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With the increasing complexity of modern football tactics, how to intelligently and 

accurately analyze tactical changes in real-time during matches has become an important 

research direction. Traditional manual tactical analysis methods are inefficient and 

susceptible to subjective bias. Therefore, using computer vision and deep learning 

technologies for tactical image recognition and analysis in football matches has gradually 

become a research hotspot. Convolutional Neural Networks (CNNs), as a powerful image 

processing tool, have been widely applied in video analysis and player detection. However, 

multi-target motion prediction and tracking management in dynamic football match scenes 

still face significant challenges. Existing research mainly focuses on static image analysis 

or simple player tracking, but the high-frequency image updates, player interactions, and 

occlusion issues in football matches complicate multi-target tracking. While some deep 

learning-based methods for multi-target detection and tracking have made progress, 

challenges remain, such as handling high-density player targets and improving motion 

trajectory prediction accuracy. To address these shortcomings, this study proposes two core 

techniques based on CNNs: first, multi-target motion prediction, which accurately forecasts 

players' future positions based on historical motion data; second, multi-target tracking 

management, which uses deep learning to track and manage each player’s movement 

trajectory in real-time. Through these two techniques, this research aims to improve the real-

time and accuracy of tactical analysis in football matches, providing coaches and analysts 

with more scientific and efficient tactical decision-making support. 
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1. INTRODUCTION

With the increasing complexity and variability of tactics in 

modern football matches, the demand for real-time analysis of 

match dynamics by coaching teams is growing [1-4]. 

Traditional tactical analysis often relies on manual observation 

and recording, which is inefficient and difficult to cover the 

subtle changes in the match. In recent years, with the rapid 

development of computer vision and deep learning 

technologies, using optimized CNNs for tactical analysis in 

football matches has gradually become a research hotspot [5-

9]. These technologies provide new ideas for automated 

tactical analysis, enabling real-time capture of movement 

trajectories and tactical changes on the field, thereby helping 

coaches and players better understand match dynamics and 

improve the accuracy of tactical execution. 

In this context, dynamic tactical image recognition and 

analysis in football matches can not only provide real-time 

feedback for the match but also offer valuable information for 

post-match data analysis and tactical optimization. Therefore, 

how to effectively extract valuable tactical information from 

dynamic videos, especially how to process and analyze multi-

target movement trajectories, has become a key research issue. 

By using CNNs for automatic image recognition and analysis, 

the efficiency of tactical analysis can be improved, and 

subjective errors in manual analysis can be significantly 

reduced, advancing the depth and breadth of football tactical 

research. 

However, existing research methods still have certain 

limitations. Many traditional tactical image analysis methods 

mainly focus on static images or limited motion trajectories, 

and research on multi-target motion prediction and tracking 

management in dynamic tactical images is still insufficient 

[10-14]. Although some deep learning-based multi-target 

detection and tracking methods have made significant progress 

in other fields, they still face numerous challenges in complex 

and dynamic scenarios like football matches [15-18], such as 

high-frequency image frame changes, rapid player 

interactions, occlusion issues, and the complexity of 

movement trajectories [19-23]. Therefore, accurately 

predicting target player movement and performing real-time 

tracking management in complex backgrounds remain key 

challenges in current research. 

This paper addresses these issues through two main research 

tasks. First, it employs CNN-based multi-target motion 

prediction to anticipate player movements in football matches 

by analyzing historical trajectories and tactical changes. 

Second, it focuses on multi-target tracking management to 

ensure real-time and accurate tracking of players in dynamic 

scenes. These approaches aim to enhance the accuracy and 
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efficiency of tactical analysis while supporting future match 

prediction and tactical optimization. 

 

 

2. MULTI-TARGET MOTION PREDICTION FOR 

DYNAMIC TACTICAL IMAGE FRAMES IN 

FOOTBALL MATCHES 

 

2.1 Problem description 

 

The positions of players in a football match constantly 

change on the field, influenced by various factors, including 

the players' own movement, interactions within and outside 

the field, and changes in the camera's viewpoint. Due to the 

high dynamics of football matches and complex tactical 

changes, a single motion model is difficult to adapt to all 

scenarios. Therefore, this paper proposes a motion prediction 

method that combines the Kalman filter with the Enhanced 

Correlation Coefficient (ECC) image registration method, 

aimed at overcoming this challenge. First, for predicting the 

movement trajectory of individual players, the Kalman filter 

can model each player’s motion state and predict based on 

historical position data, addressing the rapid movement and 

position changes between players. As for the deviations 

between video frames caused by camera movement, the ECC 

image registration method is used to calculate the affine vector 

of consecutive frames, adjusting the differences between 

frames to reduce the impact of camera motion and ensure the 

accuracy of the prediction results. 

