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 Timely and precise identification of breast cancer (BC) is essential for enhancing patient 

results. This work investigates the capacity of deep learning to automate the categorization 

of BC using mammogram images. Our proposal involves using transfer learning with a 

customized Inception v3 architecture. This method utilizes pre-trained characteristics to 

tailor the model to the particular mammogram domain. Next, modified the last layers of the 

network and refined it using a mammogram dataset for classification. We assess the efficacy 

of our adapted Inception v3 model on a standard mammogram dataset, contrasting it with 

other deep learning structures and conventional machine learning techniques. The suggested 

technique demonstrates higher accuracy, sensitivity, and specificity in distinguishing normal 

and malignant breast tissue when compared to other approaches. This modified Inception 

v3 architecture has the capacity to strengthen the effectiveness in addition to the precision 

of breast cancer screening, eventually resulting in improved patient care. The proposed work 

is evaluated in comparison to other existing methodologies, including Inception v3, 

Inception v2, and VGG 16 and 19. The proposed modified Inception v3 model achieves 

96.1% which is comparatively higher than the other methods. 
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1. INTRODUCTION 

 

Utilizing computer-aided detection (CAD) technologies for 

early mammogram detection may enhance treatment results 

and increase survival rates for breast cancer patients. 

Conventional CAD software depends on manually identified 

features, which have limitations. Hand-crafted features are 

sometimes peculiar to a particular field and the process of 

designing them may be laborious, challenging, and not easily 

transferable. 

CAD methods enhance early breast cancer identification 

and treatment results; nevertheless, conventional CAD 

depends on human-designed features that are frequently 

arduous, domain-specific, and challenging to transfer between 

datasets. Progress in deep learning, specifically the 

Convolutional Neural Networks (CNNs), provides a more 

effective method for the automatic extraction of information 

from medical images. 

The development of a cancer tumor is attributed to the 

unregulated growth and division of cells, which subsequently 

invade and spread into the surrounding tissues within the 

human body [1]. The Convolutional Neural Network (CNN) is 

applied as another approach for extraction of features from the 

image directly [2]. CNN has excelled in several picture 

classification challenges. CNN has been used in medical 

picture categorization using the three primary methods. 1) 

Training a CNN from the beginning 2) Use of feature 

extraction 3) Adjusting a pre-trained model on images [3]. 

One effective transfer learning approach involves pre-

training network parameters on source data, applying these 

parameters to the target domain, and then fine-tuning the 

network for improved performance. A methodology for 

locating and organizing multi-class breast cancer based on 

transfer learning has been suggested and put into practice in 

this scenario. The suggested model has two primary 

components [4]. The first component has six primary phases 

intended to improve the level of quality of the breast images. 

And second component is a hybrid deep learning algorithm 

that includes pre-trained CNN like VGG16 is used to transmit 

its acquired features to the mammogram classification [5]. 

Nonetheless, deficiencies persist in the diagnosis of multi-

class breast cancer, especially with transfer learning. This 

research introduces an innovative methodology that improves 

image quality and utilizes a pre-trained CNN Modified 

Inception v3 for enhanced multi-class breast cancer 

classification. 

 

 

2. RELATED WORK 

 

Ting et al. [6] introduced a deep Convolutional Neural 

Network (CNN) with 28 unseen layers to classify breast cancer 

lesions. The model achieved 89% sensitivity, 91% accuracy, 

and 911% specificity by using feature-wise data augmentation. 

Togacar et al. [7] created BreastNet, a sophisticated 

architecture including convolutional, pooling, dense blocks 
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and residual which achieved a superior accuracy of 98.80% 

compared to AlexNet, VGG-16, and VGG-19 models. 

Abbas [8] which contains a few steps for acquiring 

characteristics, transforming them into deep features, and 

training the features to make the ultimate selection. The model 

underwent testing using the MIAS dataset, resulting in a 

sensitivity of 92.1%, accuracy of 93.5%, specificity of 84.2%, 

and an AUC of 0.94. The findings indicate the design serves 

as an efficient tool for breast cancer categorization. 

