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Secure transmission of patient diagnostic information is crucial in healthcare monitoring due 

to the inclusion of private user details. Electrocardiogram (ECG) signal is one of the most 

important medical signals that represents the vital signs of patients and immediate 

medications are provided by physicians based on the observation of ECG signals. Altering 

or tampering with such data leads to serious issues so it is essential to introduce proper 

security measures to enhance the data security. Encryption is one of the efficient approaches 

which is widely used for data security in various domains. However, the features of 

encryption methodologies are less explored in raw medical data applications. This research 

work introduces a novel method for encrypting and decrypting ECG signals by utilizing a 

sparse autoencoder combined with Chaotic Logistic Mapping to enhance data security. The 

classification module in this research employs a convolutional neural network to efficiently 

extract features and an optimized artificial neural network to classify the data. Experimental 

verification of proposed approach attains better classification accuracy of 96.6% which is 

much better than the existing classification techniques. 
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1. INTRODUCTION

The advancement of healthcare systems in the digital era 

incorporates numerous technical innovations, aiming to 

improve patient care through enhanced data security measures 

and reducing the frequency of conventional one to one 

diagnosis and treatment practices. Telecommunication 

systems, telemedicine systems are introduced to get 

suggestions from physicians even from remote locations. 

People can access the specialists in the particular field by 

simply sitting in home and transmitting their medical data 

through internet. Healthcare devices are equipped to collect 

and consolidate the samples at a periodic interval and provide 

the same to physicians at the time of analysis. However, the 

data transmission in telecommunication channels introduces 

serious security threats which is a major concern in the present 

situation. Healthcare data, which includes personal and private 

information, should only be accessible to physicians and not 

to unauthorized individuals.  

The electrocardiography is an important element in 

healthcare systems to detect abnormalities in patients. The 

worldwide diagnostic procedure for electrocardiography is 

similar and securing Electrocardiogram (ECG) signals gains 

more attention specifically after implementation of EU general 

data protection regulation (GDPR). ECG signals include user 

sensitive information also it can be used as a biometric. ECG 

features can be used as a cryptographic key in a few 

applications like pseudo-random number generators, shift 

generators [1], etc. These sensitive data should be accessed 

only the authorized persons and to achieve this privacy 

preserving methods should be adapted before transmitting the 

information in the communication channel. Researchers are 

increasingly focusing on securing healthcare data by 

introducing various security measures, including 

authentication, access controls [2], and watermarking [3], etc. 

However, these authentication and access control practices can 

be compromised if the cryptographic key is discovered or 

guessed. So, to bring an extra effort to secure the data before 

transmission, encryption procedures are introduced so that 

even the access controls are known to intruder, they cannot 

able to retrieve the encrypted message.  

Recent methods for encrypting ECG signals include the 

Advanced Encryption Standard (AES) [4, 5], Dynamic AES 

[6], Selective Encryption (SE) [7], Chaos-based encryption 

[8], Wavelet and Chaotically Huffman Code [9], Logistic 

mapping-based stream encryption [10], Lightweight selective 

encryption (LWSE) [11], etc. However, the research towards 

identifying potential encryption model for ECG signal 

encryption is still in progress. The major objective of this 

research work is to bring an efficient and secure ECG signal 

encryption using deep learning technique. Since the feature 

merits of deep learning techniques are observed in various 

domains for feature extraction and classification and it is less 

explored in the encryption process. Specifically, the 

autoencoder in the deep learning model is mostly used for 

image-based applications, and limited works have evolved for 

signal processing. Specifically, healthcare signal processing is 

not explored using autoencoders which is the novelty of this 

proposed research work.  

In addition to encryption, classification is also performed in 
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this research work using optimized neural network. Various 

machine learning based ECG signal classification approaches 

are evolved which include support vector machines, random 

forests, decision trees, etc. [12, 13]. However, the feature 

extraction procedures adopted in those models lag in 

performance while selecting essential features. Similarly, if 

the classification model parameters are optimized then the 

performance of the classification models might get 

improvements. Considering these observations, in this 

research work for feature extraction, features of deep learning 

are utilized. Convolutional Neural Network (CNN) extracts 

the essential features from ECG signals. The extracted signals 

are processed using an optimized artificial neural network to 

categorize the patient status into normal, abnormal, 

Myocardial Infarction (MI), and History of MI. The major 

contribution of this research work is summarized as follows.  

•We have presented a secure ECG encryption procedure for 

healthcare data transmission using a sparse auto-encoder with 

Chaotic Logistic Mapping.  

•We have presented a classification model to detect the 

patient status from ECG signals using an optimized artificial 

neural network. The classification model incorporated the 

deep learning technique -CNN for efficient feature selection.  

•We have presented an intense experimental analysis of the 

proposed encryption and classification model using a 

benchmark dataset  

•We have presented a performance analysis of the proposed 

model with existing models to demonstrate better 

performance. 

The remaining part of the article is structured as follows. A 

vast literature analysis is presented in section 2 by discussing 

the existing encryption and classification procedures in ECG 

signal analysis. The proposed encryption and classification 

model are presented in section 3. Experimental results and 

their relevant discussion are presented in section 4, and finally, 

the observations are concluded in section 5.  

 

 

2. RELATED WORKS 

 

An ECG signal encryption is performed along with 

compression to ensure data privacy as well as data quality. A 

singular value decomposition technique-based data 

compression is reported by Liu et al. [14] enhances the 

compression efficiency. In the encryption process, singular 

value decomposition is used to generate the orthogonal key 

matrix and it is multiplied with the ECG matrix. In such a way, 

the data has been secured through encryption and the quality 

has been improved through compression using the singular 

value decomposition technique. An asymmetric cryptographic 

technique reported by Chen et al. [15] protects the privacy of 

information in ECG signals using a hybrid entropy encoder. 

The presented hardware model includes a lossless 

compression and an encryption encoder along with an error 

correction coding unit, and QRS complexity detector. The 

complex information is calculated through a complexity 

detector and it is encrypted using a hybrid entropy encoder 

before compression. Further the compressed data is 

transmitted with enhanced security features.  

Similar encryption and compression procedure for ECG 

signals are reported by Hameed et al. [16] includes discrete 

wavelet transform, Huffman coding for compression process, 

and cipher block chaining advanced encryption standard 

technique is presented for the encryption process. The 

presented approach enhances the data quality and secures the 

data from passive monitoring attacks and eavesdropping. The 

system uses the QRS complex in the ECG signal as an 

encryption element to secure information in body area 

networks [17]. The complexities are used to obtain the initial 

key and then a linear feedback shift register is used to obtain 

the keystream for the data encryption process. Minimum 

energy consumption and dynamic key updates are the 

observed features of the presented research work.  

An ECG signal classification model [18] utilizes the 

abstract features of heartbeat, clustering algorithm, and a rule-

based classifier for efficient signal analysis. The rhythm and 

morphological features are selected and then QRS clustering 

is employed to minimize the errors in the classification of 

arrhythmia diseases. A similar parametric feature-based ECG 

signal classification model [19] considers the amplitude, time 

duration, and interval features from the ECG adopting a 

clustering-based feature extraction procedure. The extracted 

features are classified using classifiers like KNN, SVM, and 

artificial neural network and identified that support vector 

machine provides better accuracy than other models. The 

feature extraction procedure [20] includes principal 

component analysis along with dynamic time warping to 

enhance the ECG signal classification process. The 

morphological and segment features are obtained through the 

combined approach and classified using support vector 

machine to classify four classes of arrhythmias 

supraventricular, ventricular, fusion of ventricular, and normal 

and normal beats. Improved sensitivity and positive 

predictivity are the merits of the presented approach. 