Specifically, for tactical image analysis in football matches, 

player movement is not merely simple linear or rigid motion; 

it often includes complex non-rigid motions, such as 

acceleration, deceleration, and turning. These motion 

characteristics need to be processed through refined modeling 

and data association methods. With high-quality detection and 

high frame rates, data association methods based on 

Intersection over Union (IoU) can effectively achieve precise 

tracking of target players. However, under low frame rates or 

in complex scenarios, more accurate prediction and 

adjustment of the target player's movement position are 

required. By combining the Kalman filter for predicting non-

rigid motion and ECC for aligning rigid motion, precise multi-

target motion prediction can be achieved in dynamic football 

scenarios. Assume that the 8-dimensional motion state 

[za,zb,x,g,nza,nzb,nx,ng] is represented by t, where it includes the 

target player's center coordinates [za,zb], aspect ratio x, height 

g, and the rate of change of these four variables [nza,nzb,nx,ng]. 

The motion covariance is represented by W, the prior 

covariance by O, and the ECC model by WA. The model can 

be established using the following equation: 
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Assume that the affine vector calculated by ECC is 

represented by Q, the affine vector of the static frame by E, the 

identity matrix by U, and the zero matrix by P. The intensity 

of the camera movement is defined by the following formula: 
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Based on the above definitions, the Kalman filter can be 

adjusted by changing the state transition matrix. Assume that 

the adjusted state transition matrix is represented by Dz, and 

the original time step of the Kalman filter is represented by fs. 

Then, the state of the target player at frame s+1 is: 
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After obtaining Ts+1, the vector [za,zb,x,g] of the position part 

can be further extracted, and the predicted bounding box of the 

target player in the dynamic tactical image frame of the 

football match can be calculated. 

 

2.2 Network architecture 

 

For the multi-target motion prediction problem in dynamic 

tactical image frames of football matches, this study designs a 

network architecture based on Faster-RCNN. By integrating 

CNNs and a motion prediction module, the network achieves 

precise location prediction for multiple football players. 

Specifically, the network architecture combines ResNet50 and 

the Feature Pyramid Network (FPN) as the backbone to fully 

utilize feature maps at different scales, thus improving the 

accuracy of target player detection and motion trajectory 

prediction, as shown in Figure 1. On this basis, the network 

further introduces three functional modules: the regression 

head, the classification head, and the ReID head. The 

regression head refines the target player's bounding box and 

outputs the precise player position. The classification head 

determines whether the image region is a target player or 

background, ensuring the accuracy of detection. The ReID 

head extracts the appearance feature vector of each target 

player for effective association and identification across 

consecutive frames. This structure not only effectively handles 

multiple target players in dynamic scenes but also enables 

long-term tracking and association between target players. 

 

 
 

Figure 1. Basic backbone network structure of the 

constructed model 

 

2.3 Training process 
 

In the training process of the multi-target motion prediction 

algorithm for dynamic tactical image frames in football 

matches, this study simulates a real multi-target tracking task. 

By combining target player detection and motion prediction 

models, the training data's representativeness and diversity are 

enhanced. Unlike traditional methods that train based solely 

on detection tasks, this study adopts a strategy that generates 
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supplementary training samples by predicting the target 

player's position through a motion model. During the training 

phase, N consecutive frames are randomly selected from the 

training dataset as input. The tracking state of the target player 

is initialized using the true label from the first frame, including 

the player's position, velocity, and historical ROI feature set. 

Due to the rapid movement and occlusion of target players in 

football matches, a single target player detection model cannot 

handle all scenarios. Therefore, it is necessary to combine the 

motion model to predict the target player's position, ensuring 

the continuity and stability of tracking. Specifically, the target 

player's position is initialized using a Kalman filter, and 

historical ROI features are input into the ReID head to obtain 

the appearance features of each target player. The specific 

process flow is shown in Figure 2. 

