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 With the rapid development of ecological agriculture and the increasing demand for 

agricultural product supply chain management, effectively monitoring the quality and 

circulation status of agricultural products has become an urgent issue. Image big data 

technologies, particularly advancements in deep learning and computer vision, offer 

innovative solutions for surface quality detection, analysis, and traceability of agricultural 

products. By precisely estimating surface disparity and analyzing quality, these technologies 

not only improve the efficiency of quality control but also enhance supply chain 

transparency, ensuring the stability of product quality. However, existing image analysis 

methods face significant limitations when dealing with minor surface defects, lighting 

variations, and complex textures. Traditional image processing techniques are less effective 

in these areas, and the application of deep learning is still in the exploratory phase. To 

address these issues, this study proposes a deep learning-based method for surface disparity 

estimation of agricultural products and designs three innovative models: 1) a Convolutional 

Neural Network (CNN) for surface disparity estimation of agricultural products, 2) an end-

to-end deep learning stereo matching model for surface disparity estimation, and 3) a deep 

learning pyramid stereo matching network model for surface disparity estimation of 

agricultural products. These models aim to overcome the shortcomings of current methods 

and enhance the precision and stability of agricultural product image analysis, providing 

more efficient and intelligent technical means for quality control in the agricultural product 

supply chain. 
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1. INTRODUCTION 

 

With the transformation of global agricultural production 

models and the rise of ecological agriculture concepts, 

ecological agricultural products, as an environmentally 

friendly and healthy food choice, have gradually become an 

important part of the market [1-3]. At the same time, the 

complexity of agricultural product supply chains and the high 

demands for quality control have become increasingly 

prominent. How to efficiently and accurately identify and trace 

the quality and circulation of agricultural products has become 

an urgent issue in modern agriculture [4-7]. Image big data 

technologies, especially advancements in computer vision and 

deep learning, provide new ideas for quality detection, 

monitoring, and traceability of ecological agricultural 

products [8, 9]. Through precise analysis of the surface quality 

of agricultural products, it is possible to effectively improve 

the transparency and trustworthiness of agricultural products 

in the supply chain, thus promoting the healthy development 

of the ecological agricultural product market. 

The research on the application of image big data in the 

ecological agricultural product supply chain has significant 

academic and practical value. First, image-based agricultural 

product quality evaluation systems can greatly improve 

detection efficiency and accuracy, reduce labor costs, and 

promote agricultural modernization [10, 11]. Second, image 

big data not only helps enhance the transparency of supply 

chain management but also effectively prevents quality 

problems during transportation and storage, ensuring the 

consistency and stability of product quality. Finally, the 

integration of deep learning and computer vision technologies, 

especially their innovative applications in agricultural product 

surface defects, quality assessment, and other fields, has high 

research value and can provide theoretical support and 

technical guarantees for the intelligent transformation of the 

agricultural sector [12-16]. 

Although some progress has been made in related fields in 

recent years, existing agricultural product image analysis 

methods still have certain limitations. Currently, most 

methods rely mainly on traditional image processing 

technologies, which, although capable of performing certain 

recognition tasks for agricultural products’ appearance, still 

show obvious shortcomings when dealing with complex 

backgrounds, surface disparity, and varying scales [17-20]. 

Especially in identifying minor surface defects, lighting 

changes, and texture complexity in agricultural products, 

traditional methods often fail to provide accurate and stable 

results [21, 22]. The application of deep learning in this field 

is still in its early stages, lacking targeted end-to-end models 

and refined deep learning architectures, which limits the 

further development of agricultural product image analysis. 

This paper mainly addresses the technical bottlenecks in the 
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current agricultural product surface disparity estimation and 

proposes a new image analysis method based on deep learning. 

Specifically, this study focuses on three core areas: First, a 

CNN for surface disparity estimation of agricultural products 

is proposed, which can effectively extract detailed features 

from the surfaces of agricultural products; second, an end-to-

end deep learning stereo matching model is designed to further 

improve the accuracy of detecting surface defects in 

agricultural products; and third, a pyramid stereo matching 

network model is proposed, which enhances the robustness 

and adaptability of the model under different resolutions by 

integrating multi-scale features. Through these innovative 

methods, this paper not only provides a new technical pathway 

for agricultural product quality detection but also lays the 

theoretical foundation and technical support for the intelligent 

management of ecological agricultural product supply chains. 
 

