data 

binary) 

Spalling 
(50, 20, 80, 

60) 
Moderate 

{date: "2024-01-05", 

location: "Bridge 

E"} 

(preprocessed 

data) 

[0.3, 0.6, 

0.8, ...] 
Spalling 

IMG_006 

(image 

data 

binary) 

Scaling 
(70, 40, 90, 

70) 
Severe 

{date: "2024-01-06", 

location: "Bridge 

F"} 

(preprocessed 

data) 

[0.5, 0.7, 

0.3, ...] 
Scaling 

IMG_007 

(image 

data 

binary) 

Crack 
(110, 70, 

150, 110) 
Minor 

{date: "2024-01-07", 

location: "Bridge 

G"} 

(preprocessed 

data) 

[0.4, 0.6, 

0.9, ...] 
Crack 

IMG_008 

(image 

data 

binary) 

Spalling 
(80, 50, 

120, 80) 
Severe 

{date: "2024-01-08", 

location: "Bridge 

H"} 

(preprocessed 

data) 

[0.7, 0.8, 

0.6, ...] 
Spalling 

IMG_009 

(image 

data 

binary) 

Scaling 
(100, 60, 

130, 90) 
Moderate 

{date: "2024-01-09", 

location: "Bridge I"} 

(preprocessed 

data) 

[0.5, 0.3, 

0.4, ...] 
Scaling 

IMG_010 

(image 

data 

binary) 

Crack 
(130, 80, 

170, 120) 
Severe 

{date: "2024-01-10", 

location: "Bridge J"} 

(preprocessed 

data) 

[0.6, 0.9, 

0.7, ...] 
Crack 

IMG_011 

(image 

data 

binary) 

Spalling 
(40, 10, 70, 

50) 
Minor 

{date: "2024-01-11", 

location: "Bridge 

K"} 

(preprocessed 

data) 

[0.3, 0.5, 

0.7, ...] 
Spalling 

IMG_012 

(image 

data 

binary) 

Scaling 
(90, 30, 

120, 70) 
Severe 

{date: "2024-01-12", 

location: "Bridge 

L"} 

(preprocessed 

data) 

[0.8, 0.4, 

0.9, ...] 
Scaling 

IMG_013 

(image 

data 

binary) 

Crack 
(120, 90, 

160, 130) 
Moderate 

{date: "2024-01-13", 

location: "Bridge 

M"} 

(preprocessed 

data) 

[0.6, 0.5, 

0.3, ...] 
Crack 

IMG_014 

(image 

data 

binary) 

Spalling 
(60, 40, 90, 

70) 
Severe 

{date: "2024-01-14", 

location: "Bridge 

N"} 

(preprocessed 

data) 

[0.7, 0.3, 

0.6, ...] 
Spalling 

IMG_015 

(image 

data 

binary) 

Scaling 
(80, 20, 

100, 50) 
Moderate 

{date: "2024-01-15", 

location: "Bridge 

O"} 

(preprocessed 

data) 

[0.4, 0.8, 

0.5, ...] 
Scaling 

 

2.3 Data acquisition 

 

An instance of a sensor-embedded Gazebo with UAV and 

the information it collects is shown in Figure 3. The deflection 

of beams was examined using a Gazebo with a UAV system 

equipped with a reflecting prism, whose location was 

monitored by a laser-tracking complete station [22]. The 

ceiling effect aerodynamic examination, developed using the 

use of Computational Fluid Dynamics (CFD) was used to 

optimize the Gazebo with UAV architecture. The Gazebo with 

UAV made use of the effect of the ceiling to its advantage to 

make connections and carry out its surveillance tasks of data 

acquisition is shown in Figure 4. 

Several processes, comprising image extraction, 

preliminary processing, extracting features, and labeling, are 

involved in the information collection method used in the 

development of the IWQPSO-DCNN [21, 22]. 

