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 Advanced diagnosis and successful treatment of melanoma depend on early detection, 

especially in light of the significant rise in melanoma cases in recent years. The suggested 

Active Contour Model (ACM) and machine learning (ML) techniques are used in this 

research to present a robust dermoscopic lesion image segmentation process for melanoma 

identification. By developing a strong association between forefront and background 

entities, the ACM effectively manages high-dimensional lesion image data, improving pixel 

detection performance and forming sharp edges and lesion pattern recognition. A Gaussian 

distribution model is used to control changes in pixel intensity. The comprehensive ISIC 

2017 challenge dataset is used to assess the performance of the suggested ACM, and the 

PH2 dataset is used for extra validation. The testing outcomes demonstrate how well the 

suggested ACM segmented images in terms of segmentation accuracy, dice coefficient, and 

visual appeal. The abstract, however, may improve by addressing the clinical relevance of 

the suggested technique, outlining dataset sizes and potential biases, giving particular values 

for performance metrics selected, and delivering more information on the individual ML 

algorithms included in the ACM. 
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1. INTRODUCTION 

 

1.1 Challenges and motivation 

 

Long-term sun exposure that exposes oneself to damaging 

UV radiation is the main cause of melanoma. The likelihood 

of a satisfactory outcome from therapy is greatly increased 

when skin cancer is discovered early. However, a thorough 

grasp of numerous variables, including lesion shape, color, 

size, type, mutations, general look, and growth patterns, is 

necessary for an accurate diagnosis of melanoma. Skin 

specialists with extensive training, such as dermatologists, 

usually have this complex expertise. Even for experts, 

manually diagnosing skin cancer takes a lot of effort and time. 

Technology has been a big help to healthcare systems around 

the world, but one possible option is to use dermoscopic 

images to automatically diagnose skin cancer, especially 

melanoma. In order to prevail the difficulties, the ACM useful 

segmentation technique is suggested in this work. The work 

aspires to lead to a real-time detection of melanoma by closing 

the gap between expert knowledge and automated diagnosis 

using dermoscopic pictures with the application of an Active 

Contour Model. 

Furthermore, the useful imaging modality is dermoscopy, 

which reduces reflections on the skin's surface [1]. 

Dermoscopy eases the diagnosis and viewing of skin lesions 

in the skin because it provides reduced reflections in the 

affected skin area [2]. Many studies confirm that dermoscopy 

performs better in diagnosis as compared to traditional 

photography [3], which is information a dermatologist should 

know when trying to diagnose skin cancer disorders. Whereas 

melanoma detection with the naked eye only from 

dermoscopic lesion images is challenging and erroneous, it 

may decrease the quality of life of skin cancer patients [4]. 

Therefore, to address this challenge, state-of-the-art 

technology like artificial intelligence, machine learning 

methods, or deep learning frameworks are necessary for 

implementation in order to realize an accurate diagnosis. In 

such a respect, incorporating these cutting-edge technologies 

into ACM would be an efficient method according to the 

context of the proposed research. This method specifically 

employs dermoscopic pictures to classify lesions with the goal 

of differentiating between melanoma and non-melanoma 

instances. Superior feature extraction and segmentation of 
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dermoscopic lesion images are critical to the success of such a 

classification procedure, and they are in accordance with the 

goals of the study described in the cited research. 

In the study by López-Leyva et al. [5], an artificial neural 

network architecture is presented to detect skin cancer lesions 

based on the information from Fourier spectral images. This 

technique is implemented in the additive color model for 

multiclass diagnosis. Here, correlation coefficients are 

identified for effective lesion classification. Training and 

testing are conducted on varied datasets in order to achieve 

higher performance results in terms of precision, recall, and 

accuracy. In the study by Bian et al. [6], a filtered transfer 

learning method is adopted for skin lesion detection using 

labeled data. Here, the transfer learning method in the multi-

view category determines significant discriminative 

information to generate weights for efficient lesion 

classification. In the study by Khan et al. [7], a lesion detection 

and classification technique are presented with the help of tele 

dermatology tool. This research article mainly focuses on the 

segmentation of lesion images and the classification of lesions 

through obtained features. Here, convolutional neural network 

architecture is also presented for saliency segmentation. In the 

study by Ain et al. [8], a melanoma identification technique is 

introduced based on obtained discriminative features. Here, 

the skin classification method is also presented to distinguish 

between melanoma and non-melanoma through obtained local 

information in color images. However, real-time 

implementation of these advanced technologies in traditional 

methods is quite challenging. 

 

1.2 Objective and contribution 

 

Thus, a highly suitable and proficient skin cancer detection 

technique is required to diagnose cancer diseases. Therefore, 

in this article, a melanoma detection technique is presented 

based on effective dermoscopic  lesion image segmentation 

process to distinguish between melanoma and non-melanoma. 

Here, lesion segmentation is achieved using the proposed 

ACM through dermoscopic images based on ML techniques. 

Although classification of dermoscopic images is essential to 

differentiate between melanoma and non-melanoma lesions. 

However, segmentation is the first step in any image 

classification process, especially in the case of skin cancer 

diagnosis. Based on the effective segmentation results, high-

quality gradient and discriminative contour features are 

generated, which helps in an efficient classification process. In 

this article, the proposed ACM provides sharp edges and 

smoother boundaries in lesion-segmented images with 

accurate shapes. Here, low-level and high-level contextual 

data are joined together to obtain quality segmented images 

from background and foreground entities of lesion images. 

Here, the proposed ACM forms a strong bond between pixels 

of foreground and background patches of lesion images. 

Experimental results demonstrate the superiority of the 

proposed ACM in terms of segmentation accuracy, dice 

coefficient, and visual appearance of segmented images. 

·Creative Fusion of ML and ACM: The present study 

proposes the world’s first fusion approach that integrates 

ACM’s strength in lesion segmentation with the power of ML. 

This sort of integration aids in enhancing the accuracy and 

effectiveness of identifying early-stage melanoma. 

·Enhanced Performance Assessment: The study conducts 

a thorough assessment of a wide range of machine learning 

(ML), deep learning (DL), and transfer learning (TL) 

architectures, going beyond traditional methods. This 

comprehensive analysis offers important benchmarking 

findings for the melanoma dermoscopic image segmentation 

issue in addition to information on the effectiveness of the 

suggested ACM. 

·It has integrated several benchmark datasets; the paper 

contains the testing of known benchmark datasets, like PH2 

and ISIC 2017, to be more generalizable and stronger on the 

proposed technique. In this way, this broader test gives 

evidence of the flexibility and versatility of the active contour 

model over many datasets. 

· It also investigates and proposes optimized training 

procedures for applied ML, DL, and TL architectures in the 

study. This will provide a deep insight into learning 

approaches, model optimization, and parameter adjustment-

very significant knowledge contributions toward further 

studies in this field. 

This research is divided into the following sections; Section 

1 provides the introduction to melanoma, Section 2 discusses 

the literature survey related to the detection of Melanoma skin 

cancer and their detection challenges, and how these 

challenges can be handled by researchers. Section 3 mentions 

the methodology and mathematical modelling utilized 

detection of Melanoma skin cancer using the proposed active 

contour model. Section 4 discusses dataset details, 

performance parameters, and experimental results and their 

comparison with state-of-the-art cancer identification 

techniques, and section 5 is the conclusion. 