 

2. CNN FOR SURFACE DISPARITY ESTIMATION OF 

AGRICULTURAL PRODUCTS 
 

With the rapid development of ecological agriculture, the 

issue of agricultural product quality detection has become 

increasingly complex and important. Ecological agricultural 

products, due to their natural and pollution-free characteristics, 

usually have high market value and consumer recognition. 

However, the quality standards for ecological agricultural 

products often lack unified specifications, and small defects, 

blemishes, or damages on the surface of agricultural products 

are difficult to efficiently and accurately assess using 

traditional manual detection methods. As the supply chain 

becomes increasingly globalized, agricultural products are 

easily affected by external factors during transportation, 

storage, and sales, leading to inconsistencies in product 

appearance. Therefore, using efficient technical means for 

quality monitoring, especially through image big data 

technologies for precise surface analysis of agricultural 

products, can allow real-time and comprehensive 

understanding of the quality status of agricultural products and 

ensure that each link meets quality standards. This image big 

data-based quality detection method can effectively improve 

detection efficiency, reduce human errors, and ensure the 

stability and consistency of product quality, thus enhancing the 

competitiveness of ecological agricultural products in the 

market. 

Surface disparity estimation, as an important computer 

vision technology, can precisely measure the details of 

agricultural product surfaces, capturing surface defects, 

damages, and other quality issues. Methods based on disparity 

estimation can effectively simulate and reconstruct the three-

dimensional structure of agricultural product surfaces, which 

is of great significance in determining their surface quality and 

defects. Compared with traditional image processing methods, 

deep learning-based surface disparity estimation methods can 

maintain high detection accuracy even under complex 

backgrounds and changing lighting conditions. Deep learning 

technology can automatically learn surface features of 

agricultural products in different states and types from a large 

number of agricultural product images, further improving the 

adaptability and robustness of the detection model. 

 

2.1 Convolutional layer 

 

CNNs have powerful feature extraction capabilities in the 

field of computer vision, allowing them to automatically learn 

the complex textures, color changes, and depth information of 

agricultural product surfaces through multiple convolutional 

operations, capturing subtle morphological features. 

Particularly for ecological agricultural products, their surfaces 

may exhibit natural inhomogeneity, such as the skin texture, 

roughness, and small-scale concave-convex structures of fruits 

and vegetables. CNNs can gradually learn surface information 

at different scales through hierarchical feature extraction 

mechanisms, and, in combination with disparity estimation 

algorithms, construct an accurate three-dimensional surface 

model of agricultural products. Figure 1 shows the schematic 

diagram of the CNN architecture. 

 

 
 

Figure 1. Schematic diagram of CNN architecture 

 

For the task of surface disparity estimation of agricultural 

products, the CNN architecture needs to possess key 

characteristics such as multi-channel feature extraction, 

hierarchical depth matching, and adaptive feature fusion. 

Multi-channel feature extraction ensures that the model can 

capture depth information of agricultural product surfaces 

from different angles and under varying lighting conditions, 

avoiding misjudgments caused by lighting changes in 

traditional 2D image analysis. Hierarchical depth matching, 

achieved by constructing multi-scale convolutional layers, 

allows the model to capture large-scale surface curvature 

while retaining fine local disparity information, enabling 

accurate identification of minor surface defects of agricultural 

products. Adaptive features allow the model to dynamically 

adjust the feature information at different layers, enhancing the 

model's adaptability to complex surface forms, so that the 

detection system can be applied to ecological agricultural 

products of different types and production environments. 

Specifically, suppose the calculated pixel at position (u, k) in 

the f-th output feature layer of the m-th convolutional layer is 

represented by Tfm, with l and v being the size of the 

convolution kernel and yfm being the bias at the current layer. 