 

 
 

Figure 4. Sensor embedded in Gazebo with UAV for data 

acquisition based on contact 

 

2.3.1 Image capture 

High-resolution images of concrete surfaces are captured 

using drones or stationary cameras equipped with high-

resolution and thermal imaging capabilities [23-26]. The 

following equation describes the resolution of the captured 

image: 

 

Resolution =
No. of Pixels

Image Area
 (1) 

 
2.3.2 Image pre-processing 

Pre-processing steps are applied to the raw images to 

enhance quality. Normalization, resizing, and augmentation 

were done for pre-processing the data. 

Normalization: 

 

𝑋𝑛𝑜𝑟𝑚(𝑖, 𝑗) =
𝑋(𝑖, 𝑗) − min (𝑋)

max(𝑋) − min (𝑋)
 (2) 

 
where, X(i,j) is pixel (x, y) intensity value; min(X) and max(X) 

are minimum and maximum intensity values in the image. 

Resizing: 

The images are resized to a standard size suitable for the 

DCNN, for example, 256 × 256 pixels. 

Augmentation: 

By applying techniques such as random rotations, flips, 

scaling, and noise addition to the concrete surface images, we 

can generate a more extensive and varied dataset from the 

limited available images. This augmentation helps in 

simulating various real-world conditions and defects, making 

the model more robust and capable of identifying defects 

under different scenarios and lighting conditions [23]. 
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2.4 Feature extraction 

 

Feature extraction is a crucial step in the process of building 

and optimizing machine learning models, particularly in fields 

such as image processing, natural language processing, and 

signal processing.  

Convolution Operation:  

 

𝐹𝑥𝑦 = ∑ ∑ 𝑋(𝑥+𝑚−1)(𝑦+𝑛−1)

𝑁

𝑛=1

𝑀

𝑚=1

. 𝐾𝑚𝑛  (3) 

 

where, X is the input image, K is the convolution kernel (filter) 

of size M × N, and F is the output feature map. 

 

Activation Function (ReLU): 

 

f(x) = max(0, x) (4) 

 

Max Pooling Operation:  

 

𝑃𝑥𝑦 = 𝑚𝑎𝑥𝑚,𝑛𝐹(𝑥+𝑚)(𝑦+𝑛) (5) 

 

where, P is the pooled feature map. 

Labelling: Manual labelling of the images involves 

identifying and categorizing defects such as cracks, spalling, 

and scaling. Each defect is annotated with its location and 

severity [27, 28]. 

Bounding Box Annotation:  

 
(𝑖1, 𝑗1, 𝑖2, 𝑗2) (6) 

 

where, (𝑖1, 𝑗1) and (𝑖2, 𝑗2) are coordinates of the bounding box 

around the defect. 

 

2.5 Dataset structuring 

 

The labelled data is structured into a dataset suitable for 

training and testing the IWQPSO-DCNN.  

Splitting of dataset 

Training Set Size = 0.7 × Total Dataset Size 

Validation Set Size = 0.2 × Total Dataset Size 

Test Set Size = 0.1 × Total Dataset Size 

 

 
 

Figure 5. (a) Acquisition of image; (b) Abutments (A1 and 

A2) and piers (P1 and P2); and (c) deck and bridge location 

Based on the discoveries made by the drones during the 

examination flights, some suggestions are offered for the 

systematization of collecting information for routine visual 

examinations. Certain Gazebo with UAVs might not be able 

to navigate some areas of a bridge, including the area between 

pillars or the elastomeric bearings pad. The bridge's laterals, 

the highest point, and bottom sections ought to be examined. 

Take images of a bridge check, starting with the first abutment 

and going through all of the intermediary columns. The bridge 

placement and flight sequencing will be ascertained by its 

measurements shown in Figure 5. 

 

2.6 Proposed system  

 

The measurement of the crack width in images was based 

on these two techniques. The information used to train the 

crack recognition model included open-source fracture 

information, camera-equipped Gazebo in UAVs, and 

smartphones shown in Figure 6. To ascertain the precision of 

the proposed model and confirm the viability of the proposed 

approach, the depths of the derived outlines were determined 

and contrasted with the real values shown in Figure 7.  