The body's largest and most important organ, the skin, acts 

as a barrier to protect the body from a variety of illnesses. But 

because the skin serves as the main barrier between the body 

and the outside world, it can become ill easily. Skin disorders 

can be difficult to diagnose since they frequently have similar 

signs and symptoms. The diagnosis of lesions related to skin 

cancer poses a significant challenge since it may result in DNA 

damage, which could allow aberrant cells to develop 

unchecked through various skin mutations. The need for 

efficient detection techniques is highlighted by the rise in the 

incidence of skin cancer worldwide, particularly melanoma. 

Classified as a malignant skin illness, melanoma is extremely 

dangerous, with an alarming fatality rate of 85% and a rapid 

global expansion. In order to meet the urgent need for 

sophisticated diagnostic methods, this research suggests an 

image segmentation strategy that makes use of the Active 

Contour Model. The suggested approach aims to support early 

and precise melanoma diagnosis by integrating the degree of 

melanoma with the requirement for complex image 

segmentation. 

Besides, Melanoma is a type of malignant lesion which 

generated from melanocytes. Further, melanocytes are cells 

that contain pigments [9]. And rate of mortality is quite high 

in Melanoma in all cancer types. According to a report 

published by the American Cancer Society [10] in 2019, the 

United States of America (USA) encountered 96,480 fresh 

melanoma cases in the year 2019, and out of those, around 

7,230 people are predicted to die due to melanoma disease. 

According to another American report, it is predicted that 

9,500 people in the USA will be diagnosed with melanoma 

skin cancer every day, and one out of every five American 

people will have melanoma skin cancer in their lifetime [11]. 

In addition, various reports have claimed that there are 3 

million American people affected with squamous cell 

carcinoma (SCC) and basal cell carcinoma (BCC) every year. 

Furthermore, the general BCC occurrence incidence in 
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America has enhanced by 145% from the period 1976-1984 to 

2000-2010. In contrast, the rate of incidence is enhanced by 

263% in the case of SCC, considering a similar time period 

[12]. Figure 1 shows the melanoma images from the ISIC 2017 

dataset [13]. 

 

 
 

Figure 1. ISIC 2017 dataset images [5] 

 

1.3 Challenges and motivation 

 

Long-term sun exposure that exposes oneself to damaging 

UV radiation is the main cause of melanoma. The likelihood 

of a satisfactory outcome from therapy is greatly increased 

when skin cancer is discovered early. However, a thorough 

grasp of numerous variables, including lesion shape, color, 

size, type, mutations, general look, and growth patterns, is 

necessary for an accurate diagnosis of melanoma. Skin 

specialists with extensive training, such as dermatologists, 

usually have this complex expertise. Even for experts, 

manually diagnosing skin cancer takes a lot of effort and time. 

Technology has been a big help to healthcare systems around 

the world, but one possible option is to use dermoscopic 

images to automatically diagnose skin cancer, especially 

melanoma. Such challenges can be overcome with an 

important segmentation technique provided by the ACM 

proposed in this work. This work intends to fill up the gap 

between expert knowledge and automated diagnosis using 

Dermoscopic pictures and the Active Contour Model, 

probably making a breakthrough in real-time melanoma 

detection. 

Dermoscopy remains a useful imaging modality that 

reduces reflections on the skin surface. Dermoscopy makes 

skin lesions easy to see, hence diagnosis, by reducing 

reflections in that particular part of the skin being considered 

for the lesion diagnosis. A number of studies further confirm 

that Dermoscopy performs better than traditional photography 

in terms of diagnosis. This was an important revelation that 

dermatologists are supposed to know at the time of diagnosis 

of disorders related to skin cancer. Detection of melanoma 

with the naked eye only from Dermoscopic lesion images is 

however challenging and erroneous. This affects the quality of 

life of skin cancer patients. Coupling state-of-the-art 

technology in artificial intelligence, machine learning methods, 

deep learning frameworks with ACM as deemed necessary for 

accurate diagnosis in the context of the proposed research. 

This method specifically employs dermoscopic pictures to 

classify lesions with the goal of differentiating between 

melanoma and non-melanoma instances. Superior feature 

extraction and segmentation of Dermoscopic lesion images are 

critical to the success of such a classification procedure, and 

they are in accordance with the goals of the study described in 

the cited research. 

 

1.4 Objective and contribution 

 

Thus, a highly suitable and proficient skin cancer detection 

technique is required to diagnose cancer diseases. Therefore, 

in this article, a melanoma detection technique is presented 

based on effective dermoscopic  lesion image segmentation 

process to distinguish between melanoma and non-melanoma. 

Here, lesion segmentation is achieved using the proposed 

ACM through dermoscopic images based on ML techniques. 

Although classification of dermoscopic images is essential to 

differentiate between melanoma and non-melanoma lesions. 

However, segmentation is the first step in any image 

classification process, especially in the case of skin cancer 

diagnosis. Based on the effective segmentation results, high-

quality gradient and discriminative contour features are 

generated, which helps in an efficient classification process. In 

this article, the proposed ACM provides sharp edges and 

smoother boundaries in lesion-segmented images with 

accurate shapes. Here, low-level and high-level contextual 

data are joined together to obtain quality segmented images 

from background and foreground entities of lesion images. 

Here, the proposed ACM forms a strong bond between pixels 

of foreground and background patches of lesion images. 

Experimental results demonstrate the superiority of the 

proposed ACM in terms of segmentation accuracy, dice 

coefficient, and visual appearance of segmented images. 

·Creative Fusion of ML and ACM: The study presents a 

brand-new fusion strategy that combines the advantages of 

ACM lesion segmentation with the strength of ML techniques. 

This serves to enhance the accuracy and efficiency of early-

stage melanoma identification. 

· Improved Performance Evaluation: The present study 

goes on to present the detailed performance evaluation of a 

comprehensive portfolio of machine learning, deep learning, 

and transfer-learning-based architectures beyond some 

traditional approaches. This thorough analysis presents some 

key benchmarking results for the melanoma dermoscopic 

image segmentation problem, apart from details about the 

efficiency of the proposed ACM. 

·Evaluation of several well-known benchmark datasets: In 

the paper, some of the well-known benchmark datasets, like 

PH2 and ISIC 2017, have been evaluated to establish the 

generality and strength of the proposed technique. This 

extended test bench speaks to the flexibility and adaptability 

of the Active Contour Model across many such datasets. 

·Optimized training procedures: The study investigates 

and proposes optimized training procedures for the ML, DL, 

and TL-based architectures used in this study. It informed 

insight into learning approaches to model optimization and 

parameter adjustments-relevant knowledge contributions for 

the next studies in this field. 

This research is divided into the following sections; Section 

1 provides the introduction to melanoma, Section 2 discusses 

the literature survey related to the detection of Melanoma skin 

cancer and their detection challenges, and how these 

challenges can be handled by researchers. Section 3 mentions 

the methodology and mathematical modelling utilized 
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detection of Melanoma skin cancer using the proposed active 

contour model. Section 4 discusses dataset details, 

performance parameters, and experimental results and their 

comparison with state-of-the-art cancer identification 

techniques, and section 5 is the conclusion. 

