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By the end of 2023, there were approximately 220 million elderly patients aged 60 and above 

in China, with the incidence of stroke increasing significantly with age. The incidence rate 

for those over 75 is 5 to 8 times higher than that of individuals aged 45-55. Elderly strokes 

typically have an acute onset and rapid progression, making early detection critical for 

prognosis. Medical research has shown that left ventricular hypertrophy (LVH) on an 

electrocardiogram (ECG) is an independent risk factor for stroke in patients. Therefore, this 

study aims to develop an intelligent diagnostic model for stroke in elderly patients. First, we 

analyze 12-lead ECG data from health check-ups of elderly patients over 60 years old to 

construct a LVH classification model. This model, based on convolutional neural networks 

(CNN) and Transformer networks, extracts ECG features from both local waveform 

characteristics and global long-range dependencies. The fusion of abnormal ECG features 

improves the model's ability to identify specific LVH rhythm types associated with certain 

leads, while the inclusion of global context information optimizes model performance. 

Experiments demonstrate that the model, tested on a self-built dataset, achieves sensitivity, 

specificity, accuracy, and F1 score of 0.81, 0.92, 0.87, and 0.91, respectively, with an AUC 

of 0.91. Subsequently, we integrate MRI image segmentation technology to assist doctors 

in diagnosing lesion areas. We propose an MRI image segmentation model based on an 

improved UNet network with an attention mechanism. Experimental results show that the 

stroke image segmentation algorithm proposed in this study achieves an accuracy of 

98.78%, sensitivity of 92.03%, and specificity of 96.58%. The research in this paper can 

assist doctors in clinical decision-making by first detecting potential elderly LVH patients 

through ECG data and then using MRI image segmentation algorithms to assist in the precise 

diagnosis of stroke lesions, thus avoiding the false positive results that might arise from 

over-reliance on ECG classification algorithms and solving the problem of inaccurate stroke 

lesion identification. 
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1. INTRODUCTION

As of January 17, 2024, data released by the National 

Bureau of Statistics of China show that by the end of 2023, the 

population aged 60 and above in China reached 296.97 million, 

with about 220 million elderly individuals suffering from one 

or more chronic diseases. The incidence of stroke increases 

significantly with age, with the incidence rate of the 

population aged over 75 being 5-8 times higher than that of the 

population aged 45-55. According to related surveys, stroke 

may become the second leading cause of death worldwide, and 

is also the third leading cause of death and disability among 

elderly patients [1]. As the global society ages, how to 

effectively address the health issues of the elderly with limited 

resources has become a global focus. Medical research shows 

that elderly stroke has an acute onset and rapid progression, 

and early identification is crucial for prognosis [2]. If high-risk 

groups for stroke can be identified through routine 

examination methods, it would help in the diagnosis, treatment, 

and prevention of elderly strokes. There are many causes of 

stroke in the elderly. In addition to genetic factors, it may also 

be caused by hypertension, hyperlipidemia, diabetes, 

atherosclerosis, etc. Professional medical research has proven 

that LVH on an ECG is not only an independent risk factor for 

stroke in patients but also an independent predictor of poor 

prognosis in stroke patients [3-5]. ECG examination is widely 

used due to its advantages over other examination methods, 

such as portability, ease of operation, and low cost, and can be 

used for the early screening of LVH. However, physicians face 

a heavy workload when identifying pathological features of 

elderly patients who are potential stroke candidates through 

ECG screening, which can lead to "misdiagnosis" and "missed 

diagnosis." Therefore, there is a need to develop an automated 

diagnostic program for identifying LVH symptoms from 
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ECGs. 