 

 
 

Figure 6. The process of Gazebo with UAV took photos of 

bridge 

 

 
 

Figure 7. Operation of Gazebo with UAV bridge inspection 

 

Figure 8 displays the ICGT's software foundation. During 

the inspection, the ICGT can be started or stopped remotely 

from a station using the command line utility service is part of 

the ROS core tool chain. It should be noted that these two jobs 
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operate concurrently at 5 frames per second to synchronize the 

information from the sensors and the photos [29, 30]. The 

process keeps running cyclically until the central controller 

issues the instruction to "Stop”. 

 

 
 

Figure 8. Process of ICGT software on bridge inspection 

 

2.6.1 Feature points of measurement and planar marker  

The fracture widths in the photos were measured using the 

scale method. Planar markings are difficult to install on 

reinforced concrete structures since the majority of them are 

raised motorways or span rivers. The features of the concrete 

surfaces were measured using a total location, and the 

resulting positions were utilized as a substitute for planar 

markings in the opposite calculation of the spatial distances 

shown in Figure 9.  

 

 
 

Figure 9. Initialization of particle using back-and-forth path 

 

Every particle is first given a random positioning and speed. 

It then moves by updating both the swarm's best position (𝐺𝑘) 

and its best previous position (𝑃𝑘). Let 𝑖𝑘  and 𝑣𝑘 represent a 

particle's location and velocity at generation k, accordingly. In 

the following generations, that particle's velocity and location 

are determined by: 

 

𝑣𝑘+1 ← 𝑤. 𝑣𝑘 + 𝜑1. 𝑟1. (𝑃𝑘 − 𝑖𝑘) + 𝜑2. 𝑟2. (𝐺𝑘 − 𝑖𝑘) (7) 

𝑖𝑘+1 ← 𝑖𝑘 + 𝑣𝑘+1 (8) 

 

where, 𝑟1  and 𝑟2  are selected at random of an identical 

distribution in the interval [0, 1], w is the inertial coefficient, 

𝜑1 is the cognitive coefficient, and 𝑣𝑘 is the social coefficient. 

According to Eqs. (7) and (8), the movement of a particle 

involves a trade-off between traveling in the direction of its 

best prior position, going in the direction of its path, or going 

in the direction of the swarm's optimal position. The 

coefficients of w, 𝜑1 , and 𝜑2 establish the ratio among 

selections. 

 

Algorithm: IWQPSO-DCNN 

A hybrid model of IWQPSO-DCNN was proposed to 

enhance the computerized identification of surface concrete 

faults in bridge inspections. Using the optimized IWQPSO-

DCNN model, the procedure includes feature selection, 

hyperparameter optimization, and fault identification.  

Step 1. Initialization 

{ 

1.1. Particle Initialization: Initialize a swarm of N 

particles, where each particle represents a potential solution 

with a set of hyperparameters and selected features for the 

DCNN. Randomly initialize the position X and velocity 𝑉𝑥  of 

each particle. 

 

𝐼𝑥 = (𝑖𝑥1, 𝑖𝑥2, … , 𝑖𝑥𝐷) (9) 

 

𝑉𝑥 = (𝑣𝑥1 , 𝑣𝑥2, … , 𝑣𝑥𝐷) (10) 

 

where, x = 1, 2, ..., N and D - dimensionality of a number of 

hyperparameters and features. 

1.2. Quantum Initialization: Initialize the quantum 

position Qx for each particle. 

 

 

𝑄𝑥 =
1

√2𝜋𝜎2
𝑒

𝜎−
(𝑖𝑥−𝜇)2

2𝜋2  (11) 

 

} 

Step 2. Fitness Evaluation 

{ 

2.1. Training the DCNN: Train the DCNN model with the 

hyperparameters and features represented by each particle. 

Use the training dataset to perform forward and backward 

propagation. 

2.2. Fitness Function: The fitness function f can be defined 

as the negative of the validation loss or a performance metric 

like accuracy or F1-score. 

 

f(Ix) = Validation Loss (DCNN(Ix)) (12) 

 

} 

Step 3: Update Particle Positions and Velocities 

{ 

3.1. Velocity Update: Update the velocity of each particle 

using the quantum-inspired velocity equation. 