 

 

2. LITERATURE SURVEY 

 

Recently, skin cancer cases have increased drastically due 

to ever-increasing global warming. Thus, melanoma detection 

in earlier stages is of great importance. Furthermore, the 

lowest survival rate of melanoma patients is a concerning area 

and makes melanoma one of the deadliest cancer diseases 

worldwide. Thus, several researchers have recommended that 

a detailed study of skin lesion images can be of great 

importance in handling skin cancer diseases. Nevertheless, 

𝐷𝑒𝑟𝑚𝑜𝑠𝑐𝑜𝑝𝑖𝑐 lesion image study is heavily impacted by three 

major steps such as lesion segmentation, feature extraction, 

and lesion classification. Thus, the first step to analyse 

𝐷𝑒𝑟𝑚𝑜𝑠𝑐𝑜𝑝𝑖𝑐  image lesions are the segmentation of lesion 

images to diagnose skin cancer. Therefore, numerous 

researchers have carried out immense work in this domain for 

Melanoma disease analysis. Some of the current research 

articles have been discussed in the following paragraph. 

 

2.1 Machine learning techniques 

 

Rehman et al. [14] developed a method centered on locating 

and removing hairs or edge borders from dermoscopy pictures. 

This was done in order to improve the image and remove 

lesions using the machine learning-based GrabCut method. On 

the PH2 and ISIC2018 datasets, respectively, the assessment 

findings showed Jaccard Index values of 0.77 and 0.80 

coupled with Dice index values of 0.87 and 0.82. The 

assessment, however, does not go into great detail about the 

limitations and implications of various metrics, like the Dice 

coefficient and the Jaccard Index. Readers would benefit from 

more detailed information regarding why certain indicators 

were chosen and the interpretation of their nuanced meaning 

to firmly establish the effectiveness of the suggested 

segmentation strategy. 

In the study by Seeja and Suresh [15], color, texture, and 

shape features are extracted from segmented images using 

various techniques such as Local Binary Pattern, Histogram of 

Oriented Gradients, Edge Histogram, and Gabor techniques. 

Segmentation is done through the U-net algorithm, which is a 

Convolutional Neural Network. Extracted features are used in 

classifying skin images into benign lesions or melanoma by 

being fed into classifiers like Random Forest, K-Nearest 

Neighbor, Support Vector Machine, and Naive Bayes. Results 

in these studies were very encouraging, with accuracy of 85.19 

percent for the SVM classifier and a Dice coefficient value of 

77.5 percent for image segmentation. 

 
2.2 Deep learning techniques (DL) 

 

In previous study [16], an automated lesion segmentation 

method is presented for the identification of melanoma skin 

cancer detection based on a mutual bootstrapping model. Here, 

the authors use deep CNN architecture for efficient conduction 

of the lesion classification process. In the study by Berkay et 

al. [17], an automatic skin cancer detection technique is 

introduced based on the DL model and reduces limitations 

faced in melanoma detection. Here, effective feature maps are 

generated for effective pixel-wise image classification using 

encoder and decoder mechanisms. In the study by Putra et al. 

[18], a dynamic augmentation process is utilized for skin 

cancer estimation based on machine learning techniques. Here, 

effective and dynamic training and testing is conducted for 

efficiency enhancement. In addition, the Bayesian 

optimization method is adopted to speed up the training 

process. In the study by Zhao et al. [19], generative adversarial 

networks (GANs) architecture is presented for skin lesion 

augmentation, which improves the efficiency of Dermoscopy 

Image Classification. This model enhances the accuracy of the 

lesion classification process. In addition, DenseNet201 

architecture is presented to reduce noise and reconstruct 

images. Their experimental results show that the classification 

framework performs well on the ISIC2019 dataset, and the 

BMA reaches 93.64%. In the study by Pacheco and Krohling 

[20], an attention-based mechanism is presented to perform 

classification on skin lesion images using deep learning 

models. Here, an attention-based mechanism joins image, and 

metadata image information for skin cancer classification. The 

Metadata Processing Block method is utilized for metadata 

feature extraction. In the study by Rastghalam et al. [21], a 

Hidden Markov Model (HMM) based asymmetric analyser is 

adopted for skin cancer identification in earlier stages. Here, 

an asymmetric analyzer is utilized to obtain texture 

heterogeneity. Statistical histogram features are generated to 

ensure efficient melanoma detection. In previous studies [22, 

23], the ensemble of multi-layer perceptron and CNN is used. 

 

2.3 Transfer learning techniques (TL) 

 

A residual Neural Network Architecture for skin cancer 

detection and classification is presented by Razzak and Naz 

[24]. The presence of a residual network with a transition layer 

in this architecture makes feature representation efficient. The 

residual learning mechanism is utilized for the efficient 

classification of skin cancer diseases. In the study by Adegun 

and Viriri [25], a detailed survey is presented on varied skin 

cancer detection techniques based on DL and ML methods. 

Here, several challenges and issues faced by numerous 

researchers are discussed, and to mitigate them, different 

solutions are suggested. Patil and Bellary [26] use the TL 

method. The model they proposed used a pre-trained Transfer 

Learning model. They were able to separate three types of 

melanoma: lentigo maligna melanoma, nodular melanoma, 

and superficial spreading melanoma. Also, it is clinically 

important to know exactly where the uneven edges of 

melanoma skin lesions are. Choosing the exact lesion border 

is one of the hardest things to do. To solve the problem, they 

used a different method to find the edge of a cancerous area. 

The introduction of automated systems for the detection of 

skin cancers may bring about definite improvements in patient 

outcomes. Skin cancer, if detected in its earliest stages, can be 

potentially treatable. Automated diagnostic systems can 

correctly and instantly analyze a case to detect it early enough. 

Such early detection might mean better survival rates and, later, 

a decrease in aggressive treatment modalities that are common 

in advanced-stage cancers. The proper delineation of the skin 

lesion boundaries is essential for lesion malignancy 

discrimination; therefore, segmentation should be pretty 

precise. A precise segmentation allows an appropriate 

evaluation of a dermatological lesion's characteristics, such as 

shape, size, and border irregularity, which are critical factors 
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in skin cancer diagnosis. There is also the role of automated 

detection devices in improving current treatment strategies 

through accurate and consistent evaluation of skin lesions, thus 

aiding clinicians to make more informed decisions about 

biopsy, treatment plans, and follow-up care. The integration of 

these systems into clinical practice improves diagnostic 

accuracy by reducing the chances of misdiagnosis and 

unnecessary procedures. 

The above-discussed research works present varied 

methods for effective Melanoma segmentation processes 

through Dermoscopic images. However, real-time 

implementation of these methods has multiple problems, 

especially in the case of Dermoscopic image segmentation. 

Those problems are the presence of irregularities in feature 

identification, color symmetry problems, varied lesion sizes 

and their positions, and the presence of intrinsic characteristics 

like hairs, reflections, etc. Thus, an effective lesion 

segmentation method is introduced based on the ACM for 

Melanoma identification in the initial stages, and solutions for 

Melanoma segmentation problems are also discussed. 

 

 

3. MODELS AND ALGORITHMS 

 

The suggested melanoma detection system design follows a 

step-by-step procedure starting with dataset pre-processing 

and ending with the segmented picture output. The pre-

processing stage starts with the Melanoma dataset and 

involves necessary actions like pixel detection and scaling. 