The convolution operation output can be expressed as: 
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2.2 Pooling layer 

 

For the task of surface disparity estimation of agricultural 

products, the main goal of the pooling layer is to improve the 

model's sensitivity to important features by removing 

unnecessary details, reducing noise and redundant information 

in the image. Since the surface quality differences of 

agricultural products may be caused by small texture changes 

or slight surface flaws, the pooling layer helps the model 

ignore subtle surface variations and focus on more 

representative regional features, thus avoiding overfitting and 

improving the model's adaptability to image data in complex 

environments. Suppose the resampling factor is represented by 

θfm, the downsampling factor is represented by SU(·), and the 
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bias is represented by yfm. The output of the pooling layer can 

be expressed as: 

 

( ) ( )( ), , , ,m m m m

f f f fo u k j d SUT l v j y= +  (2) 

 

The pooling layer further enhances the performance of the 

surface disparity estimation model for agricultural products by 

using either max pooling or average pooling strategies. Max 

pooling retains the most significant features in the image by 

selecting the maximum value within the pooling window, 

which is particularly effective for capturing prominent defects 

on the agricultural product surface, such as cracks, stains, or 

damage. On the other hand, average pooling calculates the 

average value within the pooling region, integrating more 

regional information to improve the model's stability and 

robustness to local features. In surface disparity estimation for 

agricultural products, this characteristic of the pooling layer is 

particularly important because quality issues on the surface of 

agricultural products often involve changes in local areas. 

Through pooling, the network can better adapt to variations 

under different scales and surface conditions, thereby 

enhancing its overall ability to assess the quality of agricultural 

products. 

 

2.3 Fully connected layer 

 

The surface features extracted progressively through the 

convolutional and pooling layers are mapped into a higher-

dimensional space when they enter the fully connected layer, 

allowing the network to capture complex feature interactions. 

For the task of agricultural product surface disparity 

estimation, the role of the fully connected layer is not just to 

perform a simple weighted sum of features but to integrate 

features from different scales and regions through connections 

with multiple neurons, extracting the correlated features 

between surface depth information and quality. 

To improve the model's stability and generalization 

performance, the fully connected layer typically employs 

Dropout strategies and regularization methods to prevent 

overfitting when handling complex agricultural product 

surface data. Since surface disparity estimation of agricultural 

products involves dealing with various environmental lighting 

and surface texture changes, Dropout helps to effectively 

prevent the network from relying too heavily on specific 

neurons’ feature representations during the training process by 

randomly discarding a certain proportion of hidden layer 

neurons. This enhances the model's robustness to different 

agricultural product samples. 

 

2.4 Regression layer 

 

The regression layer, as the final layer, is primarily 

responsible for predicting the surface depth information of 

agricultural products based on the features extracted and 

integrated by the preceding layers, and outputs numerical 

values that can be used for quality assessment. Since the goal 

of surface disparity estimation for agricultural products is to 

acquire precise surface depth information based on image data 

for identifying surface defects, the regression layer must be 

capable of handling continuous output problems. By 

continuously adjusting the model parameters, the regression 

layer learns the patterns of surface depth distribution of 

agricultural products, improving the sensitivity to small 

surface undulations, depressions, or protrusions, thus 

providing more reliable numerical data for subsequent quality 

assessment. 

In specific agricultural product quality grading or defect 

classification tasks, the regression layer can also combine 

activation functions such as Softmax or Sigmoid for 

discretization, transforming the continuous depth estimation 

results into discrete category labels. For example, the surface 

quality of agricultural products can be categorized into 

multiple levels based on disparity information, such as 

"Normal," "Minor Defect," "Severe Defect," etc. In this case, 

a Softmax layer can be used to compute the probabilities of 

different categories and select the category with the highest 

probability as the final predicted result. Softmax ensures that 

the sum of the probabilities of all categories is 1 and provides 

clear classification boundaries, making the results of 

agricultural product quality detection more intuitive and easier 

to interpret. Suppose the number of labels is represented by j, 

and the Softmax function can be expressed as: 
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Given the input au and parameter q, the probability of output 

label k(bu=k) can be calculated as follows: 
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2.5 Gradient descent and backpropagation 

 

Since the quality detection of agricultural products involves 

complex image features such as texture changes, cracks, stains, 

etc., optimizing the loss function using gradient descent can 

effectively minimize the difference between the predicted 

values and the actual values. In this process, the loss function 

is used to measure the deviation between the model's predicted 

value and the actual value, i.e., the disparity between the depth 

estimation result and the actual surface depth. The goal of the 

network is to reduce this gap through gradient descent. 