In their approach, Sha et al. [9] integrated two deep learning 

methods: CNNs, which are successful in image processing 

tasks, and the Grasshopper Optimization Algorithm, which is 

inspired by optimization methods found in nature. They 

showed remarkable performance with sensitivity, specificity, 

and accuracy rates of 97.5%, 94.3%, and 96.1%, respectively. 

Lotter et al. [10] developed a model tailored for multi-class 

breast cancer categorization. ResNet50 is a generally utilized 

deep learning model renowned for its efficacy in image 

recognition. The system demonstrated remarkable 

performance with a sensitivity of 95.6%, showing its 

capability to reliably identify genuine positive instances. The 

specificity was reported as 95.8%, indicating its ability to 

accurately detect genuine negatives and reduce false positives. 

The AUC value of 0.93 indicates good discriminative power 

and overall efficacy in classification. 

Cao et al. [11] achieved notable progress in TL for BC by 

not fine-tuning the source network layers. They focused on 

using ResNet-125, a deep neural network architecture, without 

modifying or fine-tuning its layers. Their technique was 

assessed using the "ICIAR 2018" dataset, a widely used 

benchmark dataset for testing medical images. Cao et al. [11] 

significantly improved an accuracy rate of 83.79% with their 

methods. 

Deniz et al. [12] made modifications to the last few layers, 

and the assessment was performed on the BreaKHis dataset, 

which is widely utilized for diagnosing breast cancer. The 

model they created had an accuracy rate of about 91.37%. The 

fine-tuning strategy improved the AlexNet and VGG16 

models' classification performance. 

Celik et al. [13] used the DenseNet-161 model to implement 

a pre-training approach to improve classification accuracy. 

The author used the pre-trained DenseNet-161 model, which 

was previously trained on a huge dataset, and optimized it for 

the particular objective of classifying breast tumors using the 

BreaKHis dataset. They obtained an F-score of 92.38% and an 

accuracy of 91.57% with their excellent efforts. Table 1 

illustrates the comparison of existing work. This study aims to 

automatically extract the afflicted patch by segmentation, 

decrease training time, and enhance the performance of 

classification. 

 

Table 1. Comparison of existing work 

 
Author Methodology Advantages Disadvantages 

Ting et al. [6] 

Implemented a deep convolutional 

neural network of 28 novel layers, 

employing feature-wise data 

augmentation for breast cancer 

classification. 

High sensitivity (89%), accuracy 

(91%), and specificity (91.1%) are 

attributed to deep learning networks 

and data augmentation. 

Overfitting and higher computing 

expenses are possible outcomes of the 

28-layer CNN's complexity. 

Togacar et al. [7] 

BreastNet, a complex architecture that 

outperformed VGG-16, VGG-19, and 

AlexNet thanks to its convolutional, 

pooling, dense block, and residual 

components. 

Enhanced precision (98.80%) and 

increased efficiency via architectural 

design. 

Increased computational complexity 

resulting from several blocks and 

residual components. 

Abbas et al. [8] 

Employed methodologies for feature 

capture, conversion into deep features, 

and classification, evaluated on the 

MIAS dataset. 

Highly accurate categorization 

technique with an efficiency of 93.5%, 

sensitivity of 92.1%, and specificity of 

84.2%. 

Reduced specificity relative to other 

models, signifying an elevated false 

positive rate. 

Sha et al. [9] 

Integration of Convolutional Neural 

Networks (CNNs) with the 

Grasshopper Optimization Algorithm 

(GOA) for breast cancer diagnosis. 

Exceptional sensitivity (97.5%), 

specificity (94.3%), and accuracy 

(96.1%) are attributable to nature-

inspired optimization. 

Integrating GOA with CNN may 

augment the model's complexity and 

prolong the training duration. 

Lotter et al. [10] 

Created a ResNet50-based model to 

categorize breast cancer into multiple 

classes and assessed its performance on 

multi-class datasets. 

High sensitivity (95.6%), specificity 

(95.8%), and an AUC of 0.93 indicate 

excellent discriminative capability. 