The next step is featuring extraction, which creates a 

connection between lesion structures to enable efficient 

identification. Gaussian distribution modeling is used in the 

segmentation procedure to differentiate between melanoma, 

atypical, and normal lesions. Lesions are divided into several 

classes using multi-class categorization. For lesion 

segmentation over several patches, the ACM is used; unary 

potentials and paired potentials are used for more accurate 

findings. Resulting in a segmented image, improving 

diagnosis precision and helping the dermoscopic images to 

identify melanoma effectively. Figure 2 shows the proposed 

system architecture. 

 

3.1 Methodology 

 

Basically, dermoscopic lesion segmentation is data 

processing where the steps initiate with the selection and pre-

processing of the dataset. This would involve image 

enhancement using CLAHE and removal of blurring using the 

Wiener filter technique. Detection of pixels in the foreground 

and background portions is carried out subsequently. This is 

followed by feature extraction. The next step is segmentation 

based on the Gaussian distribution model, which essentially 

involves separating the affected skin lesion as accurately as 

possible. The model also estimates probabilities for multi-

class problems and uses unary and pairwise potentials for 

lesion segmentation. Advanced machine learning methods, 

such as FCN AlexNet, FCN-32s, FCN-16s, FCN-8s [27], 

DeepLab V3+, Mask R-CNN [28], and Ensemble-L, are 

employed for classification. Finally, an Active Contour Model 

(ACM) handles multiple patches in dermoscopic lesion 

images, ensuring accurate segmentation. This study outlines 

the approach as a series of broad but interconnected phases. 

 

Data Processing 

1) Dataset Selection 

2) Data Pre-processing 

(a) Image Enhancement Using CLAHE (Contrast Limited 

Adaptive Histogram Equalization) 

(b) Wiener Filter is used to reduce blurring in images. 

3) Pixel detection performance calculation of background 

and foreground image 

 

Feature Extraction 

4) Relationship established between forefront and 

background image entities 

5) Lesion structures extraction from the background 

6) Segmentation using the Gaussian distribution model 

 

Modelling 

7) Probability Estimation Calculation for Multi-class 

Problem 

8) Modelling of Lesion Segmentation Process using Unary 

Potentials 

9) Modelling of Lesion Segmentation Process using 

Pairwise Potentials 

 

Classification 

10) Machine Learning Based Classification using FCN 

AlexNet, FCN-32s, FCN-16s, FCN-8s, Deeplab V3+, Mask 

R-CNN, Ensemble-L 

11) ACM for Multiple Patches in Dermoscopic  Lesion 

Images 
 

The following subsection provides an in-depth description 

of the steps involved in the melanoma dermoscopic image 

segmentation process. 

 

 
 

Figure 2. Proposed system architecture 
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3.2 Lesion segmentation using active contour model 

 

In this section, a detailed mathematical modeling of the 

proposed ACM is presented to perform an efficient lesion 

segmentation process for effective diagnosis of Melanoma 

skin cancer disease. Moreover, high dimensional lesion image 

data can be efficiently handled using the proposed ACM. Here, 

pixel detection performance is mainly improved based on the 

strong relationship established between forefront and 

background image entities to form sharp edges and recognize 

patterns of lesion images in the segmentation process. Here, 

low-level and high-level image information are utilized 

together to extract lesion structures from the background. 

Furthermore, a detailed modeling for the lesion segmentation 

process is given in the following section. 

The Neural Network Modelling components are offered by 

the DLS, a Model Driven Architecture Tool, in the form of a 

stack of drag-and-drop and create art. The following is an 

outline of the significant basic stages that were engaged in the 

research technique used in this research: 

It is evident from several kinds of literature that the 

classification of lesion images is highly significant in 

distinguishing between melanoma and non-melanoma lesion 

images. Thus, the classification process consists of three 

crucial phases; which first is the efficient segmentation of 

𝑑𝑒𝑟𝑚𝑜𝑠𝑐𝑜𝑝𝑖𝑐  lesion images, the second is a high-quality 

feature extraction process, and the final phase is a 

classification of obtained features to differentiate between 

melanoma and non-melanoma lesion images. Therefore, skin 

cancer lesion image segmentation is a classification problem 

and is modeled using multiple labels. Moreover, dermoscopic 

lesion images are split into multiple patches, and these patches 

are marked against different labels. Here, Gaussian 

distribution model T=(K, S) is utilized to form properly 

segmented structures with sharp lesion edges S and lesion 

vertices K where all patches of lesion images belong to one of 

the particular class R. For a given image, consider that u is a 

vector which represents lesion data with dimensions Z×Z. 

Here, the elements of data vector u is formed using observed 

variables as (u1, u2, u3, …, uσ). Here, number of patches are 

denoted as σ. Then, in case of multi-color bands, the colored 

pixel value is denoted as u at specified wavelength a. Then, m 

is defined as their corresponding segmented label which 

belongs to RQ and here, R represents the number of classes. 

Moreover, all the edges remain in direct contact with image 

pixels, which helps in the mapping of contour features. 

Gaussian distributed model requires a bias region to model 

contour features, and a bias region is defined as a pixel set in 

which pixels can communicate with each other. Then: 

 

𝑦(𝑚) = 𝑃−1𝑒𝑥𝑝 (−∑𝜃𝑅(𝑢𝑅)

 

𝑅

) (1) 

 

where, P denotes a constant coefficient and R shows bias 

region. And probability density function θ is utilized to 

normalize pixel values and mapping of feature vectors. Thus, 

bias region is modelled as: 

 

𝑦(𝑚\{𝑚𝑏}) = 𝑦(𝛾(𝑚𝑏)) (2) 

 

where, γ(mb) is expressed as the group of pixels which belongs 

to another class as mb. Here, the term m\{mb} shows that pixel 

mb is excluded from all the image pixels, and generated 

contours can be denoted as (U, M). Then, feature space 

corresponding to active contour U is expressed by following 

equation: 

 

𝑌(𝑢) = 𝑃−1𝑒𝑥𝑝 (−[∑ 𝛽𝑆𝑗(𝑚𝜑 , 𝑈)
 
𝜑∈𝐾 ] +

∑ 𝜒𝑆𝑦(𝑚𝑏 ,𝑚𝑖 , 𝑈)
 
<𝑏,𝑖>𝜖𝑆 )  

(3) 

 

where, β and χ represent obtained feature weights. Moreover, 

unary and pairwise potentials are represented by variables Sj 

and Sy respectively. Strong communication is being set up 

between contour features and lesion labels using unary 

potential Sj whereas pairwise potential Sy is utilized to control 

numerous illustrations related to adjacent pixels. Here, all the 

adjacent pixels are assigned a similar label. Further, both unary 

and pairwise potential are functions of obtained contour 

features U. Besides, pairwise potential Sy obtained at every 

edge is the function of all contour values as well as labels. And 

coefficient P is utilized as a normalizing parameter. In the 

proposed ACM, three major factors required to model a 

probability density function in the segmentation process are as 

follows. The first aspect discusses setting up a strong 

relationship between input images and labels. Further, the 

second aspect discusses lesion edges that must communicate 

with all image patches and should follow spatial restraints. The 

final aspect is about label constraints in neighboring color 

bands. Strong modeling of these aspects provides an efficient 

and stable lesion segmentation with accurate structures. A 

combined energy of unary potential Sj, pairwise potential Sy 

and color band energy Se makes an energy model for contours. 