 

 
 

Figure 2. Process flow of ROI features input into the ReID 

Head 

 

When predicting the next frame of dynamic tactical image 

frames in the football match, the losses for three parts are 

computed using the ground truth (GT) label: the loss from the 

Region Proposal Network (RPN) denoted as Mmpz
EOV and 

Mzmt
EOV; the loss from the regression model denoted as Mmpz

R_H 

and Mzmt
C_H; and the loss used to train the ReID head denoted 

as MME. Assuming the factors controlling the influence of 

different sub-losses on the target player function are 

represented by η1, η2, and η3, the overall target player loss 

function for the constructed model is as follows: 

 

( )

( )
1

1 _ _ 3
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 
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In multi-target motion prediction for football matches, 

considering the fast movement and frequent occlusions of 

players on the field, the RPN loss function needs to ensure that 

the network can adapt to the mutual influences between target 

players and the rapid positional changes of target players. To 

meet this demand, in addition to using traditional IoU 

threshold-based positive and negative sample judgments, the 

RPN loss function needs to account for the specificity of 

motion prediction. For instance, in some fast-moving 

scenarios, the predicted position of the target player may differ 

significantly from the real position. In such cases, introducing 

supplementary samples based on the motion model can 

enhance the RPN’s adaptability in these complex scenarios. 

Additionally, since the motion trajectories of target players in 

football matches are highly nonlinear, the model must not only 

correctly identify the bounding box of the target player but 

also predict the potential position of the target player in future 

frames. 

Specifically, for each anchor point, we assign labels based 

on the IoU between the anchor point and the target player's 

bounding box. Positive anchor boxes are of two types: (1) the 

one with the highest IoU with a specific target player's label 

bounding box; (2) the ones with IoU greater than 0.7 with any 

target player's label bounding box. Negative samples are those 

anchor boxes whose IoU with all target player's bounding 

boxes is below 0.3. As with the standard operation of Faster-

RCNN, any anchor point that is neither a positive sample nor 

a negative sample is ignored and not included in the loss 

calculation. Let the index of the anchor point be represented 

by u, the prediction probability of the anchor box containing 

the target player be represented by Ou, the vector of the four 

parameterized coordinates of the predicted bounding box be 

represented by su, and the coordinates of the ground truth box 

associated with the positive anchor be represented by s*
u. The 

log loss between the target player and non-target player classes 

is represented by Mzmt, and the loss function expression is as 

follows: 

 
 

Figure 3. Illustration of the supplementary sample generation process 
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Considering the rapid movement and potential occlusion of 

target players in football matches, the regression model's loss 

function needs to not only accurately predict the target player's 

position but also handle the complexity related to movement. 

Therefore, we construct training samples by combining the 

regions proposed by RPN and the predicted bounding boxes 

generated by the motion prediction module. During training, 

we first use the Ninter interpolation method to generate 

interpolated bounding boxes, which are created in such a way 

that they include both the true target player positions and are 

close to the motion prediction results. This allows us to 

generate more positive samples, especially when the number 

of target players is small, avoiding the problem of insufficient 

negative samples leading to data imbalance. The generation of 

supplementary samples proceeds through four steps: bounding 

box interpolation, negative sample generation, random scaling 

and shifting, and sample filtering. The process flow is 

illustrated in Figure 3. Each potential positive sample 

bounding box is trained alongside multiple negative samples 

to ensure that the model learns effective target player 

localization under various conditions. 

To further enhance the regression model's performance, the 

regression loss function needs to account for both the balance 

between positive and negative samples and the accuracy of 

target player prediction. In dynamic football match scenes, 

players' movement trajectories are usually nonlinear and 

highly time-varying, requiring the regression model to not 

only consider the current frame's target player position but also 

predict the target player's future position. Therefore, in the loss 

function calculation, in addition to the traditional regression 

error, an error metric between the motion prediction results 

and the actual position is also introduced. Specifically, for 

each positive sample, the regression network predicts the 

target player's position and calculates the deviation between 

the predicted bounding box and the true target player. If the 

IoU value between the predicted box and the true target player 

box is below a certain threshold, it is considered a regression 

failure, and the error is penalized through the loss function. 

Additionally, the regression model must handle interactions 

and occlusions between target players, especially in cases of 

overlapping or alternating occlusions, ensuring that the model 

maintains stable prediction performance in a multi-target 

environment. Let the number of samples be represented by 

VSAM, the number of positive samples be represented by VP_S, 

and the probability of the category of target players (football 

players or background) within the sample bounding box be 

represented by Ou. The loss function expression is as follows: 
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In the multi-target motion prediction of dynamic tactical 

image frames in football matches, the design and training of 

the ReID head are crucial for accurately identifying and 

distinguishing players. To improve the stability and 

consistency of the model in recognizing the appearance 

features of the same player across different frames, this study 

adopts a metric loss function to optimize the extraction of 

appearance features in the ReID task. During training, by 

simulating the tracking process of target players, the 

appearance feature vectors are obtained from the true position 

of the target player in each frame, and these features are used 

to enhance the similarity of appearance features of the same 

target player across different time frames, thus strengthening 

their temporal correlation. This approach effectively reduces 

the potential issue of inconsistency in appearance features 

caused by insufficient random sampling in the training data. If 

the appearance features lack sufficient temporal correlation, 

the model is prone to identity switching during inference, 

meaning it could incorrectly identify different players as the 

same player or assign the same player to different identities, 

leading to a decrease in tracking stability and accuracy. 