The ECG classification model [21] includes two delta-

sigma modulators and a random forest algorithm for feature 

extraction and classification. The essential features are 

extracted at a sampling rate of 250 Hz and classified using the 

random forest to detect two types of arrhythmias 

supraventricular ectopic beats and ventricular ectopic beats. 

Compared to other machine learning models, the presented 

approach attains better performance with minimum 

computation complexity and memory utilization. The reduce 

the latency and increase the processing speed of ECG signal 

classification using machine learning algorithms, a delayed 

error normalized LMS adaptive filter is presented in reference 

[22]. The presented filtering technique removes the unwanted 

white noises in the signal so that better features are extracted 

while applying Heart Rate Variability (HRV) based feature 

extraction process. Compared to other machine learning 

algorithms the performance of the support vector machine is 

satisfactory in the ECG signal analysis. 

An ensemble multi-label classification model [23] classifies 

the ECG signals to detect cardiovascular disease. Classifiers 

such as binary relevance, multi-label KNN, multi-label twin 

support vector machine, multi-label hierarchical adaptive 

resonance associative map, classifier chain, Label Space 

Partitioning classifiers are incorporated as an ensemble model 

to classify the ECG signals. However, the threshold value used 

in the classification process affects the classification accuracy. 

To overcome this, a genetic algorithm is incorporated in the 

presented work to obtain the optimal threshold. A multilabel 

feature selection model [24] incorporates kernelized fuzzy 

rough sets to select the optimal features. The multi-objective 

optimization-based classification model classifies the optimal 

features based on sparsity constraints. The relation between 

the signal features and diseases is correlated in the 

classification process to attain maximum classification 
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accuracy. A multimodal fusion framework [25] converts the 

raw ECG signal into three images using recurrence plot, 

Gramian angular field, and Markov transition field. The 

obtained images are fused and provided as input to 

convolutional neural network model to extract the essential 

features. The obtained optimal features are classified using 

support vector machine to detect different distinct arrythmia 

conditions.  

A probabilistic process neural network model [26] performs 

multichannel signal classification of ECG signals to detect ten 

types of diseases. The network model includes an input layer 

that handles the dynamic signals and these signals are 

aggregated in the hidden layer as a Spatio-temporal 

aggregation process finally the probabilistic outputs are 

obtained as classification results. The probabilistic 

classification is performed by the SoftMax classifier so that 

better classification results are obtained by the presented 

approach with minimum computation parameters. The ECG 

signal classification model [27] presents a parallel recurrent 

neural network for efficient signal analysis. The basic 

information processing is performed using gated recurrent 

units and finally, the features are classified using SoftMax 

classifier. Independent feature extraction and efficient 

classification with minimum loss is the observed merits of the 

presented research model.  

Deep learning-based ECG signal classification [28] extracts 

the essential features from the signal through deep layers and 

performs classification using a fully connected feedforward 

neural network [29]. The presented model evaluates the 

arrhythmia database and attains better sensitivity and 

specificity than the existing state of art of techniques. A two-

dimensional deep convolutional neural network model [30] 

classifies ECG signals to detect arrhythmia. The time-domain 

ECG signals considered for analysis include normal beat, left 

and right bundle branch block beat, and contraction beats of 

ventricular and atrial. Using short-time Fourier transform the 

signals are converted into spectrograms so that classification 

is performed based on the features obtained from the 

convolutional neural network. Improved accuracy without any 

preprocessing steps is the observed merit of the presented 

research model.  

Other than conventional convolutional neural networks, few 

other versions of CNN models are incorporated for ECG signal 

analysis such as time-spatial convolutional neural networks 

[31],  

Multi-perspective convolutional neural network (MPCNN) 

[32] to improve the classification performance and minimize 

the training parameters. Bidirectional long short-term memory 

(BiLSTM) is used as a classifier in references [33, 34] for ECG 

signal classification. To improve the performance of the 

classifier model, convolution layers are stacked with BiLSTM 

so that better accuracy is obtained in the classification process. 

Improved sensitivity, specificity, and F1-score are the feature 

merits of the presented research model.  

From the above literature analysis, the following research 

gaps are identified.  

•It is observed that encryption models rely on conventional 

procedures which increases the computation complexity.  

•The traditional solutions which address encryption without 

considering data compression. Handling large volume of ECG 

data requires efficient data compression so that a better 

balance between encryption and data quality can be provided. 

But traditional methods fail to establish such balance due to 

negligence of data compression.  

•Similarly, the most of the ECG signal analysis performed 

using machine learning algorithms. The performance metrics 

of conventional machine learning based models can be 

enhanced if optimal parameters are obtained for the classifier. 

•Various encryption methods are utilized in ECG signals 

security however the utilization of deep learning techniques 

for ECG signal encryption is not explored fully. The 

cryptography methods that are used in recent times increase 

the computational complexity and not fully utilize the 

potential of deep learning algorithms.  

•There is a huge gap in developing an integrated approach 

that handles both encryption as well as classification. Most of 

the existing studies mainly focus either on encryption or 

classification without optimizing the other.  

•There is a lack of integrated approaches that handle both 

encryption and classification efficiently in one streamlined 

workflow. Most studies focus on one aspect without 

optimizing the other in the context of secure ECG data 

transmission. 

Considering these research gaps, an encryption model that 

combines a sparse autoencoder with Chaotic Logistic 

Mapping is presented in this research work to secure ECG 

data. Additionally, an optimized classification model is 

proposed to enhance the ECG signal analysis accuracy. This 

integrated approach aims to provide strong data security and 

attain superior classification performance. 

 

 

3. PROPOSED WORK  

 

The proposed ECG signal analysis is presented in this 

section in two phases. In the first phase, the encryption model 

is presented and the optimized classification model is 

presented in the second phase. Techniques like sparse 

autoencoder and Chaotic Logistic Mapping are used in the 

encryption process. The use of sparse autoencoders for ECG 

signal encryption is relatively novel as sparse autoencoders are 

typically employed in image processing or noise reduction 

tasks. However, their application in encrypting ECG signals 

represents its uniqueness from standard encryption techniques 

like AES or RSA. Similarly, the integration of chaotic logistic 

mapping in the proposed work provides improved security 

features through its dynamic encryption which is sensitive to 

initial conditions. This makes the method highly resistant to 

standard cryptography attacks. The classification process of 

the proposed model includes the genetic algorithm and 

artificial neural network to classify ECG signals to detect the 

current status of the patient. The application of optimization 

techniques specifically genetic algorithms to fine-tune the 

parameters of an artificial neural network (ANN) for ECG 

signal classification is novel and it not only improves accuracy 

but also ensures that the model generalizes well on unseen data 

by preventing overfitting.  

Figure 1 depicts the overview of the proposed encryption 

model, and Figure 2 shows the classification model. 

The proposed model integrates both encryption and 

classification process in ECG signal analysis to ensure better 

signal security and accurate diagnosis of patient’s conditions. 