Then, color image embedding is determined using the ACM. 

 

3.3 Modelling of probability estimation for multi-class 

problem 

 

In this section, comprehensive mathematical modeling for 

probability estimation for object class selection is presented to 

handle the multi-class problem that occurs in a lesion 

segmentation process. Consider an unknown pixel b, the class 

label is expressed as mb in the lesion segmentation evaluation 

process. In a multi-class problem, for a class label mb, the 

probability of object class selection is given by following 

equation: 

 

𝑚𝑏 = arg 𝑦(𝑢) (4) 

 

where, observed image features are expressed by u, and 

different feature weights are generated using ACM to get 

efficient lesion segmentation. Generated contour feature 

weights can be utilized in Eq. (4). In addition, y(u) estimation 

is performed based on low-level contextual information. Much 

literature finds it difficult to determine the probability of y(u) 

in the lesion segmentation process using low-level contextual 

information. Thus, in the case of high-intensity variations in 

pixels, model accuracy decreased in those models. Therefore, 

solutions to handle high-intensity variations are discussed in 

this article using the proposed ACM. This can be achieved by 

reducing the unnoticeable feature space of particular classes. 

The proposed ACM maps all the image pixels in each 

observation, considering unobserved class variables  𝑝𝑞 ∈

𝑝1, ……… , 𝑝𝑄 . Here, input image data is represented by an 

observation matrix, which is made up of rows f and columns c. 

Thus, histogram gradients are evaluated considering each 

image patch. Then, the column probability considered is Y(cb) 

whereas the class probability considered is Y(cb), then row 

probability can be considered as Y(pq). Then, the final 
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combined probability is represented by the below equation: 

 

𝑌(𝑐𝑏 , 𝑓𝑖) = ∑ 𝑌(𝑝𝑞)𝑌(𝐶𝑏)𝑌(𝑓𝑖)
𝑄
𝑞=1   (5) 

 

where, Eq. (5) can be rewritten as: 

 

𝑌(𝑐𝑏 , 𝑓𝑖) = 𝑌(𝑐𝑏). 𝑌(𝑝𝑞). (∑ 𝑌(𝑝𝑗). 𝑦(𝑐𝑏)
𝑄
𝑗 )

−1
  (6) 

 

Here, high-quality segmentation is achieved by substituting a 

class label m in place of image information p, and obtained 

features are represented by color histogram gradients. All the 

obtained histogram gradients from each pixel, considering 

multiple color bands, are summed up to get the final color 

histogram. Then, feature weights are generated from the 

obtained final color histogram. These generated feature 

weights are capable of handling intensity variations in the 

lesion segmentation process using an ACM. 

 

3.4 Modelling of lesion segmentation process using unary 

potentials 

 

This section discusses the mathematical modeling of the 

lesion segmentation process using Unary potentials in the 

ACM. Here, Unary potentials work as a measuring coefficient 

to evaluate the probability of pixel b which will take class label 

mb. Here, the Probability Density Function (PDF) is employed 

to remodel unary potential Sj in Eq. (3). PDF is utilized for 

mapping feature weights obtained from the varied 

observations of color histogram gradients corresponding to a 

class label q. Whereas intensity variations in pixels of an 

image are controlled using the Gaussian distribution function 

considering multiple color bands. Let a class that represents 

multiple color bands be defined by R. Then, the color 

histogram density function qs at pixel b can be evaluated as: 

 

𝑦𝑟(𝑢𝑏) = 𝑒𝑥𝑝 (−
1

2
(𝑢𝑏 − ℎ𝑞)

𝐼
𝛴−1(𝑢𝑏 −

ℎ𝑞)) . ((2𝜋)
𝑅

2|𝛴|
1

2)
−1

  
(7) 

 

where, ℎ𝑞 ∈ 𝐷
𝑅 , 𝑢𝑏 ∈ 𝐷

𝑅  and 𝛴 ∈ 𝐷𝑅×𝑅. 

Finally, the probability of pixel b with respect to class label 

q considering unary potential is evaluated as: 

 

𝑆𝑗(𝑢) = 𝛽
𝐼 . − log(𝑦(𝑐, 𝑓𝑏) 𝑦𝑟(𝑢𝑏)) (8) 

 

For a color image, observation value with respect to pixel b 

is represented by ub and β represents weights, which are 

utilized for mapping bias regions and pixels. 

 

3.5 Modelling of lesion segmentation process using 

pairwise potentials 

 

This section discusses the mathematical modeling of the 

proposed lesion segmentation process using pairwise 

potentials, which works as a measuring coefficient to evaluate 

the frequency of communication by class labels placed at 

neighboring boundaries to the pixels of the image. Here, two 

pixels b and i are utilized in pixel and class label 

communication considering pairwise potentials. Let that same 

label be used for all the pixels located in the neighboring area.  

Then: 
 

𝑆𝑦 (𝑢) = 1 − ℵ(𝑚𝑏 , 𝑚𝑖)  (9) 

where, the delta function is expressed by a variable ℵ and the 

noise present in the class label can be reduced using the 

proposed contour model, which can work as a low-pass filter. 

Besides, image gradients are used to generate weight 

coefficients with respect to pairwise potentials. Then, pairwise 

potential in the spatial domain is evaluated as: 

 

𝑆𝑦(𝑢) = {
0              𝑖𝑓 𝑚𝑏 = 𝑚𝑖
𝜒𝑒−𝜆𝑏       𝑖𝑓 𝑚𝑏 ≠ 𝑚𝑖

  (10) 

 

where, χ is defined as the weight coefficient and pixel 

gradients are expressed by λb. RGB color domains in a color 

image, λ shows max rate of change. Evaluate vectors K1 and 

K2 at an angle 𝛩 in u and 𝑚 domain considering pixel b: 

 

𝐾1 =
𝑑𝑅

𝑑𝑢
𝑟 +

𝑑𝐺

𝑑𝑢
𝑔 +

𝑑𝐵

𝑑𝑢
𝑏  (11) 

 

𝐾2 =
𝑑𝑅

𝑑𝑚
𝑟 +

𝑑𝐺

𝑑𝑚
𝑔 +

𝑑𝐵

𝑑𝑚
𝑏  (12) 

 

where, red, blue and green color components are defined by R, 

G and B respectively in rgb domain. Then, gradient vector 

normalization 𝐿(𝛩) considering pixel b using L2 norm can be 

evaluated by following equation: 

 

𝐿𝛩=𝑦𝛩+𝑣𝛩+2.𝑖𝑠𝑖𝑛2𝛩 𝑐𝑜𝑠2𝛩  (13) 

 

where, 𝑖 = 𝐾1 × 𝐾2  and 𝑦 = |𝐾1|
2, 𝑣 = |𝐾2|

2  and gradient 

vector 𝐿(𝛩) becomes maximum at an angle 𝛩0. 

 

𝛩0 = 0.5 arctan(2𝑖. (𝑦 − 𝑣)
−1) ±

𝜋

2
  (14) 

 

where, color image gradients λb is determined as 𝜆𝑏 = 𝐿(𝛩0). 
 