The advancements in artificial intelligence, digital health 

technologies, and mobile devices provide a treatment method 

for preventing and treating elderly stroke, enabling the 

exchange of information and resource sharing between elderly 

patients, medical teams, medical institutions, and medical 

devices in areas such as signal processing, image segmentation, 

and data analysis. Deep learning in artificial intelligence has a 

"quantifiable index" interpretation effect for ECG screening 

diagnostic data. Acharaya et al. [6] developed a 9-layer deep 

CNN to automatically identify five different types of 

heartbeats in ECG signals. Oh et al. [7] proposed an automated 

system based on the combination of CNN and long short-term 

memory (LSTM) for diagnosing arrhythmias from ECG 

signals. Hopkins et al. [8] indicated that LVH prediction based 

on neural networks outperforms traditional ECG diagnostic 

standards. These studies have proven the feasibility of deep 

learning-based analysis of LVH ECG data for early screening 

of elderly strokes. Of course, any disease screening method 

will have false positives. Further stroke diagnostic methods 

include computed tomography (CT) and magnetic resonance 

imaging (MRI), but CT is a risky examination due to the use 

of contrast agents and radiation damage. In contrast, advanced 

MRI technology has the most important advantages over CT, 

such as no radiation exposure, broader tissue coverage, and 

better identification of potentially infarcted and severely 

ischemic tissues. Based on lesion size, location, and vascular 

condition, MRI provides important information about 

prognosis. The annotation and recognition of MRI images also 

depend on the doctor's experience and consume a lot of the 

doctor's energy. Therefore, many scholars have conducted 

research on automatic segmentation algorithms for stroke 

lesion areas in MRI images. For example, Chen et al. [9] 

designed an automated system to diagnose acute ischemic 

stroke. Kamnitsas et al. [10] proposed a 3D CNN for 3D brain 

injury segmentation. Experiments have shown that deep 

learning neural networks, by simplifying the processing 

operations of original adjacent image blocks into internal 

network operations, have effectively completed the task of 

brain lesion segmentation. Based on the above research, this 

paper aims to optimize the algorithm and provide a method for 

the prevention and screening of elderly stroke diseases based 

on deep learning, ECG, and digital MRI imaging technology. 

The method first detects potential elderly LVH patients 

through ECG data, and then uses an intelligent MRI image 

diagnostic algorithm to assist in the accurate diagnosis of 

stroke lesions, avoiding the false positive phenomenon caused 

by over-reliance on ECG classification algorithms and solving 

the problem of inaccurate stroke lesion identification, thus 

assisting doctors in clinical decision-making. 

 

 

2. CONSTRUCTION OF THE INTELLIGENT 

DIAGNOSIS MODEL FOR LVH ON ECG 

 

2.1 Diagnosis of LVH on ECG 

 

LVH on an ECG typically shows abnormal findings such as 

elevated QRS complex voltage, mild prolongation of the QRS 

interval, leftward deviation of the electrical axis, and ST-T 

changes [11]. The specific abnormal signals are presented in 

Table 1. 

 

Table 1. Abnormal ECG findings in LVH 

 
ECG Abnormality Type Specific Signal Presentation Clinical Significance 

Elevated QRS complex 

voltage 

Chest leads: Rv5 or Rv6 > 2.5 mV, Rv5 + Sv1 > 4.0 mV 

(male) or > 3.5 mV (female); Limb leads: RI ≥ 1.5 mV, 

RavL > 1.2 mV, RavF > 2.0 mV, RI + SIII ≥ 2.5 mV. 

Potential myocardial disease: ventricular 

hypertrophy; Left and right bundle branch block; 

Premature ventricular pulsation 

Inspection suggestion: echocardiography (ECHO); 

cardiac magnetic resonance imaging (CMR) 

Mild prolongation of the 

QRS interval 

The duration is extended to 0.10-0.11 seconds, but 

generally less than 0.12 seconds. 

Potential myocardial diseases: premature ventricular 

contractions, ventricular hypertrophy, bundle branch 

conduction block 

Inspection suggestion: echocardiography (ECHO); 

cardiac magnetic resonance imaging (CMR) 

Leftward deviation of 

the QRS axis 
Generally does not exceed a 30-degree deviation. 