ResNet50 may necessitate fine-tuning 

and substantial datasets for optimal 

efficacy. 

Cao et al. [11] 

Employed ResNet-125 without fine-

tuning the source network layers, 

evaluated on the ICIAR 2018 dataset. 

Achieved moderate accuracy (83.79%) 

without any modifications or fine-

tuning of the model. 

Low accuracy relative to models that 

incorporate fine-tuning, demonstrating 

reduced flexibility to breast cancer 

pictures. 

Deniz et al. [12] 

Optimized AlexNet and VGG16 

models, evaluated on the BreaKHis 

dataset for breast cancer diagnosis. 

Fine-tuning enhanced classification, 

attaining 91.37% accuracy. 

The fine-tuning methodology may 

necessitate substantial data and 

computational resources. 

Celik et al. [13] 

Employed DenseNet-161 with pre-

training and fine-tuning on the 

BreaKHis dataset to enhance 

classification accuracy. 

Attained a high F-score of 92.38% and 

an accuracy of 91.57% utilizing a 

robust pre-trained model. 

DenseNet-161 necessitates substantial 

computational resources and data for 

optimal efficacy. 

 

 

3. PROPOSED WORK 

 

The approach for detecting and classifying breast cancer has 

two primary components. The first component is for 

preprocessing the picture, while the subsequent one is 

employed for transferring the CNN parameters [14]. Figure 1 

displays the intricate structure of the proposed work. 
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Figure 1. Proposed workflow 

 

3.1 Image preprocessing 

 

Image preprocessing is crucial in mammogram detection to 

improve image quality and ready it for precise analysis by 

CAD systems. Here are some essential stages. 

 

 
 

Figure 2. Levels of data preprocessing 

Before the learning process is initiated, segmentation 

methods can be used to clearly auto detect the tumor areas. To 

cut down computing time, this is done. The enhancement of 

image visibility and the improvement of segmentation 

accuracy can be achieved by reducing background noise, 

equalization of histograms, and morphological analysis 

techniques prior to segmentation. Figure 2 illustrates that data 

preparation involves seven steps. 

 

3.1.1 Noise removal 

Mammograms can be affected by variety of noises, such as 

gaussian, speckle, salt-and-pepper noise. This noise may 

diminish the efficacy of classification methods. Using a 2D 

median filter may efficiently eliminate noise while retaining 

crucial information for categorization. Figure 3 displays the 

picture after the implementation of a 2D median filter. 

 

 
 

Figure 3. Normal vs noise removed image 

 

Let Imed(x,y) represent the intensity of the same pixel after 

applying a 2D median filter. The 2D median filter analyzes a 

square or rectangular neighborhood positioned in the middle 

of each pixel. Define Nx,y as the nXn neighborhood centered at 

pixel (x,y). The median value, denoted as Imed(x,y), is calculated 

as the median of pixel intensities in the neighborhood Nxy. 

Mathematically, the computation of Imed(x,y) can be represented 

in Eq. (1) as follows: 

 

𝐼𝑚𝑒𝑑(𝑥,𝑦) = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑁𝑥𝑦) (1) 

 

Algorithm 1: 2D median filter for noise removal 

1) Input: load the mammogram image as a grayscale image 

I(x,y) 

2) Define Kernel Size: Determine the size of the square or 

rectangular neighborhood (kernel) around each pixel. 

Common choices include 3×3, 5×5, or 7×7 kernels, but the 

size can vary depending on the specific application and desired 

filtering effect. 

3) Initialize Output Image: Generate a blank output image 

matrix with dimensions identical to the input picture to store 

the filtered image. 

4) Iteration: Perform an iteration over every pixel’s 

intensity (x, y) in the input image. 

5) Apply Median Filter: 

i. For each pixel location (x, y), define a neighborhood Nxy 

centered at that pixel, with a size determined by the kernel size. 

ii. Collect the intensity of pixels in the surrounding area Nxy. 

iii. Sort the intensity of pixels in ascending order. 

iv. Determine the sorted pixel's median value. If the 

neighborhood's pixel count is even, take the average of the two 

intermediate values. 

v. The computed median value is assigned to the equivalent 

pixel location in the output image. 

