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Providing security is one of the most critical tasks worldwide, particularly in vast areas (e.g., 

forests) and the border regions of certain countries. Numerous techniques have been 

proposed to control these areas by providing security. However, economic and practical 

obstacles prevent the completion of this task as effectively as possible. Traditional methods 

include setting up security fences or barbed wire and deploying robots or security personnel. 

However, these methods are costly and complex. Moreover, they frequently fail to achieve 

the desired goal, particularly under changing environmental conditions and regional 

characteristics. Given their sensitivity in tracking targets, low cost, and lightweight, the use 

of sensors (e.g., seismic sensors) has been one of the most successful methods for providing 

security. However, obstacles still exist. In this work, an experiment was performed to 

accurately determine the reasons for the distortion of the signals produced by these sensors. 

The experimental data were collected under variable conditions and from four different 

surfaces (asphalt, mud, grass, and soil). An experiment was also conducted with various 

targets (humans, animals, motorbikes, and cars). Each target performed different activities 

to accurately and comprehensively understand the signal changes. After that, the signals 

were processed, and the resulting signals were analyzed in detail, validated, and then 

classified using two algorithms: k-nearest neighbors (k-NN) and support vector machine 

(SVM). High accuracies were obtained for k-NN (96.88%) and SVM (98.57%). 
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1. INTRODUCTION

The ability to effectively detect targets across various 

domains has gained significant importance in the modern era. 

This ability is necessary in the military and civilian sectors, 

which have unique requirements and challenges. The critical 

nature of target detection has motivated numerous researchers 

to explore and innovate across a wide range of methods that 

aim to enhance detection capability, particularly in areas that 

face various types of illegal intrusions. When armed incursions 

suddenly occur, significant economic and human catastrophes 

may result; hence, urgent action is necessary to prevent such 

incursions from escalating [1]. In addition, unauthorized 

migrants who frequently gather at the borders of some 

countries may seize the opportunity to enter these countries in 

groups, imposing significant economic effects on these 

countries [2]. Meanwhile, poachers can infiltrate 

environmental reserves and natural parks, causing 

considerable harm by hunting and killing endangered animals, 

especially those on the brink of extinction [3]. 

Considering the aforementioned challenges, robust research 

is necessary to create effective security measures for 

protection and continuous monitoring. Initially, electric fences 

and electronic balloons have been installed in some areas to 

provide enhanced security. Furthermore, the integration of 

different types of cameras in surveillance systems. Within this 

approach, efforts have focused on improving the processing of 

pixels, leading to increased efficiency and accurate target 

discrimination. This capability enables continuous visual 

monitoring and recording, which are crucial for security and 

investigation, are realized [4]. In addition, robots equipped 

with advanced sensors and autonomous navigation systems 

have been employed to conduct comprehensive investigations 

in areas considered too dangerous or inaccessible for humans 

[5]. Regardless of whether they are used independently or with 

robots, improving the performance of algorithms is also a 

significant area of focus; this process aims to achieve precise 

detection of the intended targets in open and closed 

environments [6]. 

However, the theories mentioned above and their 

applications are inherently financially demanding and require 

substantial data storage capacity. This challenge is particularly 

significant when these theories and applications are deployed 

over regions where vast coverage is essential, such as 

extensive border areas between countries or large military 

zones. Considering the financial burden and logistical 

challenges associated with these technologies, many 

researchers have searched for alternative solutions. 

Accordingly, different types of sensors have gained popularity 

because of their low cost and manageable data storage 
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requirements. Among them, vibration or seismic sensors have 

been proven to be valuable. These sensors have been widely 

utilized in various security applications because of their ability 

to detect friction between objects or targets and the ground [7] 

which produces slight surface distortions. Vibration sensors 

can accurately detect these distortions by converting them into 

electrical signals; hence, the presence of objects can be sensed 

effectively [8]. This capability highlights the effectiveness of 

vibration sensors in detecting a wide range of targets, 

including people, vehicles, and animals [9, 10]. 

Seismic sensors exhibit numerous advantages, such as being 

cost-effective, requiring minimal operational power, and 

generating data that are easier to store and manage than 

conventional monitoring systems. Their cost-effectiveness and 

energy efficiency make them particularly suitable for large-

scale deployments. In addition, the sensors' capacity to 

produce manageable datasets simplifies the processing and 

analysis of collected information. This feature further 

enhances the practicality of these sensors. Furthermore, 

vibration sensors can be buried discreetly under the soil, 

providing a significant advantage for concealment. Such 

hidden deployment helps avoid detection by targets and 

ensures that sensors are protected from environmental factors 

and tampering. The use of sensors in various security scenarios 

ranging from border monitoring to wildlife conservation 

emphasizes their importance as practical and effective 

alternatives in target detection. Given their versatility and 

efficiency, vibration sensors have become invaluable tools in 

security and surveillance. The deployment of these sensors 

across diverse environments and their ability to reliably detect 

targets highlight their crucial role in modern detection systems 

[11]. 

Despite their advantages, the use of signal-based detection 

methods also poses some challenges. Firstly, the signals 

generated by seismic sensors can be influenced by various 

factors, complicating their deployment and effectiveness. The 

localization of sensors is a significant concern because they 

are frequently used in diverse areas, such as forests, urban 

environments with large buildings, or other complex terrain. 

Some regions may not be fully covered, leading to gaps in 

detection if sensors are not placed optimally or if the mapping 

of targeted protected areas is inadequate [12]. The 

characteristics of the environment in which these sensors will 

be placed are also critical in determining the speed and 

amplitude of the waves that will be detected. For example, the 

characteristics of the ground surface, i.e., whether it is flexible 

or rigid, significantly affect wave amplitude. A rigid surface 

may reflect waves differently than a flexible one, affecting the 

accuracy of the detected signals. Given such variability, 

understanding how different surfaces influence signal 

propagation is essential to ensure reliable detection [13, 14]. 

In addition, the activity of the target plays a significant role in 

the characteristics of the signals. For example, vehicle load, 

wheel type, and the extent of the target’s friction with the 

ground surface contribute to the resulting distortions 

regardless of whether the target is human or vehicle. 

Subsequently, these distortions are converted into electrical 

signals; however, the characteristics of these signals can vary 

widely depending on the aforementioned factors [10, 14]. 

Another critical factor that affects the accuracy of signals 

generated by seismic sensors is environmental noise. 

Proximity to factories, train tracks, aircraft runways, or other 

sources of constant noise can interfere with the ability of 

sensors to detect targets accurately. In the study by Parihar et 

al. [15], where elephant noise was problematic, the researchers 

had to use a low-pass passive RC filter with a cutoff of 110 Hz 

to eliminate the sounds of elephants, thereby improving the 

accuracy of the signal. The above factors can result in potential 

inaccuracies in detection results, including false positives or 

false negatives. Therefore, studying and understanding the 

behavior of these signals and the external factors that can 

affect them is crucial. This research area has become 

increasingly important, and numerous studies have focused on 

mitigating environmental noise and optimizing sensor 

deployment strategies to reduce interference and increase 

detection accuracy. However, previous research has not fully 

addressed the practical aspects of understanding signal 

behavior in certain key areas. To fill this gap, our study aimed 

to thoroughly investigate the behavior of different types of 

targets and their interactions with various environments. To 

achieve this objective, we conducted experiments involving 

various targets, including humans, animals, cars, and 

motorbikes, to achieve this objective. Each target 

demonstrated different activities and behaviors. 

In our experiments, we observed humans and animals while 

running and walking states. For humans, we analyzed the 

distinct signal patterns generated during brisk running 

compared with those produced during steady walking. 