Potential myocardial diseases: hypertensive heart 

disease, valvular disease 

Inspection suggestion: echocardiography (ECHO); 

cardiac magnetic resonance imaging (CMR) 

ST-T changes 

Mainly manifested by low, inverted, depressed, upright, 

or elevated ST-T segments in some leads. In leads 

dominated by the R wave, such as V5 and V6, the ST 

segment may show a downward sloping depression 

of > 0.05 mV, with flat or inverted T waves; in leads 

dominated by the S wave, such as V1, upright T waves 

may be observed. 

Potential myocardial diseases: hypertrophic 

cardiomyopathy (HCM), dilated cardiomyopathy 

(DCM), left ventricular densification (LVNC), 

induced arrhythmic right ventricular 

cardiomyopathy, myocarditis (ARVC) 

Inspection suggestion: ECHO, CMR, Sports testing 

24-hour dynamic electrocardiogram 

 

2.2 ECG data collection 

 

This study selects 12-lead ECG signals, which are closer to 

clinical practice, for the classification study of LVH. The 12-

lead ECG provides more comprehensive spatial information, 

covering electrical activities from various directions of the 

heart, making it more advantageous for classifying and 

diagnosing LVH. We retrospectively collected data from 

elderly patients (aged > 60 years) who underwent resting ECG 

examinations in the outpatient and inpatient departments of 

our hospital between January 1, 2023, and December 31, 2023. 

The 12-lead ECG data were batch-exported from the server in 

nECG format. The results were evaluated by two experienced 

medical technicians, and if there were conflicting opinions, a 

third party was invited to make the final decision. The 

screening variables primarily focused on ECG parameters, 

including RaVL, SV3, RI, RaVF, SV1, and RV5 (or RV6) 

voltages, as well as the QRS wave duration. LVH was 
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diagnosed based on the Sokolow-Lyon criteria: SV1 + RV5 

(or RV6 amplitude) ≥ 4.0 mV in men, ≥ 3.5 mV in women, 

RV5 ≥ 2.5 mV, RI + SIII ≥ 2.5 mV [12]. According to this 

standard, the study population was divided into two groups: 

the LVH group and the control group. A total of 2,065 patients 

were included, with 413 diagnosed with LVH (LVH group) 

and 1,652 without LVH (control group). All participants in this 

study provided informed consent. The study data and materials 

were anonymized and kept confidential, intended solely for 

research purposes. 

 

2.3 ECG data preprocessing 

 

Preprocessing involves several processes [13], such as heart 

rate segmentation, resampling, denoising, and normalization, 

to ensure the quality and applicability of the data. 

 

2.3.1 Denoising 

ECG data are susceptible to various interferences during the 

collection process, mainly including the following: 1) Power 

line and harmonic interference, with a frequency of 50 Hz; 2) 

Electromyographic noise and high-frequency noise such as 

power supply ripple introduced by the sampling circuit, 

typically with a frequency above 100 Hz; 3) Respiratory 

baseline drift and DC components introduced by sampling, 

typically distributed in the frequency range of 0-0.7 Hz. 

To eliminate the interferences present in the raw data, this 

paper designs processing algorithms to filter the raw ECG data: 

(1) Second-order IIR notch filter to eliminate power line 

interference 

The IIR filter [14] effectively filters periodic interference 

signals. The transfer function of the IIR notch filter is given 

by: 
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where, z represents the complex variable, and a represents the 

location of the pole, ω0 represents the notch point, the 

calculation method is: 

 

0 02 / spf f =  (2) 

 

where, f0 is the signal frequency and fs are the sampling 

frequency. The notch filter is a band-stop filter, which takes 

advantage of its narrow stopband characteristics to quickly 

attenuate the input signal at a specified frequency point. For 

example, if the ECG waveform is severely interfered with at 

60 Hz, it can be filtered by a 50 Hz notch filter to obtain a 

clearer waveform, as shown in Figure 1. 