To further enhance the performance of the ReID head, this 

study adopts the idea of metric loss and makes certain 

adjustments. Specifically, in addition to using position data, 

the proposed scheme in this chapter computes the metric loss 

solely based on the appearance feature vector of the players, 

without involving position information. This is because, in a 

football match, the position data may become unreliable due 

to rapid player movements, positional changes, and 

occlusions. Therefore, this study focuses on judging identity 

consistency through the appearance features of the players. By 

extracting the appearance features of the target player from the 

current frame and comparing them with the appearance 

features from historical frames, the model can further encode 

the target player's appearance feature sequence using a 

Bidirectional Recurrent Neural Network (Bi-RNN). These 

continuous feature sequences are processed by two 

independent Bi-RNNs, producing phase-specific hidden layer 

representations, which are then converted into a soft 

assignment matrix through a fully connected layer. This 

ensures that the appearance features of each target player 

maintain temporal consistency, reducing the risk of 

misidentification. Finally, the soft assignment matrix 

generated through a sigmoid activation function optimizes the 

accurate maintenance of player identities, improving the 

stability and accuracy of tracking each player in multi-target 

motion prediction. 

Specifically, let the appearance feature of the target player 

in the current frame extracted from the target player's labeled 

bounding box be represented by dxoo. The historical 

appearance features of the target player and the average 

historical appearance feature computed by the ReID head are 

represented by dH_A. Let the cosine distance between X and Y 

be denoted as COS(X, Y). The following equation gives the 

calculation of the feature distance between the current frame's 

target player appearance feature and the saved average 

historical appearance feature: 

 

( )( )_

1
1 ,

2
xoo xoo H ADIS COS d d= −  (9) 

 

In multi-target motion prediction for dynamic tactical image 

frames in football matches, the metric loss function of the 

ReID head mainly consists of the Multi-Target Tracking 

Accuracy (FMA) and Multi-Target Tracking Precision (FMP). 

These two indicators help optimize the model's target tracking 
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performance in complex match environments. FMA evaluates 

the overall quality of the tracking results, taking into account 

false positives, missed detections, and identity switches. FMP 

measures the tracking accuracy of the target, calculating the 

error between the predicted position of the target in the current 

frame and the actual position. Let the approximate 

representations of false positives, missed detections, and 

identity switches be 𝐷𝑂̃ , 𝐷𝑉̃ , and 𝑈𝐹𝑇̃ , respectively. The 

matching target players are denoted by L, the binary 

assignment matrix corresponding to the distance matrix FD-A is 

represented by YSO, and the weight factor controlling the 

proportion is represented by εME. The following formula gives 

the calculation: 

 
~ ~ ~

1 MEDO DV UFT
FMA

L

+ +
= −  (10) 
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To effectively compute these metrics, this study constructs 

matrices ZS and ZZ by adding a row or column to the soft 

assignment matrix, respectively filling it with a threshold σ 

and performing the softmax operation, further refining the 

matching relationship between targets. 

 
~ ~
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In the calculation of FMA and FMP, the method in this 

paper avoids saving the binary assignment matrix of each 

frame, instead directly utilizing the target matching 

relationship between the previous frame and the current frame 

to simplify the calculation of IDS. The core strategy here is 

that by only considering the targets that exist in both the 

current frame and the previous frame, the computational 

complexity is reduced, and real-time performance is improved. 

Especially in football matches, player position changes and 

rapid movements may lead to occlusions and mismatches. 

Therefore, by directly calculating the target matching status 

for each frame, the temporal consistency and accuracy of the 

ReID head are ensured. In the specific implementation, this 

study uses the calculation formulas for false positives, missed 

detections, and identity switches, further optimizing the 

matching of target appearance features and positions during 

the target tracking process, thereby improving overall tracking 

accuracy. 