 

𝑉𝑥
𝑡+1 = 𝑤. 𝑉𝑥

𝑡 + 𝑐1. 𝑟1. (𝑃𝑥 − 𝐼𝑥
𝑡) + 𝑐2. 𝑟2. (𝑃𝑥 − 𝐼𝑥

𝑡)
+ 𝑐3. 𝑟3. (𝑄𝑥 − 𝐼𝑥

𝑡) 
(13) 

 

where, w is inertia weight; 𝑐1, 𝑐2, 𝑎𝑛𝑑 𝑐3 are coefficients of 

acceleration; 𝑟1, 𝑟2, 𝑎𝑛𝑑 𝑟3 are random numbers between 0 and 

1; 𝑃𝑥 is local best position; G is global best position. 

296



 

3.2. Position Update:  

Update the position of each particle. 

 

𝐼𝑥
𝑡+1 = 𝐼𝑥

𝑡 + 𝑉𝑥
𝑡+1 (14) 

 

} 

Step 4: Quantum Position Update 

{ 

Quantum Update: Update the quantum position of each 

particle based on the new position. 

 

𝑄𝑥
𝑡+1 =

1

√2𝜋𝜎2
𝑒

𝜎−
(𝑖𝑥

𝑡+1−𝜇)
2

2𝜋2  (15) 

 

} 

Step 5. Iterative Optimization 

{ 

5.1. Convergence Check: Repeat steps 2 to 4 until 

convergence criteria are met  

5.2. Select Optimal Hyperparameters and Features: The 

global best position G represents the optimal hyperparameters 

and feature set for the DCNN. 

} 

Step 6. Final Model Training and Evaluation 

{ 

6.1. Train and evaluate Final DCNN: Train the DCNN 

with the optimal hyperparameters and selected features on the 

entire training dataset. 

} 

The IWQPSO-DCNN method can increase the precision 

and dependability of automatic concrete surface detection of 

imperfections for bridge examinations by implementing this 

method to optimize the hyperparameters and feature choice 

process. 
 

2.7 Crack identification using IWQPSO-DCNN model 

training 
 

A one-stage approach uses packed forecasting, while a two-

stage model uses sparse forecasting. Compared to a one-stage 

model, the prediction results of a two-stage model are sparser 

because a select search is used to choose an established 

amount of areas of interest shown in Figure 10. 

 

 
 

Figure 10. Multi-stage model detector 

 

The fracture is represented by the black line in the centre of 

the image, and the bounding boxes for object detection are 

represented by the black frames [31-33]. The bounding box 

that gave image measurements based on the notion that the 

image's top-left corner is its point of origin is shown in Figure 

11. One might extract the bounding box range and carry out 

image enhancement shown in Figure 12. 

 

 
 

Figure 11. Crack detected by crack 

 

 
 

Figure 12. Bounding box output 

2.8 Inspections form  

 

Other kinds are chosen based on the substance of every 

single bridge element such as the abutment, section, deck, 

wires, parapet/handrail, or pavement must be used to express 

the inspection findings regarding every one of these elements. 

The following categories of substances have been established 

in this study to streamline the process for as long as possible: 

(M) masonry, (REW) reinforced earth walls, (C) concrete, (S) 

metal, and (CB) cables. 

 
 

Figure 13. Image acquisition of Gazebo in UAV (a) first 

abutment (b) pier or column in parallel (c) pier or column in 

cylindrical manner 

 

Figure 13 shows the column inspection done from the 

bottom up and in an anticlockwise direction on every side. To 
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achieve this, a list of the most frequent damages has been 

established, ones that could impact all varieties of building 

materials and components and of which the Gazebo UAV 

operator needs to be aware when conducting the inspection.  

 

 

3. RESULTS AND DISCUSSIONS 

 

Management and autonomous technologies should be 

developed in future studies. Gazebo Robots are also successful 

agents because of their dependability and acceleration, which 

guarantees that the information that stakeholders have access 

to is current and reliable. This information can assist robots in 

autonomously determining the navigational objectives that 

satisfy human needs. 