6) Output: The resulting output image is the filtered image 

obtained after applying the 2D median filter to the input 

mammogram image. 
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3.1.2 Contrast enhancement 

Histogram equalization (HE) is a prevalent method for 

improving picture contrast, often used in image processing, 

including mammograms. It adjusts the intensity levels of the 

picture to cover the whole dynamic range, improving contrast 

and making the image more visually attractive and simpler to 

analyze [15]. Figure 4 displays the original picture beside the 

image with contrast enhancement achieved using histogram 

equalization. 

 

 
 

Figure 4. Contrast enhancement using HE 

 

Algorithm 2: Histogram equalization for Contrast 

Enhancement 

Input: The variable I(x, y) represents a grayscale 

mammogram image. The pixel values in this image range from 

0 to L-1. The variable L represents the number of intensity 

levels, which is typically set to 256 bits. 

Output: g(x, y)-Contrast-enhanced mammogram image 

1) Calculate Histogram H(k): Histogram of image I, 

where, H(k) represents the number of pixels with intensity k 

(0≤k≤L-1) 

2) Normalize Histogram n(k): The normalized histogram 

represented in Eq. (2), obtained by dividing H(k) by the overall 

pixel (M×N): Where M and N are the image height and width. 

 

𝑛(𝑘) =
𝐻(𝑘)

𝑀 × 𝑁
 (2) 

 

3) Calculate Cumulative Distribution Function (CDF): 

p(k): CDF of the normalized histogram, representing the 

probability of finding a pixel with intensity less than or equal 

to k, shown in Eq. (3): 

 

𝑝(𝑘) = ∑ 𝑛(𝑖)

𝑘

𝑖

 (3) 

 

4) Map Intensities To New Values: g(x, y) equalized 

image with enhanced contrast, represented in Eq. (4): 

 

𝑔(𝑥, 𝑦) = 𝐿 − 1 ∗ 𝑝(𝐼(𝑥, 𝑦)) (4) 

 

3.1.3 Morphological analysis 

 

 
 

Figure 5. Original vs morphological mammogram image 

 

Morphological analysis is a crucial step in eliminating non-

breast areas prior to segmentation to ensure the accuracy of the 

findings. By applying the structural element (SE) to the input 

image, the necessary structures may be extracted during 

morphological operations. The resulting image obtained from 

this process retains the exact identical dimensions of the 

original input image displayed in Figure 5. The value of each 

pixel is based on the value of the pixel next to it and the value 

of the same pixel in the input picture. 

 

Algorithm 3: Morphology Analysis 

1) Set Representation: Every pixel in the mammogram is 

represented as a binary value (0 or 1), with 0 for black and 1 

for white. The entire image is considered as a binary set X, 

where each element corresponds to a pixel. 

2) Structuring Element: This is a small binary image 

defining the shape used for morphological operations. For 

instance, a 3×3 square with all ones represents a square SE. 

The size and shape of the SE significantly impact the outcome 

of operations. 

3) Erosion: Erosion shrinks objects in the image by 

removing pixels that don't touch the SE when placed at every 

pixel location in X. Mathematically, erosion of set X by SE B 

(denoted as X⦵B) is defined in Eq. (5), where 𝐵𝑋  is the 

shifted version of B placed at pixel x. 

 

𝑋⦵𝐵 = {𝑋𝜖𝑋|𝐵𝑋 ⊆ 𝑋} (5) 

 

4) Dilation: Dilation expands objects by adding pixels that 

touch the SE when placed at every pixel location in X. 