The ECG signals are initially encrypted using sparse 

autoencoder which is combined with chaotic logistic mapping. 

This encrypted data protects the sensitive information of 

patients during transmission. In the classification phase, the 

encrypted data are initially decrypted and preprocessed to 

ensure the signal integrity and remove noise factors which 
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introduced in signals during transmission process. The 

preprocessed signals are then fed into convolutional neural 

network for feature extraction and then classified using an 

optimized neural network. This combines process ensures the 

better transition of data between decryption and classification, 

also it provides reliable diagnostic results without 

compromising the security. 

 

 
 

Figure 1. Overview of the proposed encryption process 

 

 
 

Figure 2. Overview of the proposed classification process 
 

3.1 Encryption using sparse autoencoder and chaotic 

logistic mapping 
 

The ECG signal encryption starts by encoding the input 

signal using sparse autoencoder. Generally, autoencoders are 

unsupervised learning algorithms which has the ability to 

handle and represent the large amount of unlabeled data. The 

encoding refers to the representation of middle layer with 

respect to the actual data as the input. The middle-hidden 

layers are used to decode the intermediate layer features so that 

actual input can be obtained at the output layer. The 

autoencoder reconstructs the signal considering the 

reconstruction error in the encoding and decoding process. 

Autoencoders reconstruct the signal without any supervisory 

measure since the features of the data can be learned 

automatically which avoids additional processing elements. 

The general structure of autoencoder is similar to feed-forward 

neural network so that the network is trained to learn the input 

features and produce the corresponding outputs rather than 

producing classification outputs.  

The sparse autoencoder (SAE) in the research helps to 

reduce data redundancy and enhancing the efficiency when 

managing complex datasets. In the sparse autoencoder the 

majority of the hidden layer neurons will be inactive. This is 

because of the feasibly saturated condition of the neurons for 

most of the inputs. This results in the sparsity of features so 

that most of the elements of the features are considered as 

close to zero or zero. The sparsity is accomplished by the 

penalty term to mention the sparsity value. To obtain better 

clarity about sparse autoencoder the mathematical model is 

summarized in this section. Figure 3 depicts an illustration of 

sparse autoencoder with input, hidden and output layers.  

Consider the input vector 𝑛 ∈ 𝑥𝐷𝑛  and it is mapped by the 

autoencoder as a new vector 𝑚 ∈ 𝑥𝐷(1)
. The new vector is 

expressed in terms of weight matrix and bias factors as 

follows.  

 

 
 

Figure 3. Sparse autoencoder 

 

 

𝑚(1) = 𝑘(1)(𝑤(1)𝑛 + 𝛽(1)) (1) 

 

where, 𝑘(1): 𝑥𝐷(1)
→ 𝑥𝐷(1)

 represents the transfer function, the 

weight matrix is represented as 𝑤(1) ∈ 𝑥𝐷(1)
 and the bias 

vector is represented as 𝛽(1) ∈ 𝑥𝐷(1)
. The first layer of the 

autoencoder is represented using the superscript (1). In the 

next step the encoded representation 𝑚  is transferred to 

reconstruct the input 𝑛 by the decoder as per the following 

formulation.  

 

�̂� = 𝑘(2)(𝑤(2)𝑛 + 𝛽(1)) (2) 

 

where, 𝑘(2): 𝑥𝐷(2)
→ 𝑥𝐷(2)

 represents the transfer function, the 

weight matrix is represented as 𝑤(2) ∈ 𝑥𝐷(2)
 and the bias 

vector is represented as 𝛽(2) ∈ 𝑥𝐷(2)
. The second layer of the 

autoencoder is represented using the superscript (2). In this 

stage, an adapted cost function is included in the autoencoder 

in the form of a regularization term to introduce the sparsity in 

the autoencoder. The activation functions are averaged to 

estimate the regularization term for each neuron 𝑖  and it is 

expressed as: 

 

�̂�𝑖 =
1

𝑙
∑ 𝑚𝑖

(1)
(𝑛𝑗)

𝑙

𝑗=1

 (3) 

 

�̂�𝑖 =
1

𝑙
∑ 𝑘(𝑤𝑖

(1)𝑇𝑛𝑗 + 𝛽𝑖
(1)

)

𝑙

𝑗=1

 (4) 

 

where, the total number of training samples is represented as 

𝑙, 𝑛𝑗 indicates the input training sample, 𝑤𝑖
(1)𝑇

 represents the 

weight matrix of the first layer in transpose form, 𝛽𝑖
(1)
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represents the neural network bias vector. For high output 

activation function the neuron will be fired however for low 

activation value, only small number of input samples will be 

processed by the neuron which motivates the autoencoder to 

learn the features. So, in this stage, a limitation term is 

included with the activation function output that encourages 

the neuron to learn from the limited features. Similarly, the 

other neurons are motivated to learn from the small features so 

that every neuron will be responsible for individual features of 

the inputs. In order to measure the relativity of the targeted 

activation function 𝜎  and the actual activation function �̂�  a 

sparsity regularize value is introduced. The Kullback-Leibler 

divergence function that defines the difference between the 

distributions are formulated as: 

 

Ω𝑆𝑝𝑎𝑟𝑠 = ∑ 𝐾𝐿(𝜎 ∥ �̂�𝑖)

𝐷(1)

𝑖=1

 (5) 

 

Ω𝑆𝑝𝑎𝑟𝑠 = ∑ 𝜎 log
𝜎

�̂�𝑖

𝐷(1)

𝑖=1

+ (1 − 𝜎) log (
1 − 𝜎

1 − �̂�𝑖

) (6) 

 

where, KL represents the divergence function and 𝜎 

represents the activation function. In order to make the 

distribution close to each other the cost function is decreased 

and it is expressed using mean square error as follows: 

 

𝐸 =
1

𝐿
 

∑ ∑ [(𝑁𝑣𝑙 + �̂�𝑣𝑙)
2

] + [𝜌 ∗ Ω𝑤] + [𝐵 ∗ Ω𝑆𝑝𝑎𝑟𝑠]

𝑉

𝑣=1

𝐿

𝑙=1

 

(7) 

 

where, the first element in the equation indicates the mean 

square error, the second element indicates the layer 

regularization term added to the cost function and the third 

element indicates the sparse regularization. The layer 

regularization value is added to avoid the sparsity 

regularization value being small in the training process when 

there is an increase in weight and decrease in mapped vector 

𝑚 and it is expressed as: 

 

Ω𝑤 =
1

2
∑ ∑ ∑ (𝑤𝑖𝑗

(1)
)

2
𝑣

𝑖

𝑙

𝑗

𝐻

ℎ

 (8) 

 

where, the hidden layers are represented as 𝐻, the total number 

of input samples is represented as 𝐿, the number of classes is 

represented as 𝑉.  