Specifically, gradient descent updates the trainable parameters 

of the network in the opposite direction of the loss function 

gradient, enabling the model to gradually adjust its weights 

and biases to more accurately predict the surface depth 

information of agricultural products. The constructed M1 loss 

function is represented as: 
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Backpropagation plays a crucial role in the gradient descent 

process. It uses the chain rule to compute the gradient of each 

neuron layer by layer and propagates the loss backward from 

the output layer to the input layer. This process helps compute 

the gradient of each layer's parameters so that the optimizer 

can adjust the weights and biases in the network, reducing the 

output error. In the task of surface disparity estimation for 

agricultural products, backpropagation efficiently updates the 

parameters of various network layers such as convolutional 

layers, pooling layers, and fully connected layers, enabling the 

model to learn from errors and improve with each training 

iteration, gradually enhancing sensitivity to small surface 

defects of agricultural products. The total discrepancy 
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calculated by backpropagation can be expressed as: 
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2
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3. END-TO-END DEEP LEARNING STEREO 

MATCHING MODEL FOR AGRICULTURAL 

PRODUCT SURFACE DISPARITY ESTIMATION 

 

Ecological agricultural products often exhibit differences in 

appearance, such as lighting, shadows, stains, etc., which can 

affect the extraction of surface features. Traditional methods 

often fail to handle these complex situations. The end-to-end 

deep learning stereo matching model can be trained using 

large-scale image data, providing significant advantages in 

surface disparity estimation for agricultural products. 

Moreover, the stereo matching model can simultaneously 

analyze the structural differences of agricultural product 

surfaces from two perspectives, providing more accurate depth 

estimation results. Figure 2 shows the grid structure of the 

constructed end-to-end deep learning stereo matching model. 

 

 
 

Figure 2. Grid structure of the constructed end-to-end deep 

learning stereo matching model 

 

3.1 Feature extraction 

 

In the end-to-end deep learning stereo matching model for 

agricultural product surface disparity estimation, the principle 

of feature extraction mainly relies on a twin network structure 

with weight sharing. This structure effectively extracts the 

depth information of agricultural product surfaces through the 

feature sharing channels of the left and right views. The 

principle is shown in Figure 3. Specifically, the input consists 

of the observed left and right images of the agricultural 

product surface. To better capture the disparity information, 

the network uses a CNN for feature extraction. Since the 

surfaces of agricultural products exhibit various complex 

geometric variations, textures, and fine defects, traditional 

convolution operations may not be able to capture these local 

details well. Therefore, the feature extraction process adopts 

dilated convolutions and feature pyramid networks to expand 

the receptive field of the convolutional kernels, allowing the 

network to focus on both large-scale background information 

and small-scale surface details. 

To further enhance the robustness of feature extraction and 

reduce the interference of background noise, spatial pyramid 

pooling is applied during the feature extraction process. 

Spatial pyramid pooling extracts features at different spatial 

scales through pooling operations of varying sizes, which 

helps capture local variations and overall structures on the 

agricultural product surface. In addition, although using 

lightweight structures (such as depthwise separable 

convolutions) helps improve computational efficiency, it may 

also lead to a loss in feature resolution. Therefore, when 

designing the network, a balance between lightweight 

architecture and feature extraction capability must be 

considered to ensure the network provides sufficient resolution 

to accurately capture the fine defects and imperfections on the 

agricultural product surface while maintaining efficiency. This, 

in turn, improves the final disparity estimation accuracy. 

 

 
 

Figure 3. Principle of feature extraction in the constructed 

end-to-end deep learning stereo matching model 

 

3.2 Cost volume construction 

 

In traditional stereo matching, the cost volume is usually 

constructed by matching features from the left and right 

images within different disparity ranges and calculating the 

cost value for each pixel. For agricultural product quality 

detection, since the surface has various subtle differences, 

efficiently handling these differences and generating accurate 

depth maps is especially important. In deep learning models, 

the construction of the cost volume typically involves 

extracting high-dimensional features from the images and then 

misaligning these features along the disparity dimension, 

ultimately forming a high-dimensional cost volume. This type 

of cost volume can preserve rich contextual and geometric 

information at each pixel location, thus improving sensitivity 

to complex surface features. Specifically, let the dot product 

be represented by IN, the extracted left image features be 

represented by dm, the extracted right image features be 

represented by de, the number of feature channels be 

represented by Vz, the pixel location in pixel coordinates be 

represented by (a, b), and the corresponding disparity value for 

the pixel location be represented by f. The final cost volume 

can be expressed as a G×Q×F cost volume, where G represents 

the length of the cost volume, Q represents the width of the 

cost volume, and F represents the maximum disparity value. 