 

3.1 Indoor test  

 

The first inspection is conducted in an indoor setting and 

restricted to evaluating the LiDAR system when the motorized 

aircraft is stable. The chamber measures 4, 7, and 3 meters in 

width, width, and size, correspondingly. The spaces that 

separate the room's dropping tiles of the ceiling are apparent 

as seen in Figure 14(a)-(e). These gaps have a width of roughly 

2 cm is more than the estimated inaccuracy.  

 

 

 
 

Figure 14. Test results at the initial stage (a) Design the 

platform to generate a point on cloud (b) Point cloud segment 

(c) Segment reference (d) Histogram distance comparison 

and (e) Comparison of a colored segment from segment 

reference based on distance 

 

3.2 Outdoor inspection 

 

The bridge deck was the site of the outside examination. 

Investigators looked for crack deterioration on the 

foundations, the exterior, and the bottom beneath the bridge. 

Figure 15 depicts the overall view of the bridge that is 

undergoing inspections by the Gazebo robot. Figure 16 

displays the recognition outcomes of the IWQPSO-DCNN 

approach, indicating that the mAP attained 92%.  

 

 

 
 

Figure 15. Both of the clouds of points individually 

synchronized with one another 

 

 
 

Figure 16. Model training results by Gazebo robot 

 

3.3 Identification of crack images  

 

The crack detection findings are displayed in Figure 17, and 

the image recognition findings may be categorized into images 

with varying lighting and background noise.  

 

 
 

Figure 17. Crack identification outcome by Gazebo robot 
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Figure 18. Crack recognition outcomes 

 

 
 

Figure 19. Bounding box cropping by Gazebo robot 

 

The IWQPSO-DCNN approach's crack recognition 

outcomes, as shown in Figure 18 unequivocally show that the 

proposed algorithm is capable of identifying cracks in images 

using Gazebo robot. Since there were often three separate 

images per crack in every image when the image annotations 

records were prepared 3 bounding boxes might have been 

produced. A snapshot of the boundary frame characteristics 

and locations indicated by Gazebo robot in Figures 19 and 20. 

The percentage that represents the trust that the observed 

feature is a crack enclosed in boxes. 

Damage M6 is associated with the mineral precipitation in 

joints exhibited a moderate degree of degeneration and a 

minimal amount of extending (some locations approximately 

10–50%). This led to the assignment of risk A2/B2, 

demonstrating that the corrective criteria suggestion relates to 

new, regular checks, the duration of which will depend on the 

bridge's age. Damage C4 or rust stains resulting from a lack of 

protection in architectural encouragement was found on the 

deck and showed signs of mild damage progressing with only 

10% to 50% of the damaged area. Given that the width of the 

rust linear spots was greater than 5 mm, the destruction grade 

was high to extremely high. Two tripod markers were 

positioned as fixed markers in the center of the bridge before 

the drone's flight. Drone flights used these markers as their 

points of reference. The environment was gloomy in the 

morning and bright in the afternoon throughout the 

examination time. 

These different light levels could cause problems for the 

bridge's 3D architecture. The crack dataset is created by 

labeling crack locations on reduced images shown in Figure 

20. To enable automated per-pixel separation of fractures, 

efficient network topologies have been created with the 

geometries of crack separation in consideration shown in 

Figure 20 and Table 3. When in binary format and serialized, 

records are effective for loading large data sets and facilitating 

simple transmission and accessibility [32]. Records make it 

possible to store sequence information in a manner that makes 

it straightforward and effective to import, such as phrase-

encoded information or sequences of time shown in Figure 21. 

In comparison to CNN, DCNN, and RNN, the proposed 

IWQPSO-DCNN method maintains the best accuracy, 

sensitivity, specificity, and Precision shown in Table 4. In 

comparison to existing models, the IWQPSO-DCNN method 

greatly enhances the automated identification of concrete 

imperfections in the surface during bridge inspections, 

yielding greater precision and dependable findings [29-30]. 