The encoded input is shuffled in the next step as scrambling 

and shuffling are the basic and primary steps of encryption 

process. The encryption process can involve one or more 

actions like scrambling the data, shuffling it, or using a 

combination of both to enhance security. However, instead of 

scrambling, the row-column shuffling is widely preferred as it 

is simple, fast, and efficient. While shuffling the row-column, 

the input is considered as a matrix function with j rows and k 

columns. The secret key is generated by selecting two tables 

in which one table is used for shuffling the rows and another 

table is used for shuffling the columns. Based on the shuffle 

table the rows and columns are shuffled. Similarly, for column 

shuffling is also performed. A simple pseudo random number 

generator is used to explain the shuffling process as the attack 

is irrespective to the shuffling table and the function is 

mathematically expressed as: 

 

𝑥𝑖+1 = 𝑥𝑖
2 + 𝑥𝑖 + 𝑆 (𝑚𝑜𝑑 𝑛) for 𝑖 = 0,1,2 … (9) 

 

where, the random initial seed is represented as 𝑆, 𝑛 indicates 

the large number. The row shuffling table for is 

mathematically formulated as: 

 

𝑎 = 𝑥𝑖(𝑚𝑜𝑑 ℎ) (10) 

 

𝑇𝑟(𝑖) = 𝑎 + 𝑧 (11) 

 

where, 𝑇𝑟  represents the row shuffling table, minimum non-

negative integer is represented as 𝑧. As per Eq. (11), shuffling 

is performed for row 𝑖 for the values 0,1,2. . ℎ − 1. Similarly, 

the column shuffle is also performed to enhance the security 

of the encryption process. Further, the shuffled data is 

encrypted using Chaotic Logistic Mapping. The mathematics 

behind the chaotic theory considers the dynamic behavior 

of the sensitive systems. Chaos theory defines that a minor 

variation in the initial condition will introduce serious 

uncorrelation in the final sequence. When it is applied for the 

encryption process the entire sequence will be unpredictable if 

a suitable bifurcation parameter is selected for the encryption. 

Compared to other encryption procedures, the chaotic theory 

is simple, impregnable, and computationally faster. The 

logistic map which produces two-dimensional chaotic 

sequences that are non-periodic is mathematically expressed 

as: 

 

𝑝(𝑛+1) = 𝜇𝑝𝑛(1 − 𝑝𝑛) (12) 

 

where, the bifurcation parameter is represented as 𝑢 and its 

range is from 1 < 𝜇 < 4 and the initial value is represented as 

𝑝0and the generated sequence elements are {𝑝1, 𝑝2, 𝑝3 … 𝑝𝑛}. 

Generally, the bifurcation range is selected between 3.56 <
𝜇 ≤ 4 to obtain a better chaotic nature. In a completely chaotic 

state, the logistic map can be used as a pseudo-random number 

generator. The methods of probability and statistics can also 

be used to understand the characteristics of chaotic sequences.  

The doubling of sequences completes when the value 𝜇 =
3.569 and the system becomes chaotic. For a small range of 𝜇 

values the system exhibits periodic behavior and this region is 

called a periodic window.  

In the periodic window, an intermittency property is 

exhibited by the logistic map which is similar to periodic 

behavior interrupted by the chaotic bursts. Lyapunov exponent 

method is used to determine the chaotic nature and it is 

explained using the following formulation: 

 

ℒ =
1

𝓃
(ln|𝑓𝜇

′(𝑝1)| + ln|𝑓𝜇
′(𝑝2)| + ⋯ + ln|𝑓𝜇

′(𝑝𝑛)|) (13) 

 

where, the differentiation function of 𝑝 is represented as 𝑓𝜇
′ 

and the successive iterations are given as 𝑝1, 𝑝2, … , 𝑝𝑛 . The 

exponent function can be computed from the samples obtained 

from the near points. Bifurcation occurs in a system when the 

average Lyapunov exponent is zero. The encryption process 

using chaotic logistic mapping considers the image dimension 

and layers. Let us consider an image 𝐼(𝑥, 𝑦, ℓ)  in which 𝑥 

indicates the number of rows and 𝑦 indicates the number of 

columns and the layer is represented as ℓ . A permutation 

process is applied in the encryption process followed by the 
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diffusion process. The diffusion process is illustrated in Figure 

4. The image pixels are rearranged in the permutation process 

as follows: 

 

𝑝𝑖 = [𝑝 × 103] 𝑚𝑜𝑑 𝑥 (14) 

 

𝑞𝑖 = [𝑞 × 103] 𝑚𝑜𝑑 𝑦 (15) 

 

where, 𝑝𝑖  and 𝑞𝑖 are the vectors which are obtained based on 

the condition given in Eq. (12). In the permutation process, the 

image exchanges its pixel with the vectors 𝑝𝑖  and 𝑞𝑖. For the 

diffusion process, Eq. (12) is modified as follows to obtain the 

vector 𝑝𝑘 and it is given as:  

 

𝑝𝑘 = [𝑝 × 1010] 𝑚𝑜𝑑 256 (16) 

 

where, the vector 𝑝𝑘 and permutated matrix are processed to 

obtain the final results.  

The results obtained from the diffusion process are stored in 

𝐶𝑘. The process starts with the input vector 𝑝𝑘and matrix 𝑀𝑘 

with mod 256. The results are recombined with XOR along 

with the delay function 𝐷−2 and 𝐷−3. The final expression is 

given as:  

 

𝐶𝑘 = 𝑝𝑘𝑋𝑜𝑟 

((𝑀𝑘 + 𝑝𝑘)𝑚𝑜𝑑256) … 𝑋𝑜𝑟𝐶𝑘(𝐷−3)𝑋𝑜𝑟𝐶𝑘(𝐷−2) 
(17) 

 

The encryption process increases the diffusion level which 

increases the data security against cryptographic attacks.  

 

 
 

Figure 4. Diffusion process 

 

3.2 Classification using optimized artificial neural network  

 

The classification model presented in the proposed work 

includes Cat Swarm Optimization (CS) and Modified 

Decision Tree (MDT) Classifier for efficient classification. 

The parameters of DT are optimized by the CS to attain 

maximum classification accuracy and minimum loss. Before 

classification, the features are extracted using convolutional 

neural network so that optimal features are processed by the 

classification model to attain better performance. 

 

3.2.1 Feature extraction using convolutional neural network 

(CNN) 

Convolutional neural network (CNN) is a familiar deep 

learning architecture that includes an automated feature 

extraction process and a fully connected network for 

classification process. In this research work, the essential 

features are obtained using CNN and classified using genetic 

optimized artificial neural network instead of fully connected 

network to obtain maximum accuracy. Before feature 

extraction, the ECG signals are preprocessed since the data is 

collected generally from different environments which include 

frequency interference, EMG interference baseline drift, etc., 

So, it is essential to denoise the signal before classification. 

Generally, filters are used in the preprocessing steps to remove 

the noises. In this research work a wavelet transform approach 

is adopted before filtering. The wavelet transform decomposes 

the nonstationary signal into different frequency bands. Then 

an adaptive threshold filter is employed to select the wavelet 

function. These simple preprocessing steps are enough for the 

classification models as the essential features are directly 

extracted by the CNN model.  