The cost volume based on layers is represented by the 

following formula: 
 

( ) ( ) ( )
1

, , , , ,CO m e

z
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V

=  −   (7) 

 

Let the cascading operation be represented by CC, and the 

cost volume by DN. The 3D cost volume expression is given 

by the following formula: 
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( ) ( ) ( ), , , , , ,CO m eZ a b f CC d a b d a f b• =  −   (8) 

 

In practical applications, the deep learning stereo matching 

method using a 4D cost volume is more suitable for 

agricultural product surface disparity estimation tasks. In this 

method, the cost volume not only considers the spatial features 

of the left and right images but also misaligns and concatenates 

these features along the disparity dimension, thereby obtaining 

more accurate depth estimation. The 4D cost volume can 

effectively preserve more geometric information, especially 

when the agricultural product surface has irregular undulations, 

texture changes, and occlusions. The 4D cost volume can 

provide more contextual information about surface details. For 

example, small protrusions or depressions on the agricultural 

product surface can be accurately matched using this high-

dimensional cost volume, improving the accuracy of disparity 

regression. Through end-to-end training, the model can 

automatically learn from large-scale agricultural product 

image data and gradually optimize the construction of the cost 

volume to better identify different types of defects in quality 

detection. 

 

3.3 Disparity regression 

 

In the constructed model, disparity regression is set to 

accurately estimate the depth information of input image data 

and generate detailed disparity maps. The disparity map 

reflects the depth information of each pixel in the image, as the 

surface of agricultural products often exhibits subtle 

undulations and variations, which directly impact quality 

assessment. There are two common methods for disparity 

regression: argmin operation and softargmin operation. In the 

traditional argmin operation, the model selects the disparity 

with the minimum cost as the final output, using a "winner-

takes-all" strategy. However, this method may not handle 

small variations on complex surfaces well, as it only returns 

the disparity value with the smallest cost, ignoring other 

potential disparity candidates. This is not precise enough for 

estimating the fine details of agricultural product surfaces. Let 

the predicted disparity be represented by 𝑓, the cost volume be 

represented by Z(a,b,f), and the disparity by f, then the 

expression is: 

 

( )
^

, ,ff ARGMIN Z a b f=  (9) 

 

In contrast, the softargmin operation has been widely used 

in deep learning stereo matching tasks, especially for 

agricultural product surface disparity estimation. It first 

calculates the probability distribution of different disparity 

values through the softmax operation, which is between 0 and 

1, representing the likelihood of each disparity value. Then, it 

uses these probability values to perform a weighted sum of the 

disparities, resulting in the final disparity output. The 

advantage of this method is that it not only considers the 

disparity with the minimum cost but also integrates the 

possibilities of other candidate disparities, preserving more 

information about the geometry and texture of the agricultural 

product surface. The final output disparity value can be 

obtained by performing the weighted sum of the disparity 

values and their corresponding probabilities: 
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4. DEEP LEARNING PYRAMID STEREO MATCHING 

NETWORK MODEL FOR AGRICULTURAL 

PRODUCT SURFACE DISPARITY ESTIMATION 

 

End-to-end deep learning stereo matching models are 

typically optimized directly from raw images to disparity map 

outputs through end-to-end learning. This type of model has 

strong global feature learning capabilities and can 

automatically extract and optimize relevant features from the 

images. However, when faced with surface details of 

agricultural products, especially in situations with complex 

lighting changes, surface textures, and small-scale defects, 

challenges may arise. This is because end-to-end models tend 

to optimize performance globally, potentially neglecting 

certain details, which can lead to insufficient accuracy when 

processing fine surface defects. On the other hand, pyramid 

networks provide stronger adaptability in multi-scale feature 

processing. Particularly when dealing with the diverse defects 

of agricultural product surfaces, the pyramid structure can 

refine the localization and estimation of small surface changes 

through disparity maps at different scales, effectively 

improving the robustness and accuracy of agricultural product 

surface quality detection. The loss function defined for the 

model is as follows: 
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, M u uM f f SO f f
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In the disparity computation process, the pyramid stereo 