Similarly, we studied moving animals and noted variations in 

signals produced by different gaits and speeds. Moreover, we 

tested cars and motorbikes at speeds ranging from slow 

movement to rapid acceleration as they approached and 

entered restricted areas. This set of activities enabled us to 

capture a broad spectrum of signal behavior associated with 

different types of movement. We conducted experiments in 

environments with varying surface types to understand how 

different types of terrain affect signal amplitude. We selected 

surfaces, such as mud, asphalt, grass, and soil, to represent 

various real-world conditions. We observed how soft and 

pliable surfaces affected the amplitude and speed of signals by 

conducting experiments in muddy areas. 

Meanwhile, experiments performed on asphalt provided 

insights into the influence of hard and rigid surfaces on signal 

reflection and transmission. Moreover, grass and soil surfaces 

provided additional variations, highlighting the effects of 

vegetation and lose ground on signal behavior. By focusing on 

diverse target activities and environmental conditions, we 

expect that the presence and movement of the targets will 

directly affect the signals detected by sensors. Understanding 

these effects is crucial for improving the accuracy and 

reliability of detection systems. For example, friction is 

produced by different types of movement on various surfaces, 

generating distinct signal patterns that can be used to 

differentiate among targets. 

Furthermore, we investigated the specific characteristics of 

different environments, such as urban, rural, or natural 

reserves, which require protection. These environments pose 

unique challenges and are likely to produce significant 

variations in sensor signals.  

By thoroughly analyzing and examining signals, we aim to 

increase our understanding of key factors that influence signal 

generation and propagation. Our goal is to comprehensively 

understand how different targets and environmental conditions 

affect signal behavior.  

Accurate classification of various target movements will 

enable us to improve the deployment and effectiveness of 

vibration sensors in diverse scenarios. This comprehensive 

analysis will help identify optimal sensor placement strategies 
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and refine signal processing techniques to minimize false 

positives and negatives. 

In summary, our study aims to provide a comprehensive 

understanding of the interactions between targets and their 

environments. By addressing these practical issues, we intend 

to develop robust and reliable detection systems that can be 

used effectively in various applications ranging from border 

security to wildlife conservation. In this work, we extensively 

discuss the points above to elucidate key factors that influence 

the signals generated by vibration sensors in real-time and 

during actual events. Our objective is to improve the practical 

applications of these sensors in target detection by ensuring 

their reliable and accurate performance across diverse 

scenarios. We endeavor to improve our understanding and 

classification of target movements by investigating the 

behavior of various targets and the effect of different 

environments on signal propagation. This comprehensive 

approach will enable us to refine sensor deployment strategies 

and signal processing techniques, ultimately minimizing false 

negatives and ensuring the effectiveness of vibration sensors 

in real-world settings. 

 

1.1 Contribution for paper 

 

This paper makes several key contributions to address the 

existing gaps in seismic sensor research. While prior studies 

have explored various sensor types, target detection methods, 

and environmental conditions, they have often overlooked the 

simultaneous effects of multiple environmental and target 

factors on signal behavior. Our research offers a more 

comprehensive analysis by focusing on the critical factors that 

influence signal variation: the target type, the target's activity, 

and the surface on which the target moves. 

We propose a novel experimental setup that includes the 

deployment of eight vertical SM-24 geophones across 

different surface types, representing both urban and rural 

environments. This approach enables us to capture the 

diversity of signal behavior caused by the variation in surface 

flexibility and hardness, which directly impact wave 

propagation. Using a range of targets—including humans, 

animals, motorbikes, and cars—we ensure that the collected 

data reflects real-world scenarios in which these targets 

interact with the environment in diverse ways. 

Additionally, our month-long data collection period offers a 

more dynamic perspective on how changes in surface 

conditions over time due to weather or other environmental 

factors can affect seismic sensor signals. This extended 

timeframe allowed us to account for seasonal shifts, ensuring 

our analysis is robust and applicable across different 

conditions. 

Our key contributions can be summarized as follows: 

(1) A comprehensive study of seismic sensor signal 

variation across multiple surface types and target activities, 

examining the influence of target behaviors (e.g., walking, 

running, and moving at different speeds) on the characteristics 

and morphology of the seismic waveforms generated upon 

reaching a restricted area. 

(2) Deployment of eight vertical SM-24 geophones for real-

time data collection under diverse conditions. 

(3) Examination of the impact of environmental conditions 

on seismic signal shape during propagation, identifying and 

characterizing various conditions (e.g., asphalt, grass, muddy, 

and soil areas) and how they affect signal characteristics. 

(4) Extended monthly data collection to factor in 

environmental and temporal changes affecting signal behavior. 

(5) We employed machine learning for target classification 

to distinguish between different types of targets based on their 

seismic signals. These models demonstrated high accuracy in 

recognizing various targets and activities, underscoring the 

effectiveness of data-driven approaches for enhancing 

detection and classification in diverse environments.  

The paper is structured as follows: Section 2 reviews related 

work on seismic sensor target detection. Section 3 details the 

experimental setup, including signal processing and 

classification. Section 4 presents results and analysis, while 

Section 5 provides a discussion. Section 6 concludes with key 

findings. 

 

 

2. RELATED WORK 

 

Given the above, using traditional methods to protect 

restricted areas, city boundaries, or military zones has been 

proven costly and potentially ineffective because of 

environmental and climatic changes affecting the investigation 

of suspicious targets. These methods include deploying 

personnel (e.g., soldiers, security guards) and installing barbed 

wire fences, concrete walls, and different types of cameras. 

This situation has driven researchers to focus on developing 

advanced technologies that can meet the needs of these areas 

more efficiently and at a lower cost. One promising solution is 

the use of seismic sensors. These sensors offer numerous 

advantages, such as high sensitivity, low power consumption, 

lightweight, and other benefits, as discussed previously. 

The localization of moving military vehicles plays a critical 

role in border security and protecting high-security facilities. 

Traditional trilateration equations often face challenges in 

dynamic environments, leading researchers to propose more 

advanced methodologies. For instance, Köse et al. [16] address 

this limitation by introducing a ConvLSTM (Convolutional 

Long Short-Term Memory) network. This approach captures 

spatio-temporal features from seismic frequency domain data, 

integrating Convolutional and LSTM layers into a unified 

framework. The model processes seismic signals and sensor 

locations, producing target positions relative to clustered 

sensors. Using the SITEX02 dataset, the authors demonstrate 

the effectiveness of clustering and localization with just three 

sensor nodes. They build on circular trilateration techniques, 

employing methods such as Angle of Arrival (AOA), Time of 

Arrival (TOA), Time Difference of Arrival (TDOA), and 

Received Signal Strength Indicator (RSSI) to estimate target 

locations accurately. 

In structural health monitoring (SHM), innovative and cost-

effective data acquisition systems have emerged. For instance, 

Özdemir et al. [17] have proposed the CEDAS_acc and 

CEDAS_geo systems, which integrate MEMS 

(Microelectromechanical Systems) accelerometers and 

geophone sensors with Raspberry Pi mini-computers. These 

standalone systems, validated through rigorous tests such as 

offset tests, frequency response tests and noise tests, 

demonstrated high accuracy and reliability comparable to 

commercial sensors. The researchers also developed tools like 

the RECANA web application to facilitate efficient data 

processing and analysis, making advanced SHM technologies 

more accessible and applicable in diverse fields such a seismic 

monitoring, structural health, and early warning systems. 