3.6 Active contour model for multiple patches in 
Dermoscopic lesion images 
 

This section discusses the implementation of a multi-

patches enabled ACM, considering Dermoscopic lesion 

images. The traditional lesion segmentation method contains 

only unary and pairwise potentials to distinguish between 

melanoma and non-melanoma lesion images. However, in the 

proposed Active Contour Model, labels selected for every 

pixel region are affected by the labels of neighboring pixel 

regions along with local influencing factors. Broadcasting of 

label information inside those regions depends upon the pixel 

connectivity in that region. Thus, consider an image pixel 𝑏 in 

a i-th patch whose labels are connected to the neighboring 

pixels 𝑚𝑏′,𝑎𝑖
′ . Here, the adjacent wavelength is expressed by 

𝑎𝑖
′  and b' corresponds to pixel b in 2-D space. Then, 

broadcasting of label information in an image for ACM using 

Bayes’ Rule is given by the following equation: 
 

𝑦(𝑢) = 𝑦 (𝑚𝑏′,𝑎𝑖
′ , 𝑢) ∗ 𝑦(𝑢) (15) 

 

where, considering that labels are placed at varied wavelengths 

which are conditionally independent of the observed 

neighboring pixel data, then Eq. (16) can be rewritten as: 
 

𝑦(𝑢) ∝ 𝑦 (𝑚𝑏′,𝑎𝑖
′ ,  𝑢𝑎𝑖) (16) 

 

where, for every color image 𝐵𝑎𝑖  with observations  𝑢𝑎𝑖 , 

consider conditionally independent relationship between 
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labels and observed neighboring pixel data is established and 

wavelength is represented by ai. Then, local mapping can be 

established by predicting mean and variance of pixel intensity 

variations using the Gaussian distribution model  𝑦𝑎(𝑢𝑎𝑖) . 

Then, the unary potential for the lesion segmentation process 

demonstrated in Eq. (17) can be changed accordingly: 

 
𝑆𝑗(𝑢) =

𝛽𝐼 . −𝑙𝑜𝑔 (𝑦(𝑐, 𝑓𝑏) 𝑦𝑎(𝑢𝑎1,𝑏) 𝑦𝑎(𝑢𝑎1,𝑏). . . 𝑦𝑎(𝑢𝑎ℶ,𝑏))  
(17) 

 

where, the number of color images in the frequency domain is 

represented by ℶ and observation value with respect to pixel b 

in a color image is given by 𝑢𝑎𝑖,𝑏 at wavelength ai and weight 

coefficient vectors generated from color images are used to 

balance the mapping of pixels in bias regions and local entities. 

Here, this novel active contour model not only depends upon 

unary and pairwise potentials but is also affected by the labels 

of respective pixels present in the adjacent wavelength region. 

The presence of potentials inspires continuous labeling in 

adjacent wavelength regions. Here, color image gradients are 

determined by the average intensity variation evaluation for 

every pixel and their neighbors. Consider that continuous 

labeling in adjacent wavelength regions with respect to the 

pixel b is represented by a function fb(a), then image gradients 

𝑟(𝜆𝑏𝑎𝑖) in frequency domain with respect to pixel b at 

wavelength ai is expressed as 
𝑑𝑓𝑏

𝑑𝑎
|𝑎=𝑎𝑖 . Then, modelling of 

potentials in the frequency domain can be determined in 

reference to pairwise potential determined in spatial domain 

from Eq. (10): 

 

𝑆𝑒(𝑢) = {

0  if 𝑚𝑏,𝑎𝑖 = 𝑚𝑏′,𝑎𝑖
′

𝛹
1

𝑟(𝜆𝑏𝑎𝑖)
 if 𝑚𝑏,𝑎𝑖 ≠ 𝑚𝑏′,𝑎𝑖

′

 (18) 

 

where, 𝛹 is defined as a weighting coefficient. Lastly, join all 

unary, pairwise potential and gradient potential measurements 

in frequency domain considering multiple patches together to 

determine energy function of ACM as: 

 

𝑆(𝑢, 𝛩) = 𝑆𝑗(𝑢) + ∑ 𝑆𝑦(𝑢)
 
𝑖∈𝛾(𝑏) +

∑  ∑  ∑ 𝑆𝑒(𝑢)
 
𝑎𝑖
′∈𝛾(𝑎𝑖)

 
𝑏′∈{𝛾(𝑏),𝑏}

 
𝑖∈ℶ   

(19) 

 

where, adjacent pixel regions are represented by γ and 

weighting coefficients for unary, pairwise, and gradient 

potential in the frequency domain are expressed by 𝛩 =
{𝛽, 𝜒,𝛹} and achieved in the training of images using ACM. 

Then, probability distribution considering labels is given by: 

 

𝑦(𝑢)= 𝑃−1𝑒−∑ 𝑆(𝑢) 
𝑏  (20) 

 

where, P is defined as a normalizing parameter and expressed 

by the following equation: 

 

𝑃 =∑𝑒−∑ 𝑆(𝑢) 
𝑏

 

𝑚

 (21) 

 

3.7 Optimal solution for energy function minimization 
 

This section discusses the optimal solution to minimize 

energy in the proposed active contour model. Then, for a given 

training sample set {un, mn} where number of training samples 

is given by N and (n=1, 2, 3, …, N). Here, energy is minimized 

by eliminating loss function in the training set for accurate 

labeling of test images. Then, the energy function of Eq. (19) 

can be rewritten with respect to 𝛩 as: 

 

𝑆(𝑢, 𝛩) = 𝛩𝐼𝜃(𝑢,𝑚)  (22) 

 

where, a set of unary, pairwise, and gradient potentials in 

frequency domain are expressed by θ. Then, energy 

minimization is achieved by following the equation: 

 

2−1‖𝛩‖2 +∑𝜚𝑛

𝑁

𝑛

 

𝑠. 𝑡 𝑆(𝑢𝑛, 𝛩) − 𝑆(𝑢𝑛, 𝛩) ≥ 𝜆(𝑚,𝑚𝑛) − 𝜚𝑛 , ∀𝑛 , ∀𝑚   

(23) 

 

where, the given label for n-th training sample is expressed by 

mn and loss function is defined by evaluating cost between 

ground truths mn and segmented result m as λ(m, mn). Then, 

loss function for multi-class problem is given by: 𝜆(𝑚,𝑚𝑛) =

{
1, if 𝑚 ≠ 𝑚𝑛
0, otherwise 

. 

Then, energy minimization function is given by, 𝑓(𝛩) is 

represented as an objective function. 

 

𝑓(𝛩) = 1/2‖𝛩‖2 +∑𝑆(𝑢𝑛 , 𝛩) + (𝜆(𝑚,𝑚𝑛) − 𝑆(𝑢𝑛 , 𝛩)) (24) 

 

 

4. RESULTS AND DISCUSSION 

 

In this section, the performance of the segmentation process 

using the Active Contour Model, details of PH2 and ISIC 

Challenge 2017 Dataset, ground truth preparation, and details 

of performance metrics are discussed. In this article, the 

proposed active contour model provides mathematical 

modelling for an effective segmentation process using unary 

potential, pairwise potential, and image gradient potential in 

the frequency domain, and a solution to minimize total energy 

is also discussed. Here, artifacts are eliminated with the help 

of the Gaussian distribution model and filters to get efficient 

contour features. Proper detection of lesion edges improves 

segmentation efficiency. 