When calculating the distance matrix FD-A, this paper only 

considers the target players that exist in both the current frame 

and the previous frame of the dynamic tactical image of the 

football match, and the order of the target players in FD-A and 

X~
D-A correspond to each other. Let the L1 normalization of the 

flattened matrix be denoted by ||•||1. The matrix of size 

VTA×VTA, with diagonal elements being 0 and other elements 

being 1, is denoted by U-
VT. The simplified calculation formula 

is: 
 

1: ,1:
1TA TA TA

z

V V VUFT Z U=   (13) 

 

Finally, the weight factor ηME for controlling the sub-loss 

ratio is represented, and the metric loss is assumed as follows: 
 

( ) ( )1 1ME MEM FMA FMP= − + −  (14) 

 

The overall training strategy of the proposed network model 

is shown in Figure 4. 

 

 
 

Figure 4. The training strategy of the proposed network model 
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2.4 Multi-target re-identification module 

 

In the multi-target motion prediction algorithm for dynamic 

tactical image frames in football matches, the construction of 

the multi-target re-identification module is crucial because 

players frequently change positions during the match and may 

encounter occlusion, which poses significant challenges to the 

stability and accuracy of target tracking. To effectively address 

these issues, the algorithm constructs a simple yet efficient 

football player re-identification module through the 

appearance features extracted from the ReID head. The core 

idea of this module is to re-identify the target in case of 

tracking loss, utilizing the appearance features. Specifically, 

the algorithm saves the lost tracking information in fixed 

image frames, avoiding a complete loss of the target when it 

disappears. Whenever tracking is lost, the appearance feature 

distance between the lost track and the newly detected target 

is calculated, and re-identification is performed based on a set 

threshold. In this way, even if the target briefly disappears or 

is occluded by another target, re-identification can effectively 

restore the tracking information, thereby maintaining multi-

target tracking stability. 

To further improve re-identification accuracy and avoid 

erroneous re-identification, this study uses the IoU 

intersection-over-union threshold of the bounding box to filter 

out mismatched targets. This means that re-identification will 

only be performed if the IoU of the bounding boxes of the lost 

track and the newly detected target exceeds the set threshold. 

This strategy effectively reduces mismatches caused by targets 

being close in position or having similar appearance, thus 

improving the algorithm's robustness in complex dynamic 

environments. At the same time, the motion model continues 

to be applied to the lost tracking targets to supplement their 

motion information, further improving re-identification 

accuracy and real-time performance. 

 

 

3. MULTI-TARGET TRACKING MANAGEMENT IN 

DYNAMIC TACTICAL IMAGE FRAMES OF 

FOOTBALL MATCHES 

 

In the multi-target tracking management of dynamic tactical 

image frames in football matches, it is crucial to ensure that 

the movement trajectories of players can be accurately tracked 

in each frame and that the system can handle rapid movements, 

occlusions, and interactions between multiple target players. 

To achieve this, the tracking management process in this study 

is divided into five key steps: 

(1) Tracking initialization 

Tracking initialization is the first step in multi-target 

tracking management. In this phase, the first frame of the 

video is selected, and the filtered detection results are treated 

as the tracking positions for each target player, typically 

represented by the player's bounding box os=[a,b,q,g], where 

a and b are the center coordinates of the bounding box, and q 

and g are the width and height, respectively. These positions 

are input into the model's ReID head to extract the appearance 

features of each target player. Based on the initial positions 

and appearance features of the target players, the tracking state 

of each player is constructed, including historical positions gos 

and historical appearance features gds. This information is 

stored as a tracking set T={ts}, where s represents the frame 

index of the target player, and the number of target players is 

S. Through this process, the model can correctly identify and 

track these target players in subsequent frames. 

(2) Motion prediction 

Motion prediction is the second step in tracking 

management. In this phase, based on the historical positions 

gos of the target players, a motion model is used to predict the 

position of each target player in the current frame. To 

accommodate the rapid movement characteristics of players in 

football matches, this study employs the Kalman filter and the 

ECC model for motion prediction. The Kalman filter provides 

state estimation based on the historical positions of the target 

players, while the ECC model corrects the trajectories of the 

target players, ensuring accurate prediction under high-speed 

and complex scenarios. Through motion prediction, the model 

obtains the predicted position oPE
s of the target player in the 

current frame, providing an initial location for further 

bounding box refinement and data association. 