The convolutional neural network model used in the 

proposed work includes an input layer, three convolution layer 

and 3 pooling layer and a fully connected layer with a 

classifier. The convolution and pooling layer extract and maps 

the features from input to enhance the learning speed and 

avoids data overfitting. An average pooling layer is preferred 

in the proposed architecture instead of max-pooling to 

preserve the input data features. The architecture of the 

proposed CNN model used for feature extraction is depicted 

in Figure 5. The convolutional kernel convolutes the feature 

map which is obtained from the previous layer. Offsetting the 

convolution kernel and transferring it as a non-linear 

activation function the output of the convolution layer is 

obtained as follows: 

 

 
 

Figure 5. CNN architecture 

 

𝑦𝑖
𝑚,𝑛 = 𝑓 (𝑏𝑖

𝑚,𝑛 + ∑ 𝑤ℎ,𝑖
𝑚,𝑛 ∗ 𝑘𝑖+ℎ−1

𝑚−1,𝑛

𝐻

ℎ=1

) (18) 

 

where, the output of the 𝑖𝑡ℎ neuron in layer 𝑚 is represented 

as 𝑦𝑖
𝑚,𝑛

, the function 𝑓() indicates the activation function. The 

offset of the neuron for layer 𝑚 is represented as 𝑏𝑖
𝑚,𝑛

 and the 

output of the neuron for layer 𝑚 − 1 is represented as 𝑘𝑖+ℎ−1
𝑚−1,𝑛

. 

The convolution kernel for 𝑚𝑡ℎ layer is represented as 𝑤ℎ,𝑖
𝑚,𝑛

.  

The pooling layer in the proposed architecture included next 

to the convolution layer and it reduces the convolution layer 

output data dimension. This helps to reduce the network 

complexity and avoids overfitting. The pooling layer function 

is mathematically expressed as: 

 

𝒪𝑖
𝑚,𝑛 = 𝑓(𝛿𝑖

𝑚,𝑛𝑝𝑜𝑜𝑙 (𝑘𝑖
𝑚−1,𝑛) + 𝑏𝑖

𝑚,𝑛) (19) 

 

where, the 𝑖𝑡ℎ  neuron output for layer 𝑚  is represented as 

𝒪𝑖
𝑚,𝑛

, the function 𝑓() indicates the activation function. The 

offset of the neuron for layer 𝑚 is represented as 𝑏𝑖
𝑚,𝑛

 and the 

sampling weight coefficient is represented as 𝛿𝑖
𝑚,𝑛

. The 

pooling function is represented as 𝑝𝑜𝑜𝑙() and the output of the 

𝑚 − 1 is represented as 𝑘𝑖
𝑚−1,𝑛

. Generally, a dropout layer is 

included before the fully connected layer. Based on the 

probability in the CNN training process, few neurons will be 

disconnected in the dropout layer. This dropout prevents data 

overfitting and enhance the network generalization ability. 

The layer details of proposed CNN architecture are depicted 

in Table 1.  

Further, the obtained features are classified using genetic 

optimized artificial neural network for maximum accuracy. 
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Table 1. Layer details of CNN model 

 

Layers Type Parameters Stride 

Layer 1 Input layer 60×60×2 - 

Layer 2 Conv 1 56×56×2 1 

Layer 3 Pool 1 28×28×2 1 

Layer 4 Conv 2 24×24×4 1 

Layer 5 Pool 2 12×12×4 1 

Layer 6 Conv 3 8×8×8 1 

Layer 7 Pool 3 4×4×8 1 

Layer 8 FC1 16 - 

 

3.2.2 Genetic optimized artificial neural network  

The feature benefits of artificial intelligence technique like 

artificial neural networks are explored by various researchers. 

Though ANN solves complex problems, the slow learning rate 

and local minima are the major demerits observed. In this 

research work, to overcome this optimization models are 

incorporated so that the weight and bias conditions of artificial 

neural networks are adjusted to obtain optimal performance. 

Figure 6 depicts the process flow of optimized Neural Network 

for ECG signal classification. 

 

 
 

Figure 6. Process flow of proposed optimized ANN 

 

So, an objective function or fitness function should be 

obtained. Here the reason for introducing optimization in the 

classification process is to obtain minimum cost network 

which should provide better performance with minimum 

computational parameters. Mean square error (MSE) is 

generally used as network objective function. The error 

function which controls the ANN performances are training 

error (𝑒𝑡𝑟𝑎𝑖𝑛)  and generalization error (𝑒𝑔𝑒𝑛) . Along with 

these error function, architecture criterion (𝒜𝑐) , solution 

consistency (𝒮𝑐)  and learning time constants (𝐿𝑡)  are 

considered to obtain the objective function for the optimized 

ANN model. Mathematically the objective function is 

formulated as:  

 

𝑓𝑜𝑏𝑗 = [𝑒𝑡𝑟𝑎𝑖𝑛 + 𝑒𝑔𝑒𝑛] ∗ [𝒜𝑐] ∗ [𝒮𝑐] ∗ [𝐿𝑡] (20) 

 

The training error (𝑒𝑡𝑟𝑎𝑖𝑛) defines the memorization ability 

of the network. In the training process the learning progress of 

the network is measured and it is formulated as:  

 

𝑒𝑡𝑟𝑎𝑖𝑛 =
∑ |(𝑦𝑡𝑖 − 𝑦𝑟𝑖)/𝑦𝑡𝑖|𝑛

𝑖=1

𝑛
 (21) 

 

where, the absolute relative error average is represented as 

𝑒𝑡𝑟𝑎𝑖𝑛 and the training data vector target value is represented 

as 𝑦𝑡𝑖 . The network response to the training data is represented 

as 𝑦𝑟𝑖  and the total number of training data samples is 

represented as 𝑛. The generalization error is the measure that 

defines the response-ability of the network. The response of 

the network for similar but not identical samples is defined in 

terms of generalization error. Mathematically the 

generalization error is formulated as: 

 

𝑒𝑔𝑒𝑛 =
∑ |(𝑦𝑡𝑖 − 𝑦𝑟𝑖)/𝑦𝑡𝑖|𝑚

𝑖=1

𝑚
 (22) 

 

where, the generalization error is represented as 𝑒𝑔𝑒𝑛 and the 

testing data vector target value is represented as 𝑦𝑡𝑖 . The 

network response to the testing data is represented as 𝑦𝑟𝑖  and 

the total number of training data samples is represented as 𝑚. 

The architecture criteria define the architecture through the 

penalty function. Since smaller architectures avoid data 

overfitting the training phase and increase the generalization 

ability. With minimum neurons and weight factors, the 

training process can be accelerated better than a conventional 

setup. So, in the architecture criteria, the weights and biases 

are considered and it is expressed as an exponential function 

as follows: 
 

𝒜𝑐 = 𝛼𝑒𝑓(𝑘) (23) 

 

where, the total number of biases (k) and weights are 

represented as a function 𝑓(𝑘) and 𝛼 is constant factor and its 

value is 1. The value of 𝑓(𝑘) = 0.01 × 𝑘 . Though the 

generalization error is essential but it is not sufficient to 

persuade the network. since the generalization error provides 

the mean for all testing data. However, there may be a chance 

for low generalization error for special cases when the network 

prediction accuracy is lesser than the desired accuracy. To 

handle this situation a solution criterion is introduced in the 

objective function which computes the prediction error for the 

test data. When outlier cases are observed a penalty is applied 

which produces a high prediction error and based on that the 

network model is redirected to obtain accurate solutions using 

solution criteria. Mathematically the solution criteria are 

formulated as:  

 

𝒮𝑐 = 1 + 𝜓𝑥 + 𝜚𝑦 (24) 

 

where, the test case average quality prediction is represented 

as 𝑥 and the unacceptable quality prediction is represented as 

𝑦. Two adjustment factors are used to define the attributes such 
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as 𝜓  and 𝜚  and its values are considered as 0.33 and 1 

respectively. The learning time constants are introduced 

considering the total epochs which required for training. This 

function is expressed as:  

 

𝐿𝑡 = 𝑎 ∗ 𝑒 + 𝑏 (25) 

 

where, 𝑎 and 𝑏 are the linear function constants and its values 

are 2×10-5 and 1 respectively and the total training epoch is 

represented as 𝑒.  