 

4.1 Dataset details 

 

PH2 Dataset: The performance of the proposed active 

contour model is tested on PH2 Dermoscopic lesion images 

[13]. This dataset contains a total number of 200 

dermoscopic lesion images. Out of 200 lesion images, 160 

images are naevus type which further segregated into atypical 

naevus and common naevus category. Each category consists 

of 80 images. Rest images come under the Melanoma category. 

In this dataset, lesion images generate accurate and sharp 

edges. This dataset is utilized to validate the performance of 

the proposed active contour model on different datasets. Table 

1 shows detailed dataset description. 

ISIC-2017 lesion Segmentation Dataset: The 

International Skin Imaging Collaboration (ISIC) Dataset is 

one of the best-equipped lesion image datasets to test skin 

segmentation performance [28]. ISIC-2017 lesion 

Segmentation Dataset is a digital dataset that is formed 

through expert observations from across the world. This 

dataset is formed to provide automated solutions in the 

segmentation of skin lesion images and differentiate 
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efficiently between melanoma and non-melanoma. This 

community conducts skin lesion challenges every year to 

influence researchers from worldwide and enhance the 

diagnosis efficiency skin lesion detection process. This 

community also works on spreading knowledge regarding skin 

cancer disease and the use of 𝑑𝑒𝑟𝑚𝑜𝑠𝑐𝑜𝑝𝑖𝑐 lesion images. 

This dataset consists of a total number of 2750 images in 

which all images are segregated into three sets named as 

training set, testing set, and validation set. Here, the first set 

contains 2000 images, the second set consists of 600 images, 

and the third set contains 150 images. The proposed active 

contour model is trained upon a training set, and performance 

results are evaluated using the training set. The training set 

images are segregated into three categories 1372 normal nevus 

images, 374 Melanoma images and 254 keratosis images. 

Table 2 shows a detailed dataset description. 

 

Table 1. PH2 dataset description 

 
Type Number of Images 

Melanoma 40 

Benign 160 

Total 200 

 

Table 2. ISIC 2017 dataset description 

 
 Melanoma Keratosis Benign Total 

Training Dataset 374 254 1372 2000 

Testing Dataset 117 90 393 600 

Validation Dataset 30 42 78 150 

Total 521 386 1843 2750 

 

4.2 Performance parameters 

 

The following are the metrics used for evaluation: 

specificity, sensitivity, accuracy, dice, and Jaccard index. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
→ 

𝑇𝑃
→ +

𝐹𝑁
→ 

 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
→ 

𝑇𝑁
→ +

𝑇𝑃
→ 

 

 

Accuracy = 𝑇𝑃
→ +

𝑇𝑁
→ 

𝑇𝑃
→ +

𝑇𝑁
→ +

𝐹𝑃
→ +

𝐹𝑁
→ 

 

 

DI =
2 ∗ |

𝐴
→ ∩ 

𝐵
→ |

|  
𝐴
→ |+|  

𝐵
→ |

 

 

JA =
|
𝐴
→ ∩ 

𝐵
→ |

|
𝐴
→ ∪ 

𝐵
→ |

 

 

where, 
𝑇𝑃
→ =True Positive; 

𝑇𝑁
→ =True Negative; 

𝐹𝑃
→ =False 

Positive; 
𝐹𝑁
→ =False Negative. 

 

4.3 Experimental setup 

 

The proposed active contour model is implemented on 64-

bit Windows 10 OS and 16 GigaBytes (GB) RAM with Intel 

processor to get proper and efficient segmentation results. The 

performance of the proposed active contour model is evaluated 

considering performance metrics like Dice coefficient (DI), 

segmentation accuracy (AC), and Jaccard index (JA). 

 

4.4 Result comparison 

 

This section describes the performance comparison of 

segmented lesion images against several state-of-art 

segmentation techniques considering performance metrics like 

Dice coefficient (DI), segmentation accuracy (AC), and 

Jaccard index (JA). The efficiency of the proposed active 

contour model is validated using the PH2 and ISIC challenge 

2017 dataset. 

Here, Table 3 demonstrates quantitative performance 

considering PH2 dataset. All the performance metrics show 

great improvement in segmentation quality against recent 

state-of-art-segmentation methods such as FCN-16s [29], 

Deeplab V3+ [30], mask–RCNN [30], Ensemble-S, 

Ensemble-L, Ensemble-A [31]. Here, the performance 

parameters considered are Accuracy (AC), Jaccard Index (JA) 

Sensitivity, Specificity, and Dice Coefficient (DI). Here, the 

performance of the proposed active contour model provides a 

segmentation accuracy result of 96.77, a Jaccard index of 

88.95, a Dice coefficient of 93.97, a specificity of 97.59, and 

a sensitivity of 98.98. It is validated from the performance 

results of Table 1 that the proposed contour model performs 

superior to several presented traditional segmentation 

techniques considering the PH2 dataset. Figure 3 shows the 

Qualitative Performance Analysis of the Proposed Active 

Contour Model against different Segmentation techniques on 

the PH2 dataset. 

 

Table 3. Performance evaluation metrics (%) for lesion 

segmentation considering PH2 dataset 

 
Algorithm Jaccard Dice Accuracy Sensitivity Specificity 

FCN-16s 80.20 88.10 91.70 93.90 88.40 

DeepLab 

V3+ 
81.40 89.00 92.30 94.30 89.60 

Mask R-

CNN 
83.00 90.40 93.70 96.90 89.70 

Ensemble S 83.90 90.70 93.80 93.20 92.90 

Ensemble L 80.60 88.70 92.20 98.00 86.50 

Ensemble A 80.00 88.30 91.90 98.70 85.10 

ACM 88.95 93.97 96.77 98.98 97.59 

 

 
 

Figure 3. Qualitative performance analysis of proposed 

active contour model against different segmentation 

techniques on PH2 dataset 
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Similarly, Table 4 demonstrates quantitative performance 

considering the ISIC-2017 challenge dataset. All the 

performance metrics show great improvement in segmentation 

quality against recent state-of-art-segmentation methods such 

as the CDNN model [31], U-net1, U-net2 [32], Seg Net [33], 

FrCN, Ensemble-S, Ensemble-L, Ensemble-A. Here, the 

performance parameters considered are Accuracy (AC), 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝐼𝑛𝑑𝑒𝑥  (JA), Specificity and Dice Coefficient (DI). 

Here, the performance of the proposed active contour model 

provides a segmentation accuracy of 94.63, a Jaccard index of 

79.23, a Dice coefficient of 87.26, and a specificity of 98.58. 

It is validated from the performance results of Table 2 that the 

proposed contour model performs superior to several 

presented traditional segmentation techniques considering 

ISIC-2017 challenge dataset. Figure 4 shows the Qualitative 

Performance Analysis of the Proposed Active Contour Model 

against different Segmentation techniques on the ISIC 217 

dataset. 