(3) Bounding box refinement 

Bounding box refinement is the third step and can be seen 

as a fine adjustment of the target player's position. Although 

motion prediction provides an initial location for the target 

player, dynamic changes and complex backgrounds in football 

matches often introduce errors in the predicted position. To 

reduce these errors, the predicted position oPE
s is input into the 

regression head, which outputs the refinement coefficients 

[sa,sb,sq,sg], representing the correction amounts for the target 

player's position. Using these regression coefficients, the 

model refines the predicted position, resulting in a more 

accurate position oRE
s for the target player. This process is 

similar to the detection correction step in single-target player 

tracking but is crucial in accurately determining each target 

player's position in complex environments. 

(4) Data association 

Data association is the fourth step, aimed at matching the 

target players with the detections by computing the IoU 

between the predicted positions of each target player and the 

detection results in the current frame. Specifically, the larger 

the IoU value, the more overlap there is between the target 

player and the detection, and the higher the probability of a 

match. Using a greedy matching algorithm, the model selects 

the target player and detection with the highest IoU for 

association and updates the refined position oRE
s of the 

matched target player to its tracking position in the current 

frame. In this process, the ReID head extracts the appearance 

features of the matched target player again and adds them to 

the historical appearance feature set of the target player. For 

target players that do not match any detection, they are marked 

as lost targets and will be handled by the subsequent re-

identification module for re-identification and tracking 

recovery. 

(5) New trajectory addition 

The final step is the addition of new trajectories, which 

primarily handles new detection target players in the current 

frame. If any detections in the current frame do not match any 

existing target players, they are treated as new target players 

and initialized as new tracking trajectories. This process is 

similar to the initialization step. First, the bounding box of the 

new detection target player is used to extract appearance 

features through the ReID head, and then it is added to the 

tracking set as a new tracking state. In the subsequent tracking 

process, the new target player will be continuously tracked and 

associated with other target players to ensure accurate tracking 

of all players. Through this process, the system can effectively 

handle dynamic situations in football matches, ensuring that 

new target players or player switches can be quickly and 
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accurately initialized and tracked. 

Through these five steps, multi-target tracking management 

in dynamic tactical image frames of football matches can 

achieve precise tracking, ensuring that target players maintain 

stable tracking in high-speed and variable match scenarios. 

This method can not only handle rapidly moving players but 

also deal with complex backgrounds and occlusions, providing 

a solid data foundation for subsequent tactical analysis and 

motion prediction. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

From the data of the line chart on the left side of Figure 5, it 

can be seen that under the zone defense tactic, the cumulative 

number of defenders increases significantly over time, 

eventually approaching 400. In contrast, the number of 

defenders under the full-field pressing tactic remains relatively 

low and fluctuates less. The image on the right shows the 

tactical scenes, with different colored boxes marking different 

players, representing the results of tracking management. This 

indicates that in the zone defense tactic, the dynamic changes 

of players are more frequent, and the number of defenders 

gradually increases. This is because the tactic requires constant 

adjustments to defensive zones and player positioning based 

on the ball's location and the offensive team's changes. 

Therefore, multi-target motion prediction and tracking 

management based on CNNs face greater challenges. On the 

other hand, the full-field pressing tactic is relatively stable, 

with little change in the number of defenders, making the 

difficulty of tracking and prediction relatively low. Hence, the 

proposed method shows different levels of adaptability to 

various tactical scenarios with varying complexity. It is more 

adept at handling relatively stable full-field pressing tactics, 

while there is still room for optimization in dealing with the 

more complex and dynamic zone defense tactics. 

From the multiple comparison experiment data in Table 1, 

it can be seen that the proposed method outperforms 

significantly in multi-target tracking accuracy (48.9%), main 

target tracking rate (28.9%), and main target missed rate 

(23.5%). Compared to other methods, the CNN-based multi-

target tracking and motion prediction method presented in this 

study shows a substantial improvement in both accuracy and 

robustness. For instance, compared to Gradient Boosting Tree 

(36.2%) and Regularized Particle Filter (37.5%), the multi-

target tracking accuracy of the proposed method has improved 

by about 12-13 percentage points. At the same time, the false 

alarm count and false negative count are also reduced 

compared to other methods. The proposed method has 2895 

false alarms and 22368 false negatives, which is significantly 

better than methods such as Optical Flow Method (false alarm 

count 7263, false negative count 25146), demonstrating the 

reliability and efficiency of the method in practical 

applications. 