Moreover, integrating photonic technologies for 

environmental monitoring has shown promising results in 
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several fields, including high-precision agriculture, landslide 

early warning, and seismic sensing. Breglio et al. [18] 

developed advanced seismic and optical fiber sensors for both 

terrestrial and underwater environments, employing 

technologies like Fiber Bragg Grating (FBG) and Long Period 

Grating (LPG) sensors. These optical solutions are compact, 

provide rich data, and are adaptable to specific environmental 

needs. However, challenges such as cross-sensitivity and fiber 

breaks persist. Nonetheless, these innovations have spurred 

the creation of spin-off companies and the establishment of 

research centers, with future research focusing on expanding 

these technologies into safety applications and enhancing their 

performance with advanced materials and nanotechnology. 

Seismic sensors have also proved effective in detecting 

ground vibrations caused by military vehicles such as tanks. 

Muda [19] focused on tank-induced vibrations found that 

while the frequency remains constant at 332 Hz regardless of 

distance, the amplitude increases as the tank approaches. For 

example, at 50 meters, the amplitude reached 12.1 volts, 

whereas at 1000 meters, it was only 4.3 volts. This emphasizes 

the importance of amplitude analysis over frequency analysis 

for estimating detection distances. The findings suggest that 

seismic sensors, when properly deployed, can effectively 

detect tank movements and provide insights for optimizing 

sensor placement and network configuration in military and 

security applications. 

To address challenges in low-frequency seismic vibration 

monitoring, a novel approach [20] using Fiber Bragg Grating 

(FBG) sensors was proposed. The study introduced an FBG 

acceleration transducer with a double-curved beam reed 

pickup structure. The transducer achieved a natural frequency 

of 41 Hz, with a flat response between 2–32 Hz and a lower 

frequency limit of 0.5 Hz. It demonstrated high performance 

with a dynamic range of 76.8 dB and a 966.65 pm/g sensitivity. 

The compact design, weighing only 200 g, ensures resistance 

to lateral interference. Further optimizations are underway to 

enhance its low-frequency capabilities, making it a promising 

solution for seismic monitoring in environments with low-

frequency vibrations. 

Recent advances in seismic sensor technology [21] have 

shown promising applications of low-noise broadband fiber 

optic sensors in extreme environments such as deep wells, 

seabeds, and glaciers. The sensors use narrow-linewidth laser 

frequency scanning and laser interferometric phase 

interrogation to monitor crustal deformations and earthquakes. 

The sensors' passive design, temperature resistance, and 

extended transmission capabilities are particularly beneficial 

for deep Earth exploration. Researchers are focused on 

improving noise levels, expanding frequency bands, and 

developing displacement and velocity sensors. These 

improvements could further enhance the usability of these 

systems in harsh environments and address the limitations of 

traditional seismometers. 

According to Sun et al. [22], ground intrusion detection 

using seismic signals has also seen significant improvements, 

primarily due to the integration of Variational Mode 

Decomposition (VMD) and Hilbert Transform (HT). This 

novel approach decomposes seismic signals into Band-limited 

Intrinsic Mode Functions (BIMFs) and applies HT to obtain 

marginal spectra. Based on features such as energy, entropy, 

and dominant frequency, the classification results achieved an 

exceptional accuracy of 99.5%. Compared to traditional 

methods like EEMD-HT and EWT-HT, the VMD-HT method 

outperformed them in terms of classification accuracy. 

Researchers aim to enhance the method by addressing mixed 

signals from multiple intrusion activities, improving both 

classification accuracy and positioning. 

Seismic sensors have also found applications in real-time 

pavement monitoring systems, such as the study conducted on 

a French motorway [10]. The system integrates embedded 

geophones and temperature probes with wireless transmission 

to monitor pavement deflections, traffic composition, and 

loads. Over two years of data collection, the system 

demonstrated high reliability and provided valuable insights 

for pavement performance analysis. Temperature corrections 

showed that deflections remained stable, indicating no 

significant deterioration. Furthermore, the data enabled the 

identification of heavy vehicle types and load distributions. 

Comparisons with simulated deflections showed the system's 

accuracy, particularly for front axles. However, several 

challenges, such as automating data processing and reducing 

costs, must be addressed before the system can be widely 

deployed. 

Signal classification has also been explored using deep 

learning techniques, as demonstrated by Cyriac et al. [9], 

which utilized a processing and decision-making system (PDS) 

with a single-axis geophone. The system employed a deep 

neural network (DNN) to classify signals after digitizing them 

using an Arduino Mega 2560. In another study, Pucci et al. [23] 

employed a biaxial seismic sensor system to classify signals 

generated by activities such as cycling, walking, and running. 

The Power Spectral Density (PSD) method was used for 

feature extraction, followed by Principal Component Analysis 

(PCA) for dimensionality reduction. The classification was 

performed using Support Vector Machines (SVM) and k-

nearest neighbors (k-NN), with a comparative analysis 

demonstrating their effectiveness for seismic signal 

classification. These methods were further evaluated using 

biaxial seismic sensors, with the horizontal sensor detecting 

signals from cycling and vehicles, while the vertical sensor 

identified signals from walking and running. The comparative 

analysis between the SVM and k-NN algorithms highlighted 

their effectiveness in the classification task. 

Other studies, such as those conducted by Ghosh et al. [8] 

using different types of seismic sensors integrated with 

analog-to-digital converters (ADC), have explored real-time 

control with FPGA and processor systems. The tests involved 

light and heavy vehicles at varying distances and hammer-

knocking activities. Signal processing algorithms like 

Constant False Alarm Rate (CFAR) and Ordered Cell 

Averaging-CFAR (OCA-CFAR) were employed. These 

studies indicate the growing importance of real-time control 

and advanced algorithms in seismic sensor applications. 

Finally, seismic sensors have been applied to track animal 

movements in wildlife monitoring, as demonstrated in studies 

monitoring elephant activity in forest environments [15]. Data 

collected from seismic sensors were analyzed using various 

algorithms, including short-time average/long-time average 

(STA/LTA), amplitude spectrum of Fourier transform (ASFT), 

and continuous wavelet transform (CWT). These studies 

emphasize the versatility of seismic sensors in detecting a wide 

range of activities, from military and infrastructure 

applications to environmental and wildlife monitoring. 

An extensive experiment [24] conducted at Hunan Normal 

University in Changsha. Seismic and acoustic sensor data were 

collected over two weeks, with sensors placed at distances of 

15 m for people and 30 m for vehicles. The data were 

processed for target identification using an evolutionary neural 
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network that combined a genetic algorithm and a neural 

network. This approach showed promising results for 

identifying and distinguishing between different target types, 

offering a novel seismic signal analysis and classification 

technique. 

This research builds upon existing work by introducing a 

more comprehensive approach to understanding the factors 

that influence the signals generated by seismic sensors. The 

preceding experiments revealed that seismic sensors are highly 

susceptible to external factors that can directly alter the 

characteristics of seismic waves. A review of recent research 

in this field, summarized in Table 1, reveals that these studies 

have not fully addressed the primary factors impacting seismic 

signals. Consequently, these unaddressed factors can lead to 

significant changes in the signal, causing false alerts or 

misclassifications. 

The present study identifies three major influences that can 

alter the shape and characteristics of the outgoing wave: the 

type of target, its activity, and the surface it interacts with. 

These influences are critical because they can drastically 

modify the seismic signal, leading to errors in detection or 

localization. To address these issues, we focused on analyzing 

these three key factors considering their impact on signal 

quality and classification accuracy. 