 

 
 

Figure 20. Gazebo Robot view in UAV (a) Top view of 

bridge drone image (b) Top view of labeled image (c) 

supporting drone image of the bridge (d) supporting bridge 

labeled image 

 

Table 3. Cracks 

 
Crack  27 Crack  33 Crack  40 

Left X 11 Left X 293 Left X 558 

Top Y 118 Top Y 58 Top Y 93 

Width  337 Width  252 Width  369 

Height  133 Height  369 Height  129 
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Figure 21. Gazebo robot operations on (a) Bridge supporting 

drone image (b) Contours trace (c) Bounding box extraction 

(d) Bridge deck drone image (e) Contours trace drone image 

(f) Bounding box bridge extraction 

 

Table 4. Performance measures 

 

Model Accuracy 
Sensitivity 

(Recall) 
Specificity Precision 

CNN 86.3 83.6 88.0 81.5 

DCNN 90.1 87.2 92.3 85.0 

RNN 84.5 82.1 86.6 79.9 

Proposed 

IWQPSO-

DCNN 

94.2 92.5 95.7 90.8 

 

3.4 Performance measures 

 

In comparison to CNN, DCNN, and RNN, the proposed 

IWQPSO-DCNN system has the greatest F1 score 

demonstrating a solid balance between remembering and 

precision and, consequently, improved overall effectiveness in 

identifying defects shown in Table 5. The proposed IWQPSO-

DCNN system learns the recurring patterns and characteristics 

that correspond to cement imperfections in the surface with the 

maximum precision during training (94.2%), demonstrating its 

excellent performance on the training dataset [24,, 25]. The 

training and validation accuracy is shown in Table 6.  

 

Table 5. Performance measures of F1-score, AUC and MSE 

 
Model F1-Socre AUC MSE 

CNN 82.5 0.88 0.033 

DCNN 86.7 0.92 0.026 

RNN 80.5 0.87 0.036 

Proposed IWQPSO-DCNN 91.3 0.96 0.020 

 

Table 6. Performance measures of training and validation 

accuracy 

 

Model Training Accuracy 
Validation 

Accuracy 

CNN 88.0 86.3 

DCNN 92.0 90.5 

RNN 86.0 84.6 

Proposed IWQPSO-

DCNN 
95.3 94.2 

 

Outperforming CNN, DCNN, and RNN, the proposed 

IWQPSO-DCNN system gets the smallest loss during learning 

(0.120), demonstrating that it successfully minimizes the 

number of errors on its training database. The computerized 

identification of cement surface flaws during bridge 

inspections is greatly improved by including the IWQPSO-

DCNN method offers lower training and validation loss than 

conventional neural network models shown in Table 7.  

 

Table 7. Performance measures of training and validation 

loss 

 

Model 
Training 

Loss 

Validation 

Loss 

CNN 0.231 0.271 

DCNN 0.181 0.211 

RNN 0.251 0.291 

Proposed IWQPSO-DCNN 0.121 0.151 

 

 

4. CONCLUSIONS  

 

The proposed pipeline can potentially be expanded to 

identify failures in structures such as overhead electrical lines 

and railroads. It may additionally adapt and harness the 

benefits of Gazebo Robot in UAVs. The integration of a UAV 

equipped with a Gazebo Robot simulation and utilizing an 

IWQPSO-DCNN significantly enhances automated concrete 

surface defect detection in bridge inspections. This approach 

improves defect detection accuracy, as the combination of 

IWQPSO- DCNN allows for precise tuning of neural network 

parameters, effectively identifying defects such as cracks and 

spalling. IWQPSO offers efficient optimization, improving 

convergence rates and reducing the likelihood of being trapped 

in local minima, common in traditional optimization 

techniques. The Gazebo Robot simulation environment 

enables the testing and validation of the UAV’s navigation and 

inspection capabilities in a realistic yet controlled setting, 

ensuring the system can perform real-time defect detection 

effectively. This combination results in a robust, accurate, and 

efficient solution for bridge inspection and maintenance [33-

35]. 
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NOMENCLATURE 

IWQPSO Improved Weighed Quantum Particle Swarm 

Optimisation  

DCNN Deep Convolutional Neural Network 

UAV Unmanned Aerial Vehicle  

ROS Robot Operating System  

ICGT Image Capturing and Geo-Tagging  

GBDM Global Bridge Damage Map  

HCP Half-Cell Potential  

CFD Computational Fluid Dynamics  
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