Mathematically, dilation of set X by SE B (denoted as X⊕B) 

is defined in Eq. (6): 

 

𝑋 ⊕ 𝐵 = {𝑋|𝐵𝑋⋂𝑋 ≠ Ø} (6) 

 

5) Opening and Closing: Opening combines erosion and 

dilation to remove small objects and smooth edges, 

represented in Eq. (7): 

 

𝐼𝑂 = 𝐼𝑛𝑝⦵𝑆𝐸 ⊕ 𝑆𝐸 (7) 

 

Closing combines dilation and erosion to fill small holes 

and smooth edges, represented in Eq. (8): 

 

𝐼𝐶 = 𝐼𝑛𝑝 ⊕ 𝑆𝐸⦵𝑆𝐸 (8) 

 

Opening and closing are defined using erosion and dilation 

iteratively. 

 

3.2 Segmentation 

 

By applying a threshold-based segmentation approach for 

automated region extraction, the calculation time may be 

minimized and the evaluation can be concentrated on the area 

most impacted by cancer. This work utilizes a global threshold 

for segmenting mammogram images. 

 

 
 

Figure 6. Original vs segmentation 
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Global thresholding is a common and straightforward 

technique used to segment images, such as mammograms. 

This approach involves applying a single threshold value to 

the whole picture to distinguish between foreground (breast 

tissue) and background. Figure 6 displays the segmented 

picture derived from the original. 

 

Algorithm 4: Global Threshold based Segmentation 

1) Select Threshold Value Th: Which separates foreground 

and background in the grayscale image. This can be done 

manually or automatically using techniques like Otsu's method. 

2) Apply the threshold value Th: To the grayscale image. 

Here M(x,y) shown in Eq. (9) is the binary mask indicating 

segmented regions. 

 

𝑀(𝑥, 𝑦) = 𝑓(𝑥) = {
1 𝑖𝑓 𝐼(𝑥, 𝑦) > 𝑇ℎ

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (9) 

 

I(x,y) is the intensity of the grayscale image at pixel (x,y). 

Th is the threshold value. The resulting binary mask M(x,y) 

contains foreground regions (breast tissue) represented by 

pixel value 1, and background regions represented by pixel 

value. 

 

3.3 Data augmentation 

 

Deep learning techniques perform more well with extensive 

datasets. Data augmentation is an extensively used method to 

expand the dataset, which aids in mitigating overfitting when 

working with a tiny quantity of data during training. In this 

work, both training and testing data may be expanded by a 

series of changes. 

The Data augmentation algorithm (DAA) is used to enhance 

the amount of input data. Figure 7 the segmented pictures 

undergo clockwise rotation by 90°, 180°, 270°, and 360°. 

Subsequently, each rotating picture is vertically mirrored. An 

input picture will generate eight images using this method. 

 

 
 

Figure 7. Image augmentation using DAA 

 

Algorithm 5: Data Augmentation 

1) Random Rotation: Rotate the image and corresponding 

label by a random angle within a specified range represented 

in Eqs. (10) and (11): 

Image rotation 

 

Rotated Image = rotate(I, angle) (10) 

 

Label Rotation 

 

Rotated Label = rotate(L, angle) (11) 

2) Random Shear: Apply a random shear transformation to 

the image and label. Calculate the shear Transformation 

Matrix shown in Eq. (12): 

 

Shear Matrix = [
1 shear factor
0 1

] (12) 

 

Image Shear using Eq. (13): 

 

Sheared Image
= affine transform(I, shear matrix) 

(13) 

 

Label Shear using Eq. (14): 

 

Sheared label = affine transform(L, shear matrix) (14) 

 

3) Random Zoom: Randomly zoom in or out of the image 

and label. Calculate zoomed shape using Eq. (15): 

 

Zoomed Shape = (int (h X zoom − facor), 
int(w X Zoom − factor)) 

(15) 

 

Image_Zoom using Eq. (16): 

 

Zoomed Image = zoom(I, zoom − factor) (16) 

 

Label_Zoom using Eq. (17): 

 

Zoomed Label = zoom(L, zoom − factor) (17) 

 

4) Random Horizontal flip: Represented in Eqs. (18) and 

(19). Optionally perform a horizontal flip with a probability of 

0.5. 