A comprehensive experiment was designed to investigate 

how these factors influence seismic sensor data. In a farm 

setting, we utilized eight vertical SM-24 geophone sensors 

strategically placed on different surfaces (soil, asphalt, grass, 

and mud). These surfaces were selected to represent a variety 

of environments—urban, rural, and natural—each with 

different levels of flexibility and hardness, which directly 

affect the seismic wave generated by a target. The experiment 

incorporated four types of targets: human, animal, motorbike, 

and car. Each target was subjected to various activities to 

ensure accurate differentiation when entering the test area. 

The data collection process lasted a month to account for 

surface changes over time and to capture variations in target 

activities across different farm regions. This extended data 

collection period was crucial to understanding how the 

generated seismic signals change under different 

environmental and temporal conditions. By addressing these 

factors-target type, target activity, and surface conditions-our 

research provides valuable insights into how seismic sensors 

can be optimized for more accurate detection and 

classification, thus reducing false alarms and improving the 

overall reliability of seismic-based monitoring systems. 

This study aims to make significant advancements in the 

field of seismic sensor technology by offering a deeper and 

more detailed understanding of the various factors that 

influence signal quality. These factors, which have often been 

neglected or insufficiently addressed in previous research, are 

crucial.  

The outcome of this work has the potential to enhance the 

design and performance of seismic sensor networks, especially 

in complex environments with dynamic and unpredictable 

variables. 

 

Table 1. Review of recent research 

 
Authors Journal Feature Algorithm Targets Activity Multi-Environment Area 

Köse and 

Hocaoglu 

[16] 

IEEE Sensors 

Journal 

Convolutional Long Short-

Term Memory 

(ConvLSTM) 

Military vehicles Localization No Outdoor 

Muda [19] 
Journal of World 

Science 

Artificial neural network 

algorithm 

Military vehicles 

(Tanks) 
No No Outdoor 

Sun et al. 

[22] 
Sensors Journal SVM 

Vehicles, 

Footsteps, 

Excavations 

No No Outdoor 

Bahrani et al. 

[10] 
Elsevier 

the linear elastic software 

ALIZE 
Traffic vehicles 

Pavement deflection, 

Traffic load monitoring 
No Outdoor 

Cyriac et al. 

[9] 

IEEE Sensors 

Journal 

Power spectrum density 

and SVM, k-NN 

Vehicle, Bicycle 

and human 

(bicycle and car) for 

horizontal, 
No Outdoor 

Pucci et al. 

[23] 

IEEE Sensors 

Journal 

Threshold method is 

referenced by CFAR 

ordered cell averaging. 

Vehicles, Human No No Outdoor 

Ghosh et al. 

[8] 
MDPI Journal 

Evolving neural network 

genetic algorithm 
Vehicles, Human No No Outdoor 

Bin et al. 

[11] 

13thInternational 

Conf. in IEEE 
DNN Human No No Outdoor 

Parihar et al. 

[15] 
Elsevier STA/LTA, ASFT, CWT Animal No No Outdoor 

Proposed Model k-NN, SVM 
Human, Animal, 

car and motorbike 

Human and animal (run, 

walk), Car (20 km/h,10 

km/h), Motorbike (10 

km/h, 5 km/h) 

Grass, Soil, Asphalt and 

muddy 
Outdoor 

 

 

3. METHOD 

 

In this work, we thoroughly investigated factors that 

influence the signals produced by seismic sensors. We focused 

specifically on the target type, target activity, and the surface 

on which the target moves. We recognized the importance of 

these variables; therefore, we designed a comprehensive 

experiment that could fully capture their effects on the 

generated waveforms. Our methodology involved deploying 

eight vertical SM-24 geophone sensors across different surface 

types, namely, soil, asphalt, grass, and mud, within a farm 

environment to simulate urban, rural, and natural conditions. 

We selected various targets, including humans, animals, 

motorcycles, and vehicles. Each target was engaged in 

multiple activities to ensure a robust dataset.  
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Figure 1. Method used in this study 

 

We continuously collected data over a month to enable us 

to account for temporal variations and environmental changes. 

In this manner, we could comprehensively understand how 

various factors affect seismic signals. Apart from data 

collection, we also focused on signal processing and feature 

extraction in the time domain to analyze the recorded 

waveforms. We aimed to capture the characteristics that 

differentiate various targets and activities by extracting 

relevant features from the time-domain signals. Then, the 

extracted features were used for classification. We employed 

the SVM and k-NN algorithms to classify signals based on the 

identified patterns shown in Figure 1. Through this approach, 

we could distinguish accurately among different types of 

targets and their activities, ultimately enhancing the reliability 

and accuracy of detection systems based on seismic sensors. 

 

3.1 Description of study areas  

 

We collected data from diverse geographical areas. Each 

area was strategically selected to capture various geological 

and environmental conditions. The study areas included rural, 

urban, and natural environments, as shown in Figure 2. These 

areas were chosen based on the specific objectives of the data 

collection project, with the objective of the data collection 

project to obtain a comprehensive understanding of the 

phenomena being investigated. 

Each geophone sensor was integrated into a node unit, 

which served as a data collection point. The nodes had data 

storage systems, communication interfaces, and power sources. 

Thes nodes played a pivotal role in real-time data transmission 

and storage. Meticulous planning and sensor deployment were 

crucial during data collection to ensure the accuracy and 

reliability of the collected information. 

We strategically positioned two geophone sensor nodes 

(Nodes 1 and 2) in each chosen area, creating a well-structured 

network of data collection points. The sensors (S1, S2, S3, S4, 

S5, S6, S7 and S8) were carefully installed, with an interval of 

2.5 m from one another, to ensure optimal area coverage. We 

also maintained a consistent 2.5 m gap between two parallel 

lines of geophone sensors to enhance our ability to detect and 

analyze events that may cross from one side of an area to 

another. Such configuration effectively divided the monitored 

region into segments, allowing us to capture comprehensive 

ground vibrations and movement data. The data collection area 

covered a distance of 17.5 m, as shown in Figure 3. 

 

 
 

Figure 2. Environment of the study areas 

 

 
 

Figure 3. Data collection area 
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We chose a variety of targets, including humans, animals, 

motorbikes, and cars. Each target was engaged in multiple 

activities to ensure a robust dataset. We continuously collected 

data over a month, enabling us to account for temporal 

variations and environmental changes. This approach allowed 

us to comprehensively understand how the aforementioned 

factors affect seismic signals. 

 

3.2 Nodes for data collection  

 

The data collection nodes served as the backbone of the 

information-gathering system. They seamlessly bridged the 

physical aspect of geophone sensors with the digital aspect of 

data analysis. Each node was meticulously designed. It 

comprised several essential components, shown in Figure 4(a), 

to ensure robust data acquisition, storage, and transmission. 

The core of the data collection node is the Raspberry Pi 3 

Model B. It is a versatile and powerful single-board computer 

that serves as a central processing unit. Given its compact size 

and energy efficiency, the Raspberry Pi 3 is ideal for field 

deployments, facilitating data acquisition, storage, and 

transmission. It works in tandem with the other node 

components. We integrated four ADS115 ADCs into each 

node to handle the analog signals from the geophone sensors. 

 

 
(a) Nodes for data collection 

 

 
(b) Structure of a node  

 

Figure 4. Design of nodes 

 

These high-resolution ADCs convert the analog output of 

the geophone sensors into digital data, which can be processed 

and analyzed efficiently. Through this setup, vibrations and 

ground movements detected by the sensors are accurately 

captured and digitized for further analysis. Each node has an 

Xbee module for wireless communication and data transfer. 

This module provides robust and reliable connectivity; thus, it 

is crucial for transmitting data from remote field locations to a 

central processing unit. The Xbee module is kept safely inside 

a protective shell to ensure durability and weather resistance. 