 

 
(a) ECG signal with power line interference 

 
(b) Filtered signal after processing 

 

Figure 1. Power line interference removal using a notch filter 

 

(2) Mittag-Leffler filter to remove electromyographic 

interference 

The Mittag-Leffler filter is a nonlinear filter [15] commonly 

used for signals with long memory characteristics. It performs 

excellently when dealing with non-gaussian noise and non-

stationary signals. The Mittag-Leffler function is a part of 

fractional calculus theory and is defined in its single-parameter 

form as: 
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where, Γ is the gamma function and 0<α<1. The double-

parameter form is described by the generalized Mittag-Leffler 

function with parameters α and β, expressed as the following 

power series: 
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The Mittag-Leffler filter is applied using the MATLAB 

function "ML_filter (t, y, sigma, alpha, beta)", which applies 

the Mittag-Leffler filter with exponential forgetting to a time 

series. The comparative effect of filtering out 

electromyographic interference is shown in Figure 2. 

 

 
(a) Electromyographic interference in ECG signal 

 
(b) Filtered signal after processing 

 

Figure 2. Electromyographic interference removal using the 

Mittag-Leffler filter 

487



 

(3) Wavelet denoising to eliminate baseline drift 

interference 

Wavelet transform [16] inherits and develops the localized 

idea of the short-time Fourier transform while overcoming the 

drawback of fixed window size not changing with frequency. 

It provides a "time-frequency" window that changes with 

frequency and is an ideal tool for time-frequency analysis and 

processing of ECG signals. The main feature of wavelet 

transform is that it can fully highlight certain aspects of the 

problem’s characteristics through transformation, performing 

localized analysis of time (or space) frequency. By using 

scaling and translation operations, the signal (or function) can 

be gradually refined in multiple scales, achieving fine time 

subdivision at high frequencies and frequency subdivision at 

low frequencies. The wavelet transform formula used in this 

article is as follows (5). The Morlet wavelet is selected as the 

wavelet basis function, which has better localized 

characteristics in the frequency domain and is suitable for 

processing electrocardiogram vibration signals.  

 

1
( , ) ( )*

t
WT a f t dt

aa


 



−

− 
=  

 
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where, a(scale) controls the scaling of the wavelet function, 

and τ(transition) controls the translation of the wavelet 

function. The comparison effect of filtering baseline drift 

interference is shown in Figure 3. 

 

 
(a) Baseline drift in ECG signal 

 
(b) Filtered signal after processing 

 

Figure 3. Wavelet denoising to remove baseline drift 

interference 

 

2.3.2 Resampling 

ECG signals in the dataset may have different sampling 

frequencies, leading to inconsistent lengths when inputting 

them. Therefore, resampling is necessary during preprocessing 

to ensure that all data have the same sampling frequency, 

making it easier to input data consistently for further analysis. 

 

2.3.3 Heartbeat segmentation 

In some datasets, a single ECG signal may be several 

minutes long, which cannot be directly input into the algorithm 

due to its large size. Therefore, after locating the R-wave, 

heartbeat segmentation is used to cut a long ECG segment into 

several shorter heartbeats. The dataset usually provides the 

location of the R-wave. After identifying the R-wave, 

heartbeat segmentation divides the signal between adjacent R-

waves into individual heartbeat cycles, providing clear signal 

segments for subsequent analysis. If the dataset does not 

provide R-wave locations, localization methods must be 

applied to locate the R-wave before proceeding with further 

operations. 

 

2.3.4 Normalization 

Normalization is generally performed after heartbeat 

segmentation and denoising. It involves scaling the data to a 

small specific range to eliminate amplitude differences in the 

signal, which helps improve the stability and comparability of 

the algorithm. Various methods of normalization include z-

score normalization, min-max normalization, and 

standardization. 