 

Flipped Image = flip − left − right(I) (18) 

 

Flipped Label = flip − left − right(L) (19) 

 

 

4. CLASSIFICATION 

 

The suggested design employs transfer learning 

methodologies to describe models. The operation starts with a 

certain quantity of levels in the input layer, each exhibiting the 

enhanced pictures derived from the preceding step of data 

processing. The activation functions are not limited to the 

convolutional layers. This approach utilizes downsampling to 

identify certain features. By including a dropout layer, softmax 

layer, and fully connected layer, this process prevents 

overfitting. The result is calculated prior to using the 

categorization layer to predict the class [16]. 

 

4.1 Modified Inception v3 
 

The deep feature maps are reduced in resolution using a 

downsampling technique with a stride factor of two. The 

essential Inception module is composed of three parallel routes 

that use 1×1, 3×3, and 5x5 convolution filters. The deep 

learning inception model addressed the issue of time 

utilization resulting from its extensive structure by applying 

down-sampling in addition to sparse associated layers within 

the convolutional layers. The dimensionality of feature maps 

was decreased by applying a 1×1 convolutional layer in each 

Inception module. 

By implementing these techniques, the processing time 
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of models developed using deep learning may be reduced to 

match that of VGG-16 [17] or ResNet-50 [18]. A modified 

variant of the Inception deep learning networks, known as 

Modified InceptionV3, was created to fully use the benefits of 

using residual connections in deep learning models. Residual 

connections were used instead of filter concatenation in 

Inception models to enhance the training of deeper network 

structures, resulting in improved InceptionV3 deep learning 

models [19]. Training Inception models using residual 

connections is much faster, as shown by Cai et al. [20]. There 

is also an improvement in the residual Inception DL models' 

overall classification performance. The study enhanced 

InceptionV3 by substituting the last two layers with four levels 

of the Global Average Pooling (GAP) layer, two fully 

connected layers with Rectified Linear Unit (ReLU) activation 

functions, and a SoftMax logarithm layer. Figure 8 illustrates 

the modified Inception v3 model. Figure 9 illustrates the 

Inception v3 model architecture. The performance of 

classification can be improved by the classifier of the proposed 

CNN network. 

 

 
 

Figure 8. Modified Inception v3 layer architecture 

 

 
 

Figure 9. Inception v3 model architecture 

 

4.2 Layers details of modified inception v3 

 

The modified Inception v3 model applies the pre-trained 

Inception v3 model up to a designated layer, often before the 

final classification layers. This utilizes the model's capacity to 

extract universal picture characteristics. To ensure that the 

basic Inception v3 layers remain unchanged throughout 

training, it is necessary to freeze their weights, preventing any 

updates. This approach directs the learning process toward the 

changed components. Inception v3 has a strong dependence on 

convolutional layers. The layers use filters to process the 

incoming picture, extracting characteristics that vary in terms 

of size and orientation. 
 

4.2.1 Global Average Pooling (GAP) layer 

The GAP layer is used to reduce the spatial dimensions 

(height and width) of the feature maps to a singular value per 

feature map by means of averaging. This aids in diminishing 

the number of parameters and may serve as a preventive 

measure against overfitting. The GAP layer calculates the 

following using an input tensor 𝑋 ∈ 𝐴𝐻𝑋𝑊𝑋𝐹  obtained from 

the output of the InceptionV3 base model, where height as H, 

width as W, and F is the number of channels (feature maps) 

shown in Eq. (20). 

 

𝑋𝐺𝐴𝑃[𝑘] =
1

𝐻𝑋𝑊
∑ ∑ 𝑋[𝑖, 𝑗, 𝑘]

𝑊

𝑗=1

𝐻

𝑖=1

 

for k=1, 2, ……, F 

(20) 

 

where, 

𝑋𝐺𝐴𝑃 ∈ 𝑅𝐹 is the outcome of the GAP layer 

𝑋[𝑖, 𝑗, 𝑘]  indicates the value of kth feature map at the 

position (i,j) 

4.2.2 Fully connected layer - dense layer 

Following the GAP layer, the outcome is sent into a fully 

connected (Dense) layer to improve the features and decrease 

dimensionality. Let's represent the outcome of the GAP layer 
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as 𝑋𝐺𝐴𝑃 . The Dense layer with ReLU activation is computed 

by Eq. (21). 