These characteristics are essential for outdoor installations. A 

carefully constructed wiring configuration establishes the 

connection between the Raspberry Pi, Xbee module, and 

geophone sensors. This wiring configuration enables faultless 

data exchange between the geophones and the Raspberry Pi, 

ensuring that every vibration or ground movement is captured 

accurately. Each node also includes resistors to protect the 

geophone sensors from potential damage due to electrical 

surges or other issues, as shown in Figure 4(b). 

 

3.3 Multi-node geophone signal acquisition system 

 

The data acquisition unit consists of three main components: 

the sensor module, the AD acquisition module, and the 

computer. The sensor module comprises two nodes equipped 

with four SM-24 geophone vibration sensors. These 

geophones have a natural frequency of 10±2.5% Hz, a 

bandwidth of 10 Hz to 240 Hz, and a sensitivity of 28.8 V/m/s. 

The sensor module connects to the AD acquisition module via 

wires. 

The AD acquisition module includes three breadboards that 

house four ADS1115 converters, which are connected to a 

Raspberry Pi 3 Model B. Data is transmitted to the computer 

through two XBee-S2 modules: one attached to the Raspberry 

Pi (sender) and the other to the laptop (receiver). A laptop with 

a Core i7 processor running Windows 11 is used to configure 

the Raspberry Pi using the Imager program and the XBee-S2 

modules via XCTU software. 

Each node is powered by a 20,000 mAh power bank, which 

provides the required electrical current. Signals from the 

sensors are collected and synchronized by assigning unique 

channel addresses (48, 49, 4A, 4B) to each sensor within the 

node, as depicted in Figure 5. The received analog signals are 

converted to digital using a 16-bit ADC with a voltage range 

of ±0.256 V, processed with a gain of 16, and sampled at a rate 

of 128 samples per second. The digitized signals are then 

transmitted to the computer via the XBee-S2 modules, with the 

Raspberry Pi 3 serving as an intermediary. 

 

 
 

Figure 5. Addresses for channels 

 

Data were collected over one month at different times across 

various environments, including mud, asphalt, grass, and soil, 

at a distance of 17.5 meters, as shown in Figure 3. Eight 

sensors were deployed, with four sensors assigned to each 

node, spaced 2.5 meters apart, and each node collected signals 

simultaneously. Data collection occurred over 10 seconds each 

time, starting when a target entered the experimental area and 

continuing until it exited. Each target's activities were 
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recorded 15 times in each environment, resulting in 960 

signals per target. The experiment included four targets, each 

performing different activities across the four environments.  

 

Table 2. Activities of the targets 

 
Object Activity Speed Time 

Human Run, walk ---------- 

10 s 
Car ---------- 20 km/h, 10 km/h 

Animal Run, walk ---------- 

Motorbike ---------- 10 km/h, 5 km/h 

 

Data collection was conducted weekly to account for 

environmental variations, such as changes in mud consistency, 

soil moisture, asphalt temperature, and water content in grass. 

In the first week, a person performed two activities—walking 

and running—while traversing different paths in the 

experimental area to evaluate detection variability. Signals 

were recorded as the person moved from the first to the eighth 

sensor in all four environments. During the second week, 

signal samples were collected from a car traveling at two 

speeds, 10 km/h and 20 km/h, in the four environments. In the 

third week, data were recorded from a motorcycle moving at 

two speeds, 5 km/h and 10 km/h, in the same environments. In 

the final week, signals were collected from an animal 

performing two activities—walking and running—across all 

environments. In total, 3840 signals were recorded, 

encompassing all targets, activities, and environments within 

the one-month experimental period shown in Table 2. 

 

3.4 Signal processing and algorithm  

 

By effectively distinguishing the desired signals from the 

surrounding noise, signal processing plays a crucial role in 

enhancing the accuracy of seismic sensor readings. This 

process involves three key steps: the removal of the direct 

current component, noise reduction, and normalization [11]. 

These steps are selected depending on the specific 

requirements or environmental factors that affect the sensor-

generated signals. For example, normalization standardizes 

measurements and eliminates direct current (DC) components; 

hence, the accuracy of signal interpretation is improved [24]. 

Meanwhile, the DC component removal process addresses the 

inherent baseline bias in signal acquisition instruments to 

ensure cleaner data. In scenarios where noise originates from 

the target and the surrounding environment [8], such as 

mechanical sounds and ambient disturbances, a band-pass 

filter is used to mitigate these interferences effectively. To 

further refine signals for analysis, samples from each 

observation window undergo [23] column-wise normalization 

using an ADC, producing row vectors with a mean of zero. 

With this comprehensive approach to signal processing, the 

reliability and precision of seismic data analysis are optimized. 

Our signal processing methodology, implemented in 

MATLAB, adapts to the varying noise characteristics of the 

four different environments (asphalt, mud, soil, and grass), as 

shown in Figure 6, which was used in the experiment. 

The key focus was adjusting the amplitude threshold for 

noise reduction based on the specific environment, while the 

passband frequency of the high-pass Butterworth filter 

remained constant across all environments. 

The high-pass Butterworth filter was designed with a fixed 

passband frequency of 10 Hz and a sampling frequency of 30 

Hz. The normalized cutoff frequency was calculated as 𝑓𝑐 =

𝐹𝑝𝑎𝑠𝑠/(
𝐹𝑠

2
) , where 𝐹𝑠 = 30 𝐻𝑧 . Filtering was performed in 

MATLAB using the filtfilt function to avoid phase distortion, 

ensuring the temporal integrity of the signals. The amplitude 

thresholds for detecting the start and end of the signals were 

set according to the characteristics of each environment. For 

example, environments with higher noise levels (such as grass 

and mud) required higher amplitude thresholds to ensure that 

only meaningful signal data was included in the analysis. 

These thresholds were defined as 𝑇𝑠𝑡𝑎𝑟𝑡  and 𝑇𝑒𝑛𝑑, and the start 

and end indices of the detected signal were determined as 

𝑖𝑠𝑡𝑎𝑟𝑡 = min {𝑖‖𝑥[𝑖]| > 𝑇𝑠𝑡𝑎𝑟𝑡}  and 𝑖𝑒𝑛𝑑 = 𝑚𝑎𝑥 {𝑖‖𝑥[𝑖]| >
𝑇𝑒𝑛𝑑}. 

 

 

 
 

Figure 6. Noise environment without targets 
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A binary mask 𝑚[𝑖] was then created to distinguish the 

signal of interest from the surrounding noise. This mask was 

applied to the signal, and the noise estimate was calculated by 

applying the high-pass filter to the masked signal, expressed 

as 𝑛[𝑖] = 𝐻(𝑠). (𝑥[𝑖]. 𝑚[𝑖]) , where 𝐻(𝑠) represents the high-

pass filter response. Finally, the cleaned signal was derived by 

subtracting the noise estimate from the original signal: 𝑚[𝑖] =
 𝑥[𝑖] − 𝑛[𝑖]. 

Adjusting the amplitude threshold according to the 

environmental conditions while maintaining a constant 

passband frequency effectively mitigates noise without 

altering the detected signals within the detection range. The 

processed signals were then saved for further analysis. 

We chose time-domain features because they directly 

capture the essential characteristics of the geophone signals, 

reflecting both amplitude and statistical properties without the 

complexity of transformations. This approach is ideal for 

distinguishing different activities and environments. The 

seven features—mean, standard deviation, minimum, 

maximum, median, skewness, and kurtosis—were selected to 

describe the signal comprehensively. The mean and standard 

deviation capture the average and variability of the signal, 

while the minimum and maximum values highlight extreme 

points. The median provides a robust central measure, and 

skewness and kurtosis describe the shape of the signal’s 

distribution, revealing asymmetry and the presence of outliers, 

as shown in Eq. (1). 