 

2.4 Pre-trained ECG intelligent diagnosis model 

construction 

 

Deep learning technology, through algorithms like deep 

neural networks, can learn feature representations from large-

scale and complex ECG signals and gradually improve its 

ability to recognize abnormal ECGs through continuous 

adjustment and optimization. To fully utilize the multi-angle 

feature information of the twelve-lead ECG, this paper 

constructs a model based on CNN and Transformer networks, 

which extracts ECG features from both local waveform 

characteristics and global long-range dependency features, 

and integrates these features to detect the abnormal 

manifestations of LVH in ECG signals. This improves the 

recall rate for leads with specific LVH arrhythmia patterns. 

Meanwhile, the self-attention mechanism of the Transformer 

[17] can capture long-distance dependencies in the ECG signal, 

providing global contextual information for the model. The 

architecture of the ECG intelligent diagnosis model and the 

ECG signal classification process are shown in Figure 4. 

The entire network structure in the figure above consists of 

three main parts: the lead-aware hierarchical Transformer 

module for extracting long-range dependencies and lead 

features across heartbeats, the attention convolution module 

for extracting local waveform features, and the feature fusion 

classification module for combining the outputs of these two 

modules from different views and outputting classification 

results. The classification process is as follows: the module 

inputs a multi-lead ECG signal, where m represents the 

number of leads and n represents the signal length. First, the 

signal is passed through the lead-aware hierarchical 

Transformer module to obtain the Transformer output, where 

C represents the patch embedding feature dimension. The 

ECG signal is then sent through the convolution attention 

module to obtain the convolution output. The lead-aware 

hierarchical Transformer module uses a self-attention 

mechanism to capture long-range dependency features across 

multiple heartbeats. Additionally, the lead-aware mechanism 

utilizes a window-based method to calculate self-attention 

scores from two views: the time dimension and the lead 

dimension, thereby focusing on the specific differences in the 

ECG signals from different leads. The original 

electrocardiogram signal XRmn is first segmented into 𝑚 ×
𝑛

4
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non overlapping patches by the EGG Patch embedding layer, 

and each patch is converted into a vector of length Cy(0)RC. 

Next, there is a hierarchical structure of 5 stages, with the first 

four stages consisting of several window based Transformer 

blocks and a patch merging layer, and the fifth stage consisting 

only of window based Transformer blocks. Among them, the 

window based Transformer blocks for the first two stages are 

time lead Transformer blocks, while the other stages are time 

Transformer blocks. The convolution attention module 

leverages the inductive bias of the local ECG signal 

waveform's time invariance, using convolutional blocks to 

extract local waveform features. The spatial and channel 

attention module (CBAM) [18] can focus on signal regions 

that are significant for distinguishing heart rhythms. Then, 

generalized mean (GeM) pooling [19] is applied to reduce the 

dimensionality of both the Transformer and convolution 

outputs. Finally, the lead-aware hierarchical Transformer 

output, after generalized mean pooling, and the attention 

convolution module output, after generalized mean pooling, 

are concatenated and passed through a fully connected layer. 

After activation by the Sigmoid function, the classification 

prediction results are obtained. 

 

 
 

Figure 4. ECG signal classification process 

 

2.5 Comparison of pre-training results of different models 

 

In this section, we compare the performance of the model in 

Section 2.4 with other neural network models, and perform 

experimental validation using the PTB-XL public database 

ECG data. PTB-XL is currently the largest public ECG dataset 

[20], containing rich 12-lead ECG records, aimed at solving 

the problems of small-scale open datasets and the lack of 

benchmark tasks. The dataset contains 21,837 clinical 12-lead 

ECG records, all signals collected through 12 standard leads 

(I, II, III, AVL, AVR, AVF, V1, …, V6) connected to the 

subject's right arm and a reference electrode. According to the 

original labels, the 21,837 ECG records in the dataset are 

classified as normal (non-LVH) or abnormal ECGs (LVH, 

including QRS wave voltage elevation, slight prolongation of 

the QRS interval, left axis deviation, ST-T changes, etc.), and 

the dataset is divided into training, validation, and test sets in 

a 6:1:3 ratio. The experiments use the divided training, 

validation, and test sets to evaluate the performance of the 

ECG intelligent diagnostic model in this paper, comparing the 

performance of this model with that of Support Vector 

Machine (SVM) and CNN. The model in this article uses 

Adam optimization algorithm to derive network parameters, 

and the hyperparameter setting selects a network learning rate 

of 0.001, batch size of 128, epochs of 200. The model 

performance evaluation metrics include sensitivity, specificity, 

F1 score, accuracy, and AUC (Area Under the Curve, namely 

the ROC curve area), and the specific experimental results are 

shown in Figure 5. 