 

 

4. RESULTS AND DISCUSSION  

 

MIT-BIH Arrythmia Database, open-source databases 

including Arrythmia Database, QT Database, and MIT-BIH 

Supraventricular Arrhythmia Database were used in this work. 

These databases are different in classes of beats, the volume of 

the dataset, number of individual volunteers. These databases 

consist of 2-lead recordings. Above all, they all have 

annotations for every single beat including the type of each 

beat. The proposed encryption and classification of ECG 

signal analysis performance is verified through simulation 

performed in MATLAB 2019 installed in an intel i5 processor 

2.40 GHz with memory of 8GB. The simulation parameters 

for sparse autoencoder convolution neural network and 

artificial neural network are collectively presented in Table 2. 

 

Table 2. Simulation parameter 

 
Algorithm Parameters Range/Value 

Sparse 

Autoencoder 

Number of convolution 

layers 
3 

Number of pooling layers 1-2 

Number of Hidden layers 1 

Total number of Neurons, 

Kernel size 
256 & [3 3] 

Activation function Log sigmoid 

CNN 

Number of convolution 

layers 
3 

Number of pooling layers 3 

Number of Hidden layers 1-2 

Total number of Neurons, 

Kernel size 

1,23,018 & [7 

7] 

Activation function ReLU 

ANN 

Number of convolution 

layers 
5-10 

Number of pooling layers 2-4 

Number of Hidden layers 
2 to 

requirement 

Total number of Neurons, 

Kernel size 

1,22,000 & [5 

5] 

Activation function ReLU 

 

The outputs obtained in the encryption process are depicted 

in Figure 7 which includes the encoded output, shuffled 

output, and encrypted output. The original ECG signal is 

encoded using the autoencoder and shuffled using row-column 

image shuffling.  

Finally using chaotic logistic mapping, the shuffled image 

is encrypted. Results indicate that the encrypted image is looks 

like a noisy image which could not be decrypted by others 

without a proper authentication key. 

The encrypted signal is decrypted by reversing the 

encryption procedure. Initially, decryption is performed using 

chaotic logistic mapping and the decrypted image is again 

shuffled through row-column shuffling procedure to obtain the 

encoded image. Finally, the decoding is performed using 

sparse autoencoder unit and the actual signal is retrieved 

without any losses. The decrypted output is depicted in Figure 

8.  

 

 
 

Figure 7. ECG signal encryption 

 

 
 

Figure 8. ECG signal decryption 

 
The proposed encryption model performance is compared 

with the existing reversible data Hiding technique in terms of 

a number of changing pixel rate (𝑁𝑃𝐶𝑅), Structural Similarity 

Index (SSIM), and Peak to Signal to Noise Ratio (PSNR). The 

mathematical formulation used to calculate the above 

parameters is given as follows: 

 

𝑁𝑃𝐶𝑅 =
∑ 𝐷(𝑖, 𝑗)𝑖𝑗

𝑚 × 𝑛
× 100% (26) 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(𝜇𝑥𝜇𝑦 + 𝑠1)(2𝜎𝑥𝑦 + 𝑠2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑠1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑠2)
 (27) 

 

𝑃𝑆𝑁𝑅 = 10 log10 (
255

√𝑀𝑆𝐸
) (dB) (28) 
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𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑(𝐼(𝑥, 𝑦) − 𝐼′(𝑥, 𝑦))

2
𝑛

𝑥=1

𝑚

𝑦=1

 (29) 

 

where, 𝑚, 𝑛 are the dimensions, 𝐼(𝑥, 𝑦) indicates the normal 

image, 𝐼′(𝑥, 𝑦)  indicates the approximated version, the 

average of 𝑥  and 𝑦  is represented as 𝜇𝑥  and 𝜇𝑦 respectively. 

The variance of 𝑥  and 𝑦  is represented as 𝜎𝑥
2  and 𝜎𝑦

2 . 𝜎𝑥𝑦 

represents the covariance factor and the stabilization factor is 

represented as 𝑠1 and 𝑠2.  

The classification results of the proposed model using a 

genetically optimized artificial neural network is depicted in 

Figure 9. The proposed classification model is aimed to 

classify the ECG signal into four classes such as ‘Patients that 

have abnormal heartbeat’, ‘Myocardial Infarction Patients 

heartbeat’, ‘Normal heartbeat’, and ‘Patients that have History 

of MI’.  

 

 
 

Figure 9. ECG signal classification 

 

The experimentation is performed with 120 instances and 

the respective results are plotted in terms of confusion matrix. 

The actual and predicted classes for the four classes are 

depicted in Figure 10. For simple observation, class 1 is 

assigned for patients that have abnormal heartbeat’, class 2 is 

assigned for ‘Myocardial Infarction patient heartbeat’, class 3 

is assigned for ‘Normal heartbeat’ and class 4 is assigned for 

‘Patient that have a History of MI’. 
 

 
 

Figure 10. Confusion matrix 

 

From the obtained values the parameters such as True 

Positive (TP), True Negative (TN), False Positive (FP), and 

False Negative (FN) values are summarized and depicted as a 

multi-class confusion matrix in Figure 11.  

 

 
 

Figure 11. Multi-class confusion matrix 

Based on the parameters obtained the performance of the 

proposed classification model is evaluated in terms of 

accuracy, sensitivity, specificity, precision, and F1-score. The 

mathematical formulations for the classification parameters 

are given as follows.  

 

Accuracy (𝐴𝑐𝑐) =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑆𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 
 (30) 

 

Sensitivity =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 
 (31) 

 

Specificity =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 
 (32) 

 

Precision =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 
 (33) 

 

F1 − score = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 
 (34) 

 

 
 

Figure 12. Performance metrics 

 

The values obtained for the above parameters in the 

proposed model experimentation are depicted in Figure 12. It 

is observed from the figure maximum accuracy of 96.6% is 

obtained in the classification process which indicates that the 

proposed model effectively classifies the ECG signal and 

identifies the correct status. However, the loss in accuracy is 

due to the variations in the input signal.  

The error percentage obtained by the proposed model is 

0.033 which is 3.3%. The specificity and sensitivity obtained 

by the proposed model are 98.8% and 96.66% respectively. 

Similarly, the obtained precision and F1-score are 96.89% and 

96.69% respectively. Results indicate the performance of the 

proposed model is quite better in terms of all the parameters.  

Table 3 depicts the performance comparative analysis of the 

proposed model with existing models like support vector 

machine, K-Nearest Neighbor, Random Forest, LSTM, 

Ensemble SVM, Genetic with ELM. The results are obtained 

from the research works of Pandey et al. [35] and Diker et al. 