Normalization was applied using Standard Scaler to ensure 

all features were on the same scale, preventing larger values 

from dominating the analysis. This step improves the 

performance of machine learning models by making all 

features comparable and ensuring balanced contributions from 

each feature. 

 

𝑿 = [

𝒎𝒆𝒂𝒏𝟏 𝒔𝒕𝒅𝟏 𝒎𝒊𝒏𝟏 𝒎𝒂𝒙𝟏 𝒎𝒆𝒅𝒊𝒂𝒏𝟏 𝒔𝒌𝒆𝒘𝟏 𝒌𝒖𝒓𝒕𝒐𝒔𝒊𝒔𝟏 … 𝒆𝒏𝒗𝟏𝟏 𝒆𝒏𝒗𝟐𝟏 … 𝒂𝒄𝒕𝟏𝟏 𝒂𝒄𝒕𝟐𝟏

𝒎𝒆𝒂𝒏𝟐 𝒔𝒕𝒅𝟐 𝒎𝒊𝒏𝟐 𝒎𝒂𝒙𝟐 𝒎𝒆𝒅𝒊𝒂𝒏𝟐 𝒔𝒌𝒆𝒘𝟐 𝒌𝒖𝒓𝒕𝒐𝒔𝒊𝒔𝟐 … 𝒆𝒏𝒗𝟏𝟐 𝒆𝒏𝒗𝟐𝟐 … 𝒂𝒄𝒕𝟏𝟐 𝒂𝒄𝒕𝟐𝟐

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮
𝒎𝒆𝒂𝒏𝒏 𝒔𝒕𝒅𝒏 𝒎𝒊𝒏𝒏 𝒎𝒂𝒙𝒏 𝒎𝒆𝒅𝒊𝒂𝒏𝒏 𝒔𝒌𝒆𝒘𝒏 𝒌𝒖𝒓𝒕𝒐𝒔𝒊𝒔𝒏 ⋮ 𝒆𝒏𝒗𝟏𝒏 𝒆𝒏𝒗𝟐𝒏 ⋮ 𝒂𝒄𝒕𝟏𝒏 𝒂𝒄𝒕𝟐𝒏

] (1) 

 

One-hot encoding was applied to the categorical variables 

‘environment’ and ‘activity’, which were normalized, 

resulting in 𝑿𝒏𝒐𝒓𝒎. Then, the dataset was divided into training 

and testing sets, with 80% of the data used to train the models 

and 20% used to test them. The SVM model was also trained 

and evaluated, and its mean accuracy was computed as Eq. (2): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑠𝑣𝑐 =
1

|𝑋𝑡𝑒𝑠𝑡|
∑ 1

|𝑋𝑡𝑒𝑠𝑡|

𝑖=1

{𝑦̂𝑠𝑣𝑐,𝑖 = 𝑦𝑡𝑒𝑠𝑡,𝑖} (2) 

 

where, |𝑿𝒕𝒆𝒔𝒕| is the number of test samples, 𝒚̂𝒔𝒗𝒄,𝒊 is the 

predicted labels and 𝒚𝒕𝒆𝒔𝒕,𝒊 is the actual labels. Similarly, the 

k-NN model was trained and evaluated, and its mean accuracy 

was presented by Eq. (3): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑘𝑛𝑛 =
1

|𝑋𝑡𝑒𝑠𝑡|
∑ 1

|𝑋𝑡𝑒𝑠𝑡|

𝑖=1

{𝑦̂𝑘𝑛𝑛,𝑖 = 𝑦𝑡𝑒𝑠𝑡,𝑖} (3) 

 

Which measures how well the class labels of the test data 

are correctly predicted by the model. This variable is 

calculated by comparing the predicted labels with the actual 

labels. Finally, model performance is assessed across different 

data divisions by applying k-fold cross-validation. The mean 

accuracy for k-NN over k folds is calculated using the 

following equation: Average Test Accuracy𝑘𝑛𝑛,𝑠𝑣𝑚 =
1

𝑘
∑ 1𝑘

𝑗 Accuracy𝑘𝑛𝑛,𝑠𝑣𝑚
𝑗

. Accordingly, the reliability and 

generalization of the models are guaranteed. 

 

 

4. RESULTS 

 

This section presents the results regarding the effects of 

different environments on the signals generated by geophone 

sensors and the effect of various activities of each target across 

all the environments. In addition, the analysis includes signal 

detection for each target at each point under different activities 

and environments based on the data rate of 128 used in the 

experiment. Moreover, the signal displays the signal 

processing outcomes with the model evaluation results. 

As shown in Figure 7, grass environments tend to exhibit 

high signal amplitudes because of their flexible surface. 

Meanwhile, soil and muddy areas present moderate values. By 

contrast, asphalt surfaces typically yield low signal amplitudes 

for the same reason. Such differences show how surface 

characteristics play a crucial role in shaping signal propagation 

and detection outcomes. 

Table 3 provides the activity-specific results for each target 

in an environment for the maximum signal amplitude. The 

aforementioned values show that the amplitude of the waves 

generated by an animal is higher during running than during 

walking. This result is consistent in nearly all environments. 

The amplitude of the waves generated by humans is also 

similar to that of animals in nearly all environments. For the 

car, the results of the experiments indicate that the lower the 

car speed, the higher the wave amplitude and this finding is 

observed at a speed of 10 km/h compared with a speed of 20 

km/h in nearly all the environments. For the motorbike, a 

lower speed results in greater wave amplitude. Abnormal 

ratios are found in the motorbike (±76.96%, ±61.20%) and 

animal (±96.20%, ±96.68%) in the grassy environment, and 

the human (±23.90%, ±24.21%) and car (±22.34%, ±19.16%) 

in the muddy environment. These apparent differences are 

attributed to only two environments: clay and grass. This 

finding can be attributed to variations in water content caused 

by the different time periods during which the data were 

collected. Data were collected within a month and under 

different conditions. This change in water percentage might 

have affected wave amplitude. 

In the experiments conducted in various environments and 

with distinct objectives, each target performed activities that 

corresponded to a specific endeavor. The running activity, 

which showcased an individual aged 35 years and weighing 74 

kg, served as the focal point. Data collection was performed 

across four diverse environments, namely, grass, mud, asphalt 

and sand, with a consistent frequency of 10 Hz and a data rate 

of 128 samples per second. Notably, the running activity 

yielded significantly greater distances compared with the 

walking activity. The configuration of detection points is 

shown in Figure 8. The vibration sensor signal is detected at 

two nearby locations, indicating the running stance of the 

human target. 
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Table 3. Amplitude for each target’s activity 

 

Environment 

Targets 

Animal Human Car Motorbike 

Run Walk Run Walk Speed 20 km/h Speed 10 km/h Speed 10 km/h Speed 5 km/h 

Grass ±96.20 % ±96.68% ±81.28% ±74.61% ±81.37% ±82.48% ±76.96% ±61.20% 

Muddy ±28.37% ±22.96% ±23.90% ±24.21% ±22.34% ±19.16% ±17.69% ±20.55% 

Soil ±16.47% ±14.88% ±14.87% ±14.56% ±15.35% ±15.63% ±13.16% ±14.73% 

Asphalt ±14.40% ±10.28% ±12.66% ±11.04% ±8.21% ±9.56% ±6.05% ±7.53% 

 

 
 

Figure 7. Amplitude for each environment 

 

 

 
 

Figure 8. Detection of running human 
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The ground contact pattern begins predominantly at the 

posterior part of the foot, indicating initial heel contact, which 

is typical during dynamic movements. This is followed by a 

distinct void in the signal, representing the plantar fascial area 

where the foot arch momentarily reduces direct contact with 

the ground. The contact then progresses towards the anterior 

part of the foot, suggesting toe engagement as the movement 

transitions. The prolonged duration of the signal indicates a 

shift in activity, where the individual transitions from running 

to jumping. This extended contact phase highlights the 

biomechanical adjustments made during this motion, as 

illustrated in Figure 9. These observations reveal dynamic 

pressure distribution and foot-ground interaction timing. 