 

 

 
 

Figure 5. Comparison of pre-trained results of three different models 
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2.6 Transfer learning model classification result evaluation 

 

To solve the problem of limited sample size in self built 

datasets and help optimize the generalization performance of 

the model, we have done the following work: firstly, the 

dataset is divided into training set, validation set, and test set, 

and randomly divided into 60% training set, 10% validation 

set, and 30% test set. The model is trained on the training set, 

the model parameters are adjusted on the validation set, and 

finally the model's real-world performance is evaluated on the 

test set. Then compare the performance of the PTB-XL dataset 

and the self built dataset to determine whether the model is 

underfitting or overfitting. Compared with the benchmark 

model, draw the accuracy of the training set and validation set 

for different training set sizes, and determine overfitting or 

underfitting through the learning curve. If overfitting is found, 

adjust the regularization parameters, feature set, or polynomial 

features. Simultaneously transfer learning methods [21] are 

used to construct the LVH ECG intelligent diagnosis model. 

By transferring the learned model parameters through weight 

transfer, a new model is trained, accelerating and optimizing 

the learning efficiency of the LVH ECG intelligent diagnosis 

model based on the self-built dataset. First, the self-built 

dataset is randomly divided into 60% training set, 10% 

validation set, and 30% test set. Based on the pre-trained 

model, the classification layer is adjusted to recognize LVH 

and non-LVH ECGs. The transferred LVH ECG intelligent 

diagnosis model is then trained on the self-built dataset, and 

compared with the accurate results marked by doctors. The 

model's sensitivity, specificity, accuracy, and F1 score on the 

test set were found to be 0.81, 0.92, 0.87, and 0.91, 

respectively, with an AUC of 0.91. The specific evaluation 

metrics and model performance are shown in Figure 6. 

 
 

 
 

Figure 6. Transfer learning model classification results on the dataset 
 

3. STROKE MRI IMAGE SEGMENTATION 

ALGORITHM 

 

3.1 MRI image segmentation model based on improved 

UNet network and attention mechanism 

 

The common locations for strokes in elderly patients 

include the internal capsule, basal ganglia, and thalamus, 

typically manifesting as ischemic or hemorrhagic strokes. 

Stroke lesions can be detected through MRI images of the 

brain by professional doctors; however, this process is both 

time-consuming and requires significant expertise. Studies 

have shown that deep learning technologies perform 

excellently in medical image segmentation. However, due to 

privacy concerns, the complexity of annotation processes, the 

skill requirements for experts, and the high cost of using 

biomedical imaging systems, collecting a large dataset of 

elderly stroke MRI images is challenging. Small datasets can 

lead to overfitting during deep learning model training, 

thereby affecting model performance. 