 

 
 

Figure 5. Comparison of test results on different tactics 

 

Table 1. Comparison on public sports event video screenshot dataset 

 

Method 

Multi-Target 

Tracking Accuracy 

(%) 

Multi-Target 

Tracking Precision 

(%) 

Main Target 

Tracking Rate 

(%) 

Main Target 

Missed Rate 

(%) 

False 

Alarm 

Count 

False 

Negative 

Count 

Gradient 

Boosting Tree 
36.2 71.2 12.9 41.2 6658 31526 

Regularized 

Particle Filter 
37.5 71.5 12.5 32.6 5326 32589 

Extended Kalman 

Filter 
37.6 72.6 16.5 42.8 4248 26598 

Optical Flow 

Method 
37.4 71.5 15.4 32.6 7263 25146 

Bidirectional 

LSTM 
43.2 71.2 17.9 25.6 6358 25632 

Monocular Visual 

SLAM 
45.6 75.6 17.8 26.7 4598 25318 

Proposed Method 48.9 76.8 28.9 23.5 2895 22368 
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Table 2. Comparison on dataset provided by professional sports data company 

 

Method 

Multi-Target 

Tracking Accuracy 

(%) 

Multi-Target 

Tracking Precision 

(%) 

Main Target 

Tracking Rate 

(%) 

Main Target 

Missed Rate 

(%) 

False 

Alarm 

Count 

False 

Negative 

Count 

Gradient 

Boosting Tree 
47.6 72.1 16.5 35.2 9136 83265 

Regularized 

Particle Filter 
47.5 72.9 16.5 37.9 5789 85468 

Extended Kalman 

Filter 
48.2 74.6 14.7 33.6 7236 83261 

Optical Flow 

Method 
53.6 77.8 18.9 35.6 3154 78956 

Bidirectional 

LSTM 
53.8 76.2 18.2 36.8 2896 77841 

Monocular Visual 

SLAM 
55.4 78.9 21.6 34.2 2236 75623 

Proposed Method 58.9 78.8 23.5 31.2 2569 67895 

 

Table 3. Comparison on specific scene dataset 

 

Method 

Multi-Target 

Tracking Accuracy 

(%) 

Multi-Target 

Tracking Precision 

(%) 

Main Target 

Tracking Rate 

(%) 

Main Target 

Missed Rate 

(%) 

False 

Alarm 

Count 

False 

Negative 

Count 

Gradient 

Boosting Tree 
51.4 75.1 18.9 32.5 13265 246358 

Regularized 

Particle Filter 
51.8 75.3 22.3 31.2 24658 223157 

Extended Kalman 

Filter 
51.5 75.4 - - 21305 230152 

Optical Flow 

Method 
52.3 77.9 18.9 35.6 12035 235684 

Bidirectional 

LSTM 
52.7 76.2 18.5 35.8 11245 231056 

Monocular Visual 

SLAM 
55.6 77.5 22.3 34.2 8795 223658 

Proposed Method 61.2 77.8 25.6 28.9 12365 210356 

 

Table 4. Ablation analysis results comparison 

 
Target Player Motion 

Prediction 

Bounding Box 

Refinement 

Data 

Association 

Multi-Target Tracking 

Accuracy (%) 

False Alarm 

Count 

False Negative 

Count 

   43.26% 1526 11256 

√   44.58% 1548 11458 

√ √  52.31% 723 11895 

√ √ √ 51.26% 659 12356 

 

Based on the comparison data in Table 2, the proposed 

method demonstrates superior performance in several key 

metrics, including multi-target tracking accuracy (58.9%), 

main target tracking rate (23.5%), and main target missed rate 

(31.2%). Compared to other methods, the proposed method 

leads in multi-target tracking accuracy, especially 

outperforming methods such as Optical Flow Method 

(53.6%), Bidirectional LSTM (53.8%), and Monocular Visual 

SLAM (55.4%). Furthermore, the main target missed rate 

(31.2%) of the proposed method is significantly lower than 

other methods (e.g., Extended Kalman Filter at 33.6%, 

Regularized Particle Filter at 37.9%), indicating better 

tracking stability. Meanwhile, the false alarm count (2569) and 

false negative count (67895) are reduced compared to other 

methods (e.g., Gradient Boosting Tree with 9136 false alarms 

and 83265 false negatives), further proving the efficiency and 

low false alarm capability of the proposed method. 

According to the data in Table 3, the proposed method 

achieves the highest multi-target tracking accuracy (61.2%) 

and main target tracking rate (25.6%) on the specific scene 

dataset, showing a clear advantage over other methods. 