[36]. The results clearly depict the proposed optimized 

artificial neural network (ANN) model's better performance 

over traditional models in ECG signal classification. With a 

better sensitivity of 96.66% and specificity of 98.88% the 

proposed model outperforms existing Support Vector 

Machines which obtain 54.42% as sensitivity and 91.12% as 

specificity. Similarly, when compared to Random Forests 

which attained 53.28% as sensitivity, and 90.45% as 
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specificity the proposed model highlights its superior ability in 

correctly identify true positives and true negatives. When 

compared with advanced models like Ensemble SVM which 

attains 65.26% as sensitivity and 93.25% as specificity the 

proposed model performs better. In the case of LSTM which 

attained 48.09% as sensitivity and 87.95% as specificity the 

proposed ANN exhibits its higher performances by reducing 

false positives and negatives. 

The precision and F1-score of the proposed optimized ANN 

exhibited in Table 3 highlight the maximum performances as 

96.89% and 96.69% respectively which is significantly better 

than the existing methods. The existing SVM model attained 

precision of 51.26% and an F1-score of 52.82% while Random 

Forests model exhibited 56.24% precision and 53.15% as F1-

score which is lesser than the proposed optimized ANN. 

Similarly, the advanced models like Ensemble SVM which 

attains 69.11% as precision, 66.24% as F1-score, and LSTM 

which attains 59.81% as precision and 53.31 as F1-score is 

lesser than the proposed model. The Genetic with ELM model 

attained results 93.72% as precision and 96.77% as F1-score, 

yet it is lesser than the proposed mode. From the results given 

in Table 3, it can be observed that the proposed classification 

model exhibits the maximum performance in terms of 

accuracy compared to all the other conventional classification 

models. Specifically, the proposed model's accuracy of 96.6% 

highlights its better classification performance over existing 

models like kNN, and SVM which attain lower accuracies like 

72.56% and 90.09%. The accuracies of LSTM, RF, Ensemble 

SVM, and Genetic with ELM are 92.16%, 93.45%, 94.40%, 

and 95.0% which is approximately 5%, 4%, 3% and 2% lesser 

than the proposed model. The optimized ANN in the proposed 

model not only increases accuracy but also enhances the 

model's ability to generalize across different ECG signal types 

without overfitting. 

 

Table 3. Performance comparative analysis with existing works 

 
Algorithms Sensitivity (%) Specificity (%) Precision (%) F1-score (%) Accuracy (%) 

Support vector machine 54.42 91.12 51.26 52.82 90.09 

K-Nearest Neighbor 49.09 83.96 37.58 39.16 72.56 

Random Forest 53.28 90.45 56.24 53.15 93.45 

LSTM 48.09 87.95 59.81 53.31 92.16 

Ensemble SVM 65.26 93.25 69.11 66.24 94.40 

Genetic with ELM 100 80.00 93.72 96.77 95.00 

Proposed optimized ANN 96.66 98.88 96.89 96.69 96.66 

 

 

5. CONCLUSION  

 

This research work presents a novel encryption and 

classification of ECG signal using a sparse autoencoder, 

chaotic logistic mapping and genetically optimized artificial 

neural network. The proposed encryption procedure includes 

the deep features through a sparse autoencoder which 

enhances the encryption efficiency. The chaotic logistic 

mapping encrypts the shuffled sparse encoded ECG signal and 

the genetically optimized artificial neural network efficiently 

classifies the signal into four classes. The experimental results 

of the proposed model demonstrate better performance in 

terms NPCR and PSNR for encryption and accuracy for the 

classification process. Conventional reversible data hiding is 

compared with the proposed encryption model to validate the 

superior performance similarly proposed genetically 

optimized artificial neural network performance is compared 

with existing state of art techniques to validate the superior 

performances. Future work could explore hybrid encryption 

algorithms to potentially improve the security performance 

demonstrated in this study.  

 

 

REFERENCES  

 

[1] Moosavi, S.R., Nigussie, E., Levorato, M., Virtanen, S., 

Isoaho, J. (2017). Low-latency approach for secure ECG 

feature based cryptographic key generation. IEEE 

Access, 6: 428-442. 

https://doi.org/10.1109/ACCESS.2017.2766523 

[2] Camara, C., Peris-Lopez, P., De Fuentes, J.M., Marchal, 

S. (2020). Access control for implantable medical 

devices. IEEE Transactions on Emerging Topics in 

Computing, 9(3): 1126-1138. 

https://doi.org/10.1109/TETC.2020.2982461 

[3] Bhardwaj, R. (2022). Hiding patient information in 

medical images: An encrypted dual image reversible and 

secure patient data hiding algorithm for E-healthcare. 

Multimedia Tools and Applications, 81: 1125-1152. 

https://doi.org/10.1007/s11042-021-11445-3 

[4] Arul Murugan, C., KarthigaiKumar, P. (2023). Survey on 

image encryption schemes, bio cryptography and 

efficient encryption algorithms. Mobile Networks and 

Applications, 28(4): 1385-1390. 

https://link.springer.com/article/10.1007/s11036-018-

1058-3 

[5] Pawar, K., Naiknaware, D. (2018). AES encrypted 

wavelet based ECG steganography. International Journal 

of Engineering and Techniques, 4(3): 23-29. 

[6] Xu, H., Hua, K. (2016). Secured ECG signal 

transmission for human emotional stress classification in 

wireless body area networks. EURASIP Journal on 

Information Security, 2016: 5. 

https://doi.org/10.1186/s13635-015-0024-x 

[7] Qiu, H., Qiu, M., Lu, Z. (2020). Selective encryption on 

ECG data in body sensor network based on supervised 

machine learning. Information Fusion, 55: 59-67. 

https://doi.org/10.1016/j.inffus.2019.07.012 

[8] Mboupda Pone, J.R., Çiçek, S., Takougang Kingni, S., 

Tiedeu, A., Kom, M. (2020). Passive–active integrators 

chaotic oscillator with anti-parallel diodes: Analysis and 

its chaos-based encryption application to protect 

electrocardiogram signals. Analog Integrated Circuits 

and Signal Processing, 103: 1-15. 

https://doi.org/10.1007/s10470-019-01557-0 

[9] Raeiatibanadkooki, M., Quchani, S.R., KhalilZade, M., 

Bahaadinbeigy, K. (2016). Compression and encryption 

of ECG signal using wavelet and chaotically Huffman 

code in telemedicine application. Journal of medical 

systems, 40: 73. https://doi.org/10.1007/s10916-016-

566



 

0433-5 

[10] Wang, J., Han, K., Fan, S., Zhang, Y., et al. (2020). A 

logistic mapping-based encryption scheme for wireless 

body area networks. Future Generation Computer 

Systems, 110: 57-67. 

https://doi.org/10.1016/j.future.2020.04.002 

[11] Sivasangari, A., Bhowal, S., Subhashini, R. (2019). 

Secure encryption in wireless body sensor networks. 

Emerging Technologies in Data Mining and Information 

Security, 3: 679-686. https://doi.org/10.1007/978-981-

13-1501-5_60 

[12] Wasimuddin, M., Elleithy, K., Abuzneid, A.S., 

Faezipour, M., Abuzaghleh, O. (2020). Stages-based 

ECG signal analysis from traditional signal processing to 

machine learning approaches: A survey. IEEE Access, 8: 

177782-177803. 

https://doi.org/10.1109/ACCESS.2020.3026968 

[13] Satija, U., Ramkumar, B., Manikandan, M.S. (2017). 