 

𝑋𝐷𝑒𝑛𝑠𝑒1 = 𝑅𝐸𝐿𝑈(𝑊1. 𝑋𝐺𝐴𝑃 + 𝑏1) (21) 

 

where, 

𝑊1 ∈ 𝑅𝐷𝑋𝐶 is the weight matrix 

𝑏1 ∈ 𝑅𝐷 indicates the bias vector 

D indicates the number of units in the Dense layer 

ReLU(x)=max(0,x) is the ReLU activation function applied 

element-wise 

𝑋𝐷𝑒𝑛𝑠𝑒1 ∈ 𝑅𝐷 is the output of the Dense layer 

 

4.2.3 Dropout layer 

A Dropout layer is incorporated after the Dense layer to 

mitigate the problem of overfitting is represented in Eq. (22): 

 

𝑋𝑑𝑟𝑜𝑝𝑜𝑢𝑡 = 𝐷𝑟𝑜𝑢𝑝𝑜𝑢𝑡(𝑋𝑑𝑒𝑛𝑠𝑒1 , 𝑟) (22) 

 

where, r is the dropout rate 

 

4.2.4 Output fully connected layer (Dense) with SoftMax 

function 

Ultimately, the result obtained from the Dropout layer is 

sent onto a further Dense layer that utilizes SoftMax activation 

in Eq. (24) to provide probabilities for each class as shown in 

Eq. (23): 

 

𝑌′ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊2. 𝑋𝐷𝑟𝑜𝑝𝑜𝑢𝑡 + 𝑏2) (23) 

 

where, 

𝑊2 ∈ 𝑅𝐾𝑋𝐷 is the weight matrix. 

𝑏1 ∈ 𝑅𝑘 indicates the bias vector. 

K indicates the number of output classes. 

 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑘
𝑗=1

 𝑓𝑜𝑟 𝑖 = 1,2, … . . 𝐾 (24) 

 

𝑦′ ∈ 𝑅𝑘 is the output probability vector. 

The additional layers augment the retrieved characteristics 

from the InceptionV3 model and optimize them for the 

ultimate classification objective, rendering the model well-

suited for mammogram classification. 
 

 

5. EXPERIMENTAL SETUP 
 

5.1 Dataset preparation 
 

Table 2. Image details of the MIAS dataset before and after 

DAA 
 

Type Training Testing Training Testing 

Original After DAA 

Benign 48 13 2621 656 

Malignant 41 11 2424 605 

Normal 167 42 9022 2256 

 

The proposed approach utilizes the well-known MIAS 

datasets to develop techniques for classifying breast cancer. 

The images within the MIAS collection are stored in portable 

gray map (PGM) format and possess dimensions of 

1024×1024 pixels. The MIAS dataset comprises a total of 322 

images that have been categorized into three distinct groups. 

Specifically, there are 61 images representing benign patients, 

52 images representing malignant cases, and 209 images 

representing normal cases before DAA. The whole data is split 

randomly as 80-20 ratio for training and testing the details are 

shown in Table 2 and followed by the parameter setting in 

Table 3 [16, 21]. 

 

Table 3. Parameter setting 

 
S.No. Parameter Value 

1 Minimum size of batch 10 

2 Maximum Epochs 20 

3 Learn rate drop factor 0.5 

4 Initial learn rate 1e-4 

5 Learn rate drop period 5 

 

5.2 Performance evaluation metrics 

 

Various classifiers can be assessed with factors like 

accuracy, precision, recall, and F1-score. Sensitivity and 

specificity are measures of categorization accuracy, which are 

determined by true positive (TP), true negative (TN), false 

negative (FN), and false positive (FP) outcomes. The 

confusion matrix in Figure 10 is an essential method in deep 

learning for assessing the effectiveness of image classification. 