Compared to Gradient Boosting Tree (51.4%), Regularized 

Particle Filter (51.8%), and other traditional methods, the 

proposed method improves multi-target tracking accuracy by 

approximately 9 percentage points. Furthermore, the proposed 

method also performs well in the main target missed rate 

(28.9%), significantly reducing the number of lost targets 

compared to methods such as Regularized Particle Filter 

(31.2%) and Bidirectional LSTM (35.8%). Although the false 

alarm count (12365) is slightly higher than other methods, 

such as Monocular Visual SLAM (8795), the proposed method 

has a significantly lower false negative count (210356), 

indicating its advantage in reducing false negatives and 

maintaining player trajectories more accurately. 

These experimental results further confirm that the CNN-

based multi-target motion prediction and tracking method can 

effectively improve multi-target tracking accuracy and 

stability in specific scenes, especially in complex and dynamic 

football match scenarios. By combining historical motion 

trajectories and tactical changes for prediction, the proposed 

method significantly reduces target loss, improves tracking 

accuracy, and decreases false negative counts, enhancing its 
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reliability in practical applications. Although the false alarm 

count is slightly higher, this result still demonstrates that the 

method can achieve more precise player tracking in real-time 

tracking systems, especially in fast-moving and complex 

scenarios, with broad application prospects. 

From the ablation analysis data in Table 4, it can be seen 

that the integration of different modules significantly impacts 

the multi-target tracking performance. First, target player 

motion prediction alone (43.26% accuracy) provides an initial 

tracking result, but the accuracy is lower, and the false alarm 

count (1526) and false negative count (11256) are relatively 

high. After adding bounding box refinement, the accuracy 

increases to 44.58%, but both false alarms and false negatives 

increase, indicating that bounding box refinement improves 

accuracy while introducing additional computational and 

association complexity. When the data association module is 

added, the tracking accuracy significantly improves to 

52.31%, and both the false alarm count and false negative 

count decrease, suggesting that data association effectively 

optimizes the tracking process. Finally, the combined method 

of motion prediction, bounding box refinement, and data 

association achieves an accuracy of 51.26%, which is slightly 

lower than the result using data association alone, but it 

maintains a relatively balanced false alarm and false negative 

count (659 and 12356), demonstrating the comprehensive 

advantage of the method across all aspects. 

These ablation experiment results indicate that the 

collaborative effect of the three modules—motion prediction, 

bounding box refinement, and data association—is crucial in 

multi-target tracking. While motion prediction alone can 

provide basic target tracking, it lacks precise bounding boxes 

and data association support, leading to higher false alarms 

and false negatives. Bounding box refinement enhances the 

accuracy of target localization but introduces additional errors, 

especially in fast-moving scenes. The optimal result occurs 

when all three modules are combined, where, despite a slight 

decrease in accuracy compared to using data association alone, 

false alarms and false negatives are significantly reduced, 

showcasing the model's robustness in handling complex 

dynamic scenes. 

 

 

5. CONCLUSION 

 

In this paper, two major research tasks were conducted 

using CNNs in football match scenarios: first, multi-target 

motion prediction for dynamic tactical image frames, and 

second, multi-target tracking management. By combining 

historical motion trajectories and tactical changes, the 

proposed method not only predicts the player's motion state in 

the next moment but also tracks each player's motion trajectory 

in real-time and accurately within complex dynamic scenes. 

Experimental results demonstrate that the proposed method 

exhibits excellent performance on both professional sports 

datasets and specific scene datasets, significantly improving 

multi-target tracking accuracy and stability while reducing 

false alarms and false negatives. Ablation experiments further 

validate the collaborative effect of the three modules—motion 

prediction, bounding box refinement, and data association—

demonstrating the robustness of the integrated solution in 

handling complex dynamic scenes. 

Despite the significant achievements in multi-target 

tracking, there are still some limitations. For example, false 

alarms remain relatively high in some scenes, particularly in 

target-dense or rapidly changing scenarios, which may affect 

the overall tracking performance. Additionally, the current 

model still has room for improvement in handling highly 

complex and variable tactical changes, especially when 

dealing with extreme cases and anomalous motion trajectories. 

To address these limitations, future research can focus on the 

following directions for improvement and expansion: first, 

further optimize the balance between false alarms and false 

negatives by adopting more advanced bounding box 

refinement algorithms and data association methods to 

improve tracking accuracy and robustness; second, integrate 

other deep learning techniques, such as reinforcement learning 

and generative adversarial networks, to enhance the model's 

predictive ability and adaptability; and finally, expand the 

diversity and scale of the dataset, especially by incorporating 

more real-world match data and various tactical scenarios, to 

enhance the model's generalization ability and practical 

application effectiveness. Through these improvements, the 

overall performance of the multi-target tracking management 

system can be further enhanced, promoting its widespread 

application in more practical use cases. 
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