Notably, assessing the same individual in walking disparate 

areas exhibits closer proximities than those observed during 

running, as illustrated in Figure 10. 

 

  
(a) Real person (b) Human model 

 

Figure 9. Real person and the human movement model in our explement 

 

 
 

Figure 10. Detection of walking human 

 

  
(a) Real cow (b) Animal model 

 

Figure 11. Real cow and model that represents animal movement in our experiment 
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The following experiment involved a cow that weighed 

around 140 kg. It was chosen to represent various 

environments (grass, asphalt, mud, and soil). Data were 

collected using a geophone S-24 sensor, with recordings at a 

frequency of 10 Hz for two activities: walking and running.  

As shown in Figures 11(a) and 11(b), animals have more 

legs in contact with the ground, and their hooves produce 

distinct signals compared with human feet, offering unique 

insights into ground pressure distribution and vibration 

patterns. 

The nature of walking is similar between humans and 

animals, although differences exist due to the structure of the 

limbs and the number of legs. Based on experience, stride is 

shorter in animals when running because the distance between 

their legs is shorter, as shown in Figure 12. 

 

 

 
 

Figure 12. Detection of running animal 

 

 
 

Figure 13. Detection of walking animal 
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(a) Real car (b) Car model 

 

Figure 14. Real car and car model in our experiment 

 

 
(a) 10 km/h 

 

 
(b) 20 km/h 

 

Figure 15. Detection of target car at 10 km/h and 20 km/h 
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By contrast, animals' legs touch the ground more frequently 

than humans when walking because animals have more legs, 

as shown in Figure 13. Furthermore, we consistently observed 

that the signal generated by an animal while running surpassed 

that while walking in all the conducted tests, as previously 

stated. 

Meanwhile, the car also underwent testing in various 

environments, including asphalt, mud, sand and grass, at two 

speeds: 10 km/h and 20 km/h. Data were collected using eight 

sensors (SM-24 geophone sensor), which were installed along 

the proposed route at a frequency of 10 Hz. As shown in 

Figures 14(a) and 14(b), the test period took 10 s for each 

speed. 

In the experiment, interruptions during the detection period 

were generally minimal, ensuring a high level of signal clarity 

for analysis, as illustrated in Figure 15. The sensors, 

designated as W1 for the front wheels and W2 for the rear 

wheels, successfully detected signals that directly 

corresponded to the pressure exerted by the wheels under 

varying conditions and speeds. These signals provided clear 

insights into the force dynamics between the wheels and the 

surface. A consistent pattern was observed across all 

environments: the wave amplitude was significantly higher 

when the vehicle was moving at a speed of 10 km/h. This 

suggests that lower speeds allow for more pronounced 

pressure impact detection by the sensors, likely due to longer 

contact durations and less dynamic load distribution. 

Conversely, at a speed of 20 km/h, the wave amplitude was 

consistently lower, reflecting reduced detection sensitivity at 

higher speeds due to shorter contact times and potentially more 

diffused pressure distribution. This trend is clearly depicted in 

Figures 15(a) and 15(b). 

During the data collection experiment, data from the 

seismic sensors were received for 10 s in four environments: 

muddy, asphalt, sand and grass. The experiment was 

conducted on a motorbike at 5 km/h and 10 km/h, covering the 

specified areas, as shown in Figure 16. The spacing between 

detection points, influenced by the data rate of 128 samples 

per second, was varied in this work. In addition, a significant 

observation was made regarding signal amplitude; that is, 

signal amplitude was higher at a speed of 5 km/h in nearly all 

the environments compared to 10 km/h, as depicted in Figures 

17(a) and 17(b). 

Processing was conducted only in areas outside the 

detection range. We aimed to utilize the resultant detection 

signal without any modifications. Figure 18 displays three 

distinct signals. The first signal represents the original output 

of the seismic sensor (i.e., the original signal). The second 

signal denotes the noise percentage detected in the data (i.e., 

estimated noise). The third signal indicates the outcome after 

processing (i.e., signal after noise reduction). The y-axis 

represents signal amplitude, while the x-axis represents the 

number of signals received within a 10-second interval. 

 

 
 

Figure 16. Actual motorbike in our experiment 

 

 
(a) 5 km/h 
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(b) 10 km/h 

 

Figure 17. Detection of target car at 5 km/h and 10 km/h 

 

 
 

Figure 18. Signal processing for detection regain 

 

The SVM model demonstrated strong stability, achieving an 

average cross-validation score of 98.36% and an accuracy of 

98.57%. As shown in Table 4, it excelled in precision (0.97 to 

1.00) and achieved a maximum F1 Score of 0.98. The 'Animal' 

class had the highest recall (0.99), particularly valuable in 

applications requiring minimal false negatives, such as 

wildlife monitoring or medical diagnostics. 
 

Table 4. Class evaluation 
 

Class Precision Recall F1-Score 

Animal 0.97 0.99 0.98 

Human 0.95 0.97 0.96 

Motorbike 0.96 0.96 0.96 

Vehicle 1.00 0.95 0.97 

 
(a) SVM 

 

 
(b) k-NN 

 

Figure 19. Confusion matrices for SVM and k-NN 
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The k-NN model also showed solid performance, with a 

cross-validation score of 96.80% and training/testing 

accuracies of 98.76% and 96.88%. Its precision, recall, and F1 

Score metrics were consistently high, making it a reliable 

model. However, the 'Human' class displayed slightly lower 

precision (0.95) than SVM, leaving room for refinement. 

Future studies could use confusion matrices to understand 

better misclassification patterns, particularly in overlapping 

categories like 'Motorbike' and 'Vehicle.' This insight further 

enhances the model's ability to differentiate between similar 

classes, as shown in Table 4. 

The confusion matrices highlight the performance of SVM 

and k-NN across four classes: Animal, Human, Motorbike, 

and Vehicle, as shown in Figures 19(a) and 19(b). SVM 

demonstrated superior accuracy, with minimal 

misclassifications. For example, the Animal class achieved 

204 correct predictions with only one misclassification, while 

the Human class showed excellent precision and recall (0.99) 

with just two errors. Similarly, the Motorbike and Vehicle 

classes had high accuracy, with only minor misclassifications. 

k-NN performed well but had slightly higher error rates. While 

the Animal class matched SVM’s performance, the Human 

class saw more misclassifications, reflecting challenges with 

overlapping features. Motorbike and Vehicle classes also 

showed increased confusion compared to SVM. 

Overall, SVM outperformed k-NN, but k-NN’s simplicity 

and solid accuracy make it viable for specific tasks. Future 

work could refine k-NN’s handling of overlapping classes and 

explore ensemble methods to improve both classifiers’ 

robustness. 

 

 

5. DISCUSSION 

 

Generally, researchers need to provide more detailed 

explanations of signals produced by seismic sensors for 

detecting targets. This hesitancy arises from the inherent 

variability in signals produced by targets during data 

collection. This variability can be significantly influenced by 

environmental factors or noise originating from the 

environment or the target, such as sounds or movements. 