matching network uses 3D CNNs to regularize the 4D cost 

volume, improving the stability of disparity matching. Unlike 

fixed 3D convolution layers and hourglass structures, the 

pyramid stereo matching network can adjust features on the 

cost volume at different scales, making the model more 

flexible in handling complex backgrounds, lighting changes, 

and local occlusions. For example, when detecting diseases on 

the surface of ecological agricultural products, some subtle 

lesions may be difficult to identify on a disparity map at a 

single scale. However, the pyramid model can leverage multi-

scale information, making the depth information of the 

diseased areas clearer. During the disparity regression phase, 

the pyramid network typically employs the softargmin method, 

calculating the probability distribution of different disparity 

values through the softmax operation and performing a 

weighted sum to obtain a smoother and more accurate 

disparity map. The disparity estimation results can be 

expressed as: 
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5. EXPERIMENTAL RESULTS AND ANALYSIS 

 

In this study, Figure 4 shows the training performance of 

four different models under different loss function values and 

accuracies. First, by observing the changes in the loss function 

values, the model in this paper and the PointNet model exhibit 

similar decreasing trends in loss function values. Both models 
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show a gradual decrease in the loss function values during 

training, eventually reaching relatively low values, around 

0.11 to 0.12. This indicates that they optimize well and 

maintain stability during the training process. In contrast, the 

YOLOv9-DSM model shows a relatively smooth decrease in 

the loss function, but the improvement slows down in the later 

stages of training, and its loss value remains relatively high, 

reaching a minimum of 0.19. The StereoNet model shows a 

slower decrease in loss value and fluctuates significantly 

throughout the training process. Regarding accuracy, both the 

PointNet and the model in this paper performed excellently in 

the later stages of training, maintaining a high and stable 

accuracy around 0.98-0.99, indicating their strong 

performance in agricultural product surface disparity 

estimation. The accuracy of the YOLOv9-DSM model and the 

StereoNet model fluctuated. Although they could also achieve 

high accuracy during training, their stability was not as strong 

as that of the model in this paper and PointNet. 

 

 
(1) Loss Function Value 

 
(2) Accuracy 

 

Figure 4. Training performance of different models 

 

In Table 1, the performance differences between the model 

in this paper and the other three comparison models on the test 

set are significant. First, the model in this paper has a 

substantially higher number of layers, reaching 158 layers, far 

exceeding the 8 layers of YOLOv9-DSM, 15 layers of 

StereoNet, and 17 layers of PointNet, indicating a more 

complex and deeper network structure. Despite this, the model 

in this paper shows a relatively low test set loss of 0.168, 

second only to PointNet at 0.142, while achieving a test set 

accuracy of 0.986, close to the highest value of 0.988 for 

StereoNet. Moreover, the number of trainable parameters in 

this model is similar to StereoNet, and is only a quarter of 

YOLOv9-DSM, while its FLOPs are significantly lower than 

the other models, particularly much lower than PointNet and 

StereoNet. This indicates that, despite its complex structure, 

the proposed model is relatively efficient in terms of 

computational resource consumption. 

 

Table 1. Grid parameters 

 

Grid Type 
YOLOv9-

DSM 
StereoNet PointNet 

The Proposed 

Model 

Number of Layers 8 15 17 158 

Test Set Loss 0.178 0.163 0.142 0.168 

Test Set Accuracy 0.951 0.988 0.978 0.986 

Trainable 

Parameters Count 
6.2×107 1.5×107 1.1×107 1.5×107 

FLOPs 3.6×109 8×109 9.4×109 1.9×109 

 

 
 

Figure 5. Loss and recognition accuracy of the model in 

training and validation over iterations 

 

As shown in Figure 5, during the training and validation 

process, the model in this paper exhibits stable and significant 

improvement in both training set loss and accuracy. Regarding 

the change in training set loss, as the number of iterations 

increases, the loss value gradually decreases, quickly dropping 

from 0.8 to around 0.14. This indicates that the model is 

continuously optimizing and gradually converging during 

training. For the training set accuracy, as training progresses, 

the accuracy continuously increases from an initial 77% to 

over 99%, demonstrating the model’s good fitting ability on 

the training set. The performance on the validation set is also 

stable, with the validation set loss decreasing from 2.47 to near 

0.1, and the validation set accuracy increasing from 43% to 

nearly 100%, indicating that the model's generalization ability 

on the validation set gradually strengthens and ultimately 

achieves near-perfect recognition performance. Especially 

when the validation set accuracy reaches 1.0, this shows the 

model’s high accuracy in agricultural product surface disparity 

estimation tasks. 