 

 
 

Figure 4. Qualitative performance analysis of proposed 

active contour model against different segmentation 

techniques on ISIC 217 dataset 

 

 
 

Figure 5. Qualitative performance analysis of proposed 

active contour model against different segmentation 

techniques 
 

Similarly, Table 5 demonstrates quantitative performance 

considering ISIC-2017 challenge dataset against recent state-

of-art-segmentation methods such as FCN AlexNet [34], 

FCN-32s, FCN-16s, FCN-8s, Deeplab V3+, Mask R-CNN, 

Ensemble-L [27]. Here, Table 5 performs superior to several 

presented traditional segmentation techniques considering the 

ISIC-2017 challenge dataset. Figure 5 demonstrates 

qualitative performance analysis of the proposed Active 

Contour Model against traditional segmentation techniques 

like Mask RCNN, DeepLabV3+, and Ensemble considering 

ISIC 2017 dataset images. 
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Figure 6. The results of the segmentation quality of different 

models with our proposed ACM 

 

Table 4. Performance evaluation metrics (%) for lesion 

segmentation considering ISIC -2017 challenge dataset 

 
Algorithm Jaccard Dice Accuracy Specificity 

CDNN [31] 76.50 84.90 93.40 97.50 

U-Net1[32] 76.20 84.70 93.20 97.80 

U-Net2 61.60 76.30 90.10 97.20 

SegNet 69.60 82.10 91.80 95.40 

FrCN 77.10 87.00 94.00 96.70 

Ensemble S  76.00 84.40 93.30 97.90 

Ensemble L 78.80 86.60 93.90 95.50 

Ensemble A 79.30 87.10 94.10 95.00 

Proposed ACM 79.23 87.26 94.63 98.58 

 

On the ISIC-2017 challenge dataset, Table 5 shows the 

quantitative performance comparison of the suggested ACM 

against a number of cutting-edge segmentation techniques. 

The Jaccard Index, Dice coefficient, accuracy, and specificity 

are among the assessed parameters. With the highest scores in 

the Jaccard Index (79.23), Dice coefficient (87.26), accuracy 
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(94.63), and specificity (98.58), ACM performs better than the 

other approaches, according to the data. ACM is a potential 

method for segmenting melanoma lesions in dermoscopic 

images since it shows notable improvements in segmentation 

accuracy and specificity. 

It is evident from Figure 6 results that the segmentation 

quality of the ACM is quite high, and accurate edges are 

formed with reference to ground truth and comparison with 

existing techniques. 

 

Table 5. Quantitative performance considering ISIC-2017 

challenge dataset against recent state-of-art-segmentation 

methods 

 
Algorithm Jaccard Dice Accuracy Specificity 

FCN AlexNet 72.55 82.15 92.65 97.37 

FCN-32s 72.86 82.44 92.72 96.72 

FCN-16s 73.65 82.80 92.74 96.68 

FCN-8s 71.87 81.06 92.52 96.87 

Deeplab V3+ 77.15 85.16 93.66 97.25 

Mask R-CNN 77.39 85.58 93.48 96.01 

Ensemble-L 78.82 86.66 93.93 95.45 

Proposed ACM 79.23 87.26 94.63 98.58 

 

4.5 Discussion 

 

In this work, we provide an ACM for dermoscopic picture 

segmentation with a focus on melanoma diagnosis. In order to 

overcome the difficulties involved in automated dermoscopy 

picture recognition, the ACM was created. When compared to 

cutting-edge methods, the suggested ACM showed 

remarkable segmentation performance after rigorous testing 

on the PH2 and ISIC-2017 datasets. 

Measurement and Evaluation 

Our quantitative analysis, which is shown in Tables 1-5, 

emphasizes how much better the ACM is. Notably, on the PH2 

dataset and the ISIC-2017 dataset, the ACM obtained 

segmentation accuracy of 96.77% and 94.63%, respectively. 

In particular, the Jaccard index, Dice coefficient, specificity, 

and sensitivity metrics were always much better than a range 

of conventional methods for segmentation. The results 

represent how good a job ACM does in expressing the edges 

of the lesions. 

Superior Execution 

Figures 3-6 present more qualitative analyses, further giving 

evidence of ACM powers. That is, the visual depictions for the 

ACM's ability to generate correct contours and crisp edges as 

opposed to other segmentation algorithms fulfill a critical need 

for lesion segmentation. 

Experimental Configuration and Sturdiness 

The experimental setup confirmed the suggested ACM's 

resilience by being run on a 64-bit Intel processor running 

Windows 10 with 16GB RAM. Such assessment metrics as 

segmentation accuracy, the Jaccard index, and the dice 

coefficient were used to gauge the performance of the model. 

The ACM routinely turns out performances better than other 

competing algorithms, thus asserting its superiority on a 

variety of datasets. 

 

 

5. CONCLUSIONS 
 

This paper finally introduces a precise and efficient 

comprehensive lesion segmentation algorithm based on ACM 

in lesion segmentation for melanoma detection. In this 

comprehensive mathematical modeling, gradient potentials, 

pairwise potentials, and unary potentials are included besides 

energy minimization solutions to enhance the accuracy of the 

segmentation procedure. Additionally, artifacts are removed 

by the use of filters and a model of the Gaussian distribution, 

which helps in effective contour features. Detection of edges 

of lesions correctly enhances segmentation efficiency. 

All this can be proven by the performance evaluation that 

the above-mentioned ACM has done in the different datasets 

such as the PH2 and ISIC 2017 challenge datasets. Particularly, 

the ACM performs quite well on the PH2 dataset as the 

segmentation accuracy is high, standing at 96.77%; Jaccard 

index comes at 88.95%; Dice coefficient at 93.97%; 

specificity at 97.59%; and at 98.98%, sensitivity in the 

proposed ACM for the said dataset. Experimental results of 

different authors allow us to evaluate our model on the ISIC 

2017 challenge data set. Among them, the segmentation 

accuracy of our developed ACM is very good, at 94.63%. The 

Jaccard index is 0.7923, and the Dice coefficient is 0.8726, 

with very good specificity. 

These performance indicators underline the therapeutic 

significance of the proposed ACM for the enhancement of 

accuracy and reliability in melanoma detection, besides 

underlining its excellence in technology. With the advanced 

mathematical model and the artifact removal procedures in 

combination with excellent performance metrics, the ACM 

becomes a truly significant contribution to the field of 

automated diagnosis methods for skin cancers. 

 

 

6. FUTURE SCOPE 

 

Our research will investigate new approaches that could 

improve the prediction performance of melanoma detection. 

The major directions in which our future work is guided are as 

follows: 

Integration of Hybrid methodology: We intend to present 

a hybrid methodology that effectively combines transfer 

learning, deep learning, and machine learning methods [35]. 

By combining the advantages of both paradigms, this 

integrative approach aims to produce a prediction model that 

is more reliable and accurate. It is expected that this all-

encompassing strategy will improve melanoma detection 

overall. 

Data Augmentation Techniques: We intend to include a 

variety of data augmentation techniques [36] in our 

methodology in order to further enhance prediction 

performance. We'll strategically use augmentation techniques, 

including rotation, flipping, and scaling. This augmentation 

attempts to improve the model's capacity to generalize across 

a range of dermatoscopic pictures in addition to addressing 

particular issues within the dataset. 

Examination of Learning Environments: We plan to do 

extensive testing in a range of learning environments in the 

future, with a focus on active learning and transfer learning 

[37]. The purpose of these settings is to investigate scenarios 

of adaptive learning that can improve the model's ability to 

learn from fresh data continually and efficiently transfer 

information between domains. 

Through the explicit mention of the use of particular data 

augmentation approaches and the expression of our 

willingness to modify our intentions going forward in light of 

new information, we hope to add a nuanced grasp of the 

dynamic character of the subject to our research agenda. This 
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strategy guarantees a thorough investigation of all possible 

directions to improve the precision and usefulness of 

melanoma detection techniques. 
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