 

 
 

Figure 10. Confusion matrix 

 

5.3 Confidence intervals 

 

The formula used to determine the confidence interval 

based on a given metric is defined in Eq. (25). 

 

𝐶𝐼 = 𝑥′ ± 𝑍 ×
𝜎

√𝑛
 (25) 

 

The k-fold cross-validation with 10 folds is recorded then 

the mean accuracy of the model 0.8990 for a level of 

confidence of 95% and the critical value Z=1.96.
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6. RESULT ANALYSIS 

 

To scale and normalize all identified breast lesions, DAA 

interpolation is used. The resulting fixed sizes for CNN, 

ResNet-50, and Modified Inception v3 are 128×128, 224×224, 

and 299×299 pixels, respectively. One may adjust breast 

lesion photographs to various appropriate sizes. 

Altered during the training of Inception-v3, the graph of 

training accuracy generally increases, but the graph of 

validation accuracy fluctuates. In Figure 11, both training and 

validation loss have been performed. In training loss, while 

considering accuracy there is no improvement from the start 

to 8 epochs. The validation accuracy experiences the most 

significant improvement after the 8th epoch, increasing from 

0.82% in the 4th epoch to 0.86%. The validation loss curve 

displays erratic outcomes, but the training accuracy 

consistently improves until the last epoch, as seen in Figure 12. 

 

Table 4. Performance of proposed Vs existing method 

 
Classifier ACC SN SP PR AUC FS 

Modified Inception v3 96.12 91.5 94.3 90.2 0.99 92.7 

Inception v3 94.5 90.13 86.4 87.53 0.94 89.21 

Inception V2 86.24 88.71 84.51 84.36 0.88 90 

VGG 19 87.13 89.32 83.17 86.5 0.83 94 

VGG 16 84.56 79.62 81.5 87.2 0.89 90 

Resnet 50 89.2 83.13 79.3 80.2 0.79 91.23 

 

 
 

Figure 11. Training and validation curve of the modified 

Inception v3 classifier 

 

 
 

Figure 12. Training and validation of the proposed model 

 
 

Figure 13. Performance comparison of proposed vs existing 

methods 

 

 
 

Figure 14. Performance comparison of proposed modified 

Inception v3 classifier 

 

Table 5. Performance of proposed modified Inception v3 

classifier 

 
Modified 

Inceptionv3 
ACC SN SP PR AUC FS 

Benign 95.98 95.24 96.42 86.16 98 92 

Malignant 95.09 89.13 97.24 88.17 97 86 

Normal 95.91 95.14 94.17 97.71 98 96 

 

The results of the classifier's performance are shown in 

Table 4. The Modified Inception-V3 had the highest accuracy 

performance, while the Inception v3 scored second in accuracy, 

sensitivity, and specificity with 96.12%, 91.5%, and 94.3%, 

respectively. Figure 13 illustrates the Comparison among the 

proposed and existing methods. 

Table 5 shows that the modified Inception v3 model 

outperforms other current models in classifying benign, 

malignant, and normal cases. Figure 14 illustrates the 

performance of the proposed Modified Inception v3 classifier. 

 

 

7. CONCULSION 

 

The accuracy of classifying mass lesions in the dataset was 

improved with the use of freezing and fine-tuning approaches. 
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The new model exhibited higher performance in comparison 

to four prior models in terms of accuracy, sensitivity, 

specificity, precision, area under the curve, and the F-score. 

Integrating the CNN via TL in the screening process leads to 

a significant improvement compared to previous methods. The 

findings indicated an accuracy of 96.12%, sensitivity of 91.5%, 

specificity of 94.3%, precision of 90.2%, F-score of 92.7%, 

and an AUC of 0.99. These findings surpass the other 

approaches listed. 

The suggested approach may be applied in the future to 

diagnose other various cancer-related work. This work can 

also be implemented with real time patient detail to acquire 

more relevant accuracy of tumor prediction. 
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NOMENCLATURE 

AUC Area under the curve 

ACC Accuracy 

FS F-Score

GAP Global average pooling

PR Precision

SN Sensitivity

SP Specificity

TL Transfer learning
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