In the experiments in this paper, the performance of 

different models in the agricultural product surface disparity 

estimation task was compared, validating the effectiveness and 
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reliability of the proposed method. First, the training and 

validation results show that the integrated method based on 

CNNs, deep learning stereo matching models, and pyramid 

stereo matching networks significantly improves the model’s 

learning and generalization capabilities. The training set loss 

decreased from an initial 0.8 to around 0.14, and the validation 

set loss dropped from 2.47 to near 0.1, indicating good 

convergence during both the training and validation phases. 

Meanwhile, the training set accuracy increased from 77% to 

over 99%, and the validation set accuracy rose from 43% to 

nearly 100%, demonstrating the model’s high accuracy and 

stability in agricultural product surface disparity estimation 

tasks. Furthermore, the visualization results in Figure 6 show 

that the model mapped high-dimensional semantic 

information of the four agricultural product quality states in 

the test set, clearly demonstrating the separability of the data 

samples. This result further verifies that the disparity sample 

data for different agricultural product quality states is 

separable and has distinct class features before being input into 

the classification network for quality state classification. This 

not only proves the feasibility and reliability of using surface 

depth information for quality state recognition of agricultural 

products but also provides insights for further model 

optimization by analyzing typical error samples. This indicates 

that the deep learning-based image analysis method proposed 

in this paper has significant application potential and practical 

value in agricultural product surface disparity estimation and 

quality state classification tasks. Figure 7 gives some 

agricultural product surface disparity estimation examples. 

 

 
(1) Three-dimensional space                                                        (2) Two-dimensional space 

 

Figure 6. Dimensionality reduction visualization of agricultural product surface disparity estimation 

 

 
 

Figure 7. Examples of agricultural product surface disparity estimation 

 

 

6. CONCLUSION 

 

This paper addresses the technical bottlenecks in 

agricultural product surface disparity estimation by proposing 

a new image analysis method based on deep learning, aimed 

at improving the detection accuracy and robustness of 

agricultural product surface defects. The research mainly 

includes three aspects: First, a CNN for agricultural product 

surface disparity estimation is proposed, which efficiently 

extracts detailed features of the agricultural product surface, 

providing strong support for subsequent defect detection. 

Second, an end-to-end deep learning stereo matching model is 

designed, which further enhances the detection capability of 

agricultural product surface defects and optimizes the 

accuracy of disparity estimation in traditional methods. Finally, 

a pyramid stereo matching network model is proposed, which, 

through the fusion of multi-scale features, enhances the 

model's adaptability and robustness at different resolutions, 

effectively solving the problem of feature extraction in low-

resolution images. Experimental results show that the 

proposed method demonstrates significant performance 

improvements on both the training and validation sets, 

especially in the accuracy of agricultural product surface 

disparity estimation, reaching near-perfect levels, validating 

the method's effectiveness and feasibility. 

Overall, the research in this paper has important application 
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value, particularly in the agricultural field for agricultural 

product quality inspection and automated sorting. Through 

high-precision surface defect detection and quality state 

classification, this method is expected to play a key role in 

improving agricultural product production efficiency, 

reducing human intervention, and enhancing the accuracy of 

quality inspection. However, there are certain limitations in 

this study. First, although the model performs well on the 

experimental dataset, its generalization ability still needs 

further validation, especially in diversified and complex real 

agricultural environments. Second, the computational 

resources required for model training are relatively large, 

which may pose some cost pressure for practical applications. 

Future research directions can focus on the following aspects: 

First, exploring the model's adaptability and robustness on 

more diverse datasets to enhance its generalization ability in 

real production environments. Second, optimizing the model's 

computational efficiency and reducing reliance on hardware 

resources to enable application on lower-cost devices. Finally, 

multimodal fusion with other types of sensor data can be 

considered to further improve defect detection and quality 

assessment accuracy and reliability. 
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