Seismic sensors are susceptible to sudden events and other 

occurrences. This condition may considerably affect the 

generated signals because of their ability to detect any 

movements within their sensitivity range in a given 

environment. The residential or rural setting and the surface 

from which the signal is collected are crucial factors in 

determining signal characteristics. After acknowledging these 

challenges, we chose to undertake a comprehensive approach 

to signal collection and analysis. This approach involved 

collecting data from various environments, using different 

entities as targets, and engaging in diverse activities to fully 

capture the details of the signals as they are encountered. This 

approach aimed to provide a deep understanding of the 

capabilities and limitations of the sensors. Although the 

signals were visually similar, a meticulous analysis revealed 

precise detection of impact points within the required 

exploration time frame. The variations in signal amplitudes 

across different environments and detection categories could 

be ascribed to the flexible nature of surface materials. 

In the study by Khaleghian and Taheri [14], a robot was 

observed across surfaces, including grass, concrete, soil, and 

asphalt, revealing varying radial acceleration signals, 

particularly below 20 Hz. The initial slip ratios also differed, 

with higher friction surfaces exhibiting lower ratios at 

equivalent speeds. Grass achieved the highest slip amplitude, 

followed by concrete, soil, and asphalt. In the study by DuPont 

et al. [13], the laser line striper, developed at Carnegie Mellon 

University, presented varying spatial frequency responses 

across surfaces mounted on a robot; grass obtained the highest 

magnitude, followed by sand, gravel, and asphalt. Dupont et 

al. [25] utilized robot vibrations to collect magnitude 

frequency responses by using proprioceptive sensors. Four 

simplifying assumptions were made: the robot’s center of 

gravity, body mass, motion limited to small angles, and tires 

that maintain ground contact. The results showed higher 

responses on asphalt, followed by dirt, mud, and grass. 

During our experiment on human activities, running 

exhibited a higher signal amplitude than walking. In the study 

by Ghosh et al. [8], the seismic sensor detected a peak voltage 

of nearly two mV in human running, a significant increase 

compared with human walking, which was less than 5e-4 V. 

This finding indicated a fourfold increase in peak ground 

velocity during running. Furthermore, in some studies [26, 27], 

several gait parameters exhibited monotonic changes with 

escalating speed during walking and running. Such alterations 

included heightened step length, cycle duration, and reduced 

stance duration [28, 29]. This transition was marked by a 

sudden reduction of 35% in ground contact time and a surge 

of 50% in peak ground reaction force. Such abrupt changes 

highlighted the amplification of signals during running, as 

hypothesized previously. 

Moreover, the difference in amplitude occurred at various 

car speeds. In previous research [30], realistic displacement 

amplitudes were obtained after applying an improved 

processing procedure to the processed pulse signal 

corresponding to a single axle load at speeds of 35 km/h and 

70 km/h and vertical displacement amplitudes of 0.1, 0.3, and 

1 mm. Notably, the signal amplitude at 35 km/h was higher 

than that at 70 km/h. 

Analysis revealed some similarities between the signal 

patterns generated by animal and human targets, corroborating 

previous comparative studies [31, 32]. However, significant 

differences are also evident, particularly in the number of legs 

and the structure of feet. Animals have more feet in contact 

with the ground, and their hooves generate signals that differ 

from those produced by human feet. Although similarities 

exist, notable variations occur in the distances between 

successive detection during running, which are shorter in 

animals than in humans. In addition, the space between the 

legs is less, similar to that in walking dogs [33], although some 

differences occur due to the unique nature of animal hooves. 

This characteristic also affects the walking pattern of animals, 

where all four legs come in contact with the ground nearly 

simultaneously, with overlapping distances [34]. 

At a speed of 10 km/h, the wave amplitude of the car was 

consistently higher across all environments but was lower at 

approximately 20 km/h [10]. This phenomenon can potentially 

be explained by considering the vector amplitude of the car's 

speed. Our experiments verified that vector amplitude was 

smaller at higher speeds. This finding is aligned with our 

observations across various environments [30]. In some 

instances [35], however, the wave amplitude at the car's speed 

was greater than at a slower speed, contrasting with the general 

trend. Such inconsistency can be attributed to several factors, 

including the friction between the car's tires and the ground, 

the car's load during the experiment, and the nature of the 

ground. For example, the car may produce signals that differ 
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from the expected norms when heavily loaded [14, 25]. In 

addition, the roughness of the tires and the speed at which the 

signal reflects off the ground are crucial for determining the 

observed wave amplitudes. Accordingly, this issue remains a 

subject of ongoing research. To increase the understanding of 

these complexities, researchers may conduct experiments 

under various environmental conditions using different types 

of tires with varying roughness levels and vehicle loads. This 

comprehensive approach will help clarify the interplay of 

factors that affect wave amplitudes in vehicle detection 

systems. 

Moreover, such differences can be attributed to the weight 

disparity between cars and the size of their wheels compared 

with those of a motorbike. The car's larger wheels [36] resulted 

in more detection points, as reported by Ashhad et al. [37]. The 

discrepancy in detection signals between the car and the 

motorbike remained evident even though audio signals were 

employed to detect targets. 

The findings presented in this study have significant 

practical implications for improving seismic sensor-based 

security systems. By capturing the variability of signals across 

different environments and target types, this work provides a 

foundation for enhancing the reliability and robustness of 

these systems in real-world deployments. For instance, 

understanding the sensitivity of seismic sensors to varying 

surface types and movement patterns can inform the design of 

algorithms that better distinguish between human, animal, and 

vehicle activities, thereby reducing false alarms in diverse 

settings. Additionally, the insights into amplitude variations 

with speed and surface flexibility can guide the development 

of adaptive thresholding techniques tailored to specific 

deployment environments. Despite these advancements, the 

study has limitations, such as the inherent dependency on 

environmental and surface conditions that may introduce 

signal noise or distortions. Future research could mitigate 

these challenges by employing advanced signal processing 

techniques and machine learning models to enhance feature 

extraction and classification accuracy. Moreover, conducting 

experiments under controlled conditions with a broader range 

of target types, surface materials, and environmental scenarios 

could provide a deeper understanding of sensor performance. 

This approach not only enables the development of 

standardized protocols for deploying seismic sensors in 

security applications but also ensures consistent performance 

across various scenarios. By establishing clear guidelines for 

sensor placement, signal processing, and interpretation, it 

enhances the scalability of these systems to cover larger areas 

or diverse environments effectively. 

6. CONCLUSION

This research presents a different direction in understanding 

the variation of signals generated by seismic sensors in terms 

of different environments (asphalt, soil, grass, and mud) and 

targets (human, animal, motorbike, and car), along with the 

activities that distinguish each target, to provide a clear 

visualization of the signals generated by sensors. 

Researchers often avoid providing detailed explanations of 

seismic sensor signals for target detection due to signal 

variability resulting from environmental factors or noise, 

including sounds or movements. Seismic sensors are 

susceptible to sudden events. They detect movements within 

their range and are influenced by setting and surface-type 

factors. To address these issues, we collected diverse data to 

improve the understanding of sensor capabilities. Despite the 

similarity among the initial signals, a detailed analysis 

revealed precise detection of impact points within the 

exploration time frame. 

In summary, the k-NN and SVM models yielded robust 

classification results. SVM achieved an accuracy of 98.57%, 

exhibiting its superior performance in binary classification. 

Meanwhile, k-NN achieved an accuracy of 96.88%, 

demonstrating its versatility in multi-class scenarios. Future 

optimization efforts can focus on leveraging ensemble 

methods and hyperparameter fine-tuning to enhance 

classification accuracy further. 
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