Automated ECG noise detection and classification 

system for unsupervised healthcare monitoring. IEEE 

Journal of Biomedical and Health Informatics, 22(3): 

722-732. https://doi.org/10.1109/jbhi.2017.2686436 

[14] Liu, T.Y., Lin, K.J., Wu, H.C. (2017). ECG data 

encryption then compression using singular value 

decomposition. IEEE Journal of Biomedical and Health 

Informatics, 22(3): 707-713. 

https://doi.org/10.1109/jbhi.2017.2698498 

[15] Chen, S.L., Tuan, M.C., Lee, H.Y., Lin, T.L. (2017). 

VLSI implementation of a cost-efficient micro control 

unit with an asymmetric encryption for wireless body 

sensor networks. IEEE Access, 5: 4077-4086. 

https://doi.org/10.1109/ACCESS.2017.2679123 

[16] Hameed, M.E., Ibrahim, M.M., Abd Manap, N., 

Mohammed, A.A. (2020). A lossless compression and 

encryption mechanism for remote monitoring of ECG 

data using Huffman coding and CBC-AES. Future 

generation computer systems, 111: 829-840. 

https://doi.org/10.1016/j.future.2019.10.010 

[17] Bai, T., Lin, J., Li, G., Wang, H., et al. (2019). A 

lightweight method of data encryption in BANs using 

electrocardiogram signal. Future Generation Computer 

Systems, 92: 800-811. 

https://doi.org/10.1016/j.future.2018.01.031 

[18] Teijeiro, T., Félix, P., Presedo, J., Castro, D. (2016). 

Heartbeat classification using abstract features from the 

abductive interpretation of the ECG. IEEE Journal of 

Biomedical and Health Informatics, 22(2): 409-420. 

https://doi.org/10.1109/jbhi.2016.2631247 

[19] Yang, H., Wei, Z. (2020). Arrhythmia recognition and 

classification using combined parametric and visual 

pattern features of ECG morphology. IEEE Access, 8: 

47103-47117. 

https://doi.org/10.1109/ACCESS.2020.2979256 

[20] Chen, X., Wang, Y., Wang, L. (2018). Arrhythmia 

recognition and classification using ECG morphology 

and segment feature analysis. IEEE/ACM Transactions 

on Computational Biology and Bioinformatics, 16(1): 

131-138. https://doi.org/10.1109/tcbb.2018.2846611 

[21] Kung, B.H., Hu, P.Y., Huang, C.C., Lee, C.C., Yao, 

C.Y., Kuan, C.H. (2020). An efficient ECG classification 

system using resource-saving architecture and random 

forest. IEEE Journal of Biomedical and Health 

Informatics, 25(6): 1904-1914. 

https://doi.org/10.1109/jbhi.2020.3035191 

[22] Venkatesan, C., Karthigaikumar, P., Paul, A., 

Satheeskumaran, S., Kumar, R. (2018). ECG signal 

preprocessing and SVM classifier-based abnormality 

detection in remote healthcare applications. IEEE 

Access, 6: 9767-9773. 

https://doi.org/10.1109/ACCESS.2018.2794346 

[23] Sun, Z., Wang, C., Zhao, Y., Yan, C. (2020). Multi-label 

ECG signal classification based on ensemble classifier. 

IEEE Access, 8: 117986-117996. 

https://doi.org/10.1109/ACCESS.2020.3004908 

[24] Li, Y., Zhang, Z., Zhou, F., Xing, Y., Li, J., Liu, C. 

(2021). Multi-label classification of arrhythmia for long-

term electrocardiogram signals with feature learning. 

IEEE Transactions on Instrumentation and 

Measurement, 70: 2512611. 

https://doi.org/10.1109/TIM.2021.3077667 

[25] Ahmad, Z., Tabassum, A., Guan, L., Khan, N.M. (2021). 

ECG heartbeat classification using multimodal fusion. 

IEEE Access, 9: 100615-100626. 

https://doi.org/10.1109/ACCESS.2021.3097614 

[26] Feng, N., Xu, S., Liang, Y., Liu, K. (2019). A 

probabilistic process neural network and its application 

in ECG classification. IEEE Access, 7: 50431-50439. 

https://doi.org/10.1109/ACCESS.2019.2910880 

[27] Xu, S., Li, J., Liu, K., Wu, L. (2019). A parallel GRU 

recurrent network model and its application to multi-

channel time-varying signal classification. IEEE Access, 

7: 118739-118748. 

https://doi.org/10.1109/ACCESS.2019.2936516 

[28] Xu, S.S., Mak, M.W., Cheung, C.C. (2018). Towards 

end-to-end ECG classification with raw signal extraction 

and deep neural networks. IEEE Journal of Biomedical 

and Health Informatics, 23(4): 1574-1584. 

https://doi.org/10.1109/jbhi.2018.2871510 

[29] Zhai, X., Tin, C. (2018). Automated ECG classification 

using dual heartbeat coupling based on convolutional 

neural network. IEEE Access, 6: 27465-27472. 

https://doi.org/10.1109/ACCESS.2018.2833841 

[30] Huang, J., Chen, B., Yao, B., He, W. (2019). ECG 

arrhythmia classification using STFT-based spectrogram 

and convolutional neural network. IEEE Access, 7: 

92871-92880. 

https://doi.org/10.1109/ACCESS.2019.2928017 

[31] Meng, L., Ge, K., Song, Y., Yang, D., Lin, Z. (2021). 

Long-term wearable electrocardiogram signal 

monitoring and analysis based on convolutional neural 

network. IEEE Transactions on Instrumentation and 

Measurement, 70: 2507711. 

https://doi.org/10.1109/TIM.2021.3072144 

[32] Niu, J., Tang, Y., Sun, Z., Zhang, W. (2019). Inter-

patient ECG classification with symbolic representations 

and multi-perspective convolutional neural networks. 

IEEE Journal of Biomedical and Health Informatics, 

24(5): 1321-1332. 

https://doi.org/10.1109/jbhi.2019.2942938 

[33] Nurmaini, S., Darmawahyuni, A., Rachmatullah, M.N., 

Effendi, J., Sapitri, A.I., Firdaus, F., Tutuko, B. (2021). 

Beat-to-beat electrocardiogram waveform classification 

based on a stacked convolutional and bidirectional long 

short-term memory. IEEE Access, 9: 92600-92613. 

https://doi.org/10.1109/ACCESS.2021.3092631 

[34] Altuve, M., Hernández, F. (2021). Multiclass 

classification of cardiac rhythms on short single lead 

ECG recordings using bidirectional long short-term 

567



 

memory networks. IEEE Latin America Transactions, 

19(7): 1207-1216. 

https://doi.org/10.1109/TLA.2021.9461850 

[35] Pandey, S.K., Janghel, R.R., Vani, V. (2020). Patient 

specific machine learning models for ECG signal 

classification. Procedia Computer Science, 167: 2181-

2190. https://doi.org/10.1016/j.procs.2020.03.269 

[36] Diker, A., Avci, D., Avci, E., Gedikpinar, M. (2019). A 

new technique for ECG signal classification genetic 

algorithm Wavelet Kernel extreme learning machine. 

Optik, 180: 46-55. 

https://doi.org/10.1016/j.ijleo.2018.11.065  

568