The UNet network structure [22] is particularly effective for 

medical image segmentation due to its U-shaped architecture, 

which densely fuses shallow and deep features. Additionally, 

the model's size is well-suited to match medical image data 

volumes, effectively avoiding overfitting. As a result, UNet 

and its extended methods have become popular in medical 

image segmentation in recent years. Many scholars have 

proposed more efficient improvements on the UNet 

framework, such as UNet++ [23], Attention-UNet [24], ResU-

Net++ [25], and Transformer-based U-shaped models for 

medical image segmentation, like TransUNet [26], Swin-UNet 

[27], and UneXt [28]. Although these methods have achieved 

good results in the field of medical image segmentation, the 

existing networks tend to have numerous parameters and high 

computational complexity. To address this, this paper 

proposes an improved UNet model. It adds a layer 

normalization operation to the Tok-MLP module in the UneXt 

network to prevent overfitting while further learning local 

features. Additionally, part of the single-layer convolution is 

replaced with dilated convolution, utilizing separable dilated 

convolution blocks (SDC blocks) to acquire a larger receptive 

field and multi-scale contextual information without 

increasing computational complexity. Furthermore, a gated 

attention module is added during upsampling to suppress 

irrelevant skip connections, helping the network learn edge 

information and alleviating difficulties in segmenting regions 

with low contrast. The overall architecture of the model is 

shown in Figure 7. The model is a symmetric U-shaped 

network composed mainly of SDC blocks, E-Ghost blocks, 

Tok-MLP blocks, and gated attention modules. In the encoder, 

the SDC blocks replace traditional convolutions with dilated 

convolutions to obtain a larger receptive field, thus learning 

more features and achieving higher segmentation accuracy. In 

the Tok-MLP module, multilayer perceptrons (MLPs) move 

across the feature height and width to gain more positional 

information. In the decoder, upsampling is performed to 

reconstruct medical images. The two MLP blocks in Tok MLP 

undergo axial movement in the width and height directions, 

respectively, and learn features through depthwise separable 

convolution. This module uses skip connections to make MLP 

pay more attention to areas with higher correlation and 

suppress areas with lower correlation. In addition, a layer 

normalization operation is added after the module to prevent 

overfitting. Additionally, attention modules are introduced in 

the skip connections to combine shallow features from the 

encoder with deep features reconstructed by the decoder, 

compensating for lost local features. 
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Figure 7. Stroke MRI image segmentation model for elderly patients 

 

3.2 Model evaluation 

 

3.2.1 MRI image acquisition 

To evaluate the segmentation and experimental results of 

the model, the research team collaborated with hospitals to 

collect the MRI image dataset of elderly stroke patients. The 

acquisition and preprocessing processes were as follows: 

(1) Clean the stroke patients' MRI images provided by the 

hospital, label the lesion areas, and select the required MRI 

image data to build a custom dataset. 

(2) All patient data underwent de-identification to protect 

patient privacy. Under the guidance of doctors, images with 

unclear boundaries, scattered lesion locations, and low 

contrast were excluded. After cleaning, 300 MRI images were 

selected as eligible stroke images, with 240 images used for 

training and 60 for testing. 

(3) MRI medical images were augmented while retaining 

original information, and the input images were resized to 

512×512. 

(4) Expert neurologists manually annotated the lesion areas 

in the stroke MRI images, marking the lesion boundaries in 

red. 

(5) Considering that the data volume was insufficient for 

network training, data augmentation was performed by 

increasing the training dataset size sixfold. Augmentation 

techniques included rotations by 0°, 90°, 180°, and 270° and 

horizontal and vertical flipping. The dataset construction and 

preprocessing process is shown in Figure 8. 

 

 
 

Figure 8. Dataset construction and preprocessing 

 

3.2.2 Experimental results 

(1) Evaluation Metrics  

To evaluate the lightweight and segmentation performance 

of the network model proposed in this paper, five metrics are 

selected for comparison with other algorithms: accuracy, 

sensitivity, specificity, Dice coefficient, and Intersection over 

Union (IoU). We first use TP, FN, FP, TN to represent the true 

positive, false negative, false positive, and true negative of a 

case. Accuracy is commonly used to represent the accuracy of 

the model, and the calculation formula is as follows: 

TP TN
Accuracy

TP FN FP TN

+
=

+ + +
 (6) 

 

Sensitivity refers to the proportion of a detection that 

correctly identifies true positives. When the conditions do 

exist, the ability of the test to accurately indicate the situation. 

In disease screening, high sensitivity means that there are few 

missed patients. The calculation formula is shown as follows: 

 
TP

Sensitivity
TP FN

=
+

 (7) 
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Specificity calculation refers to the proportion of negative 

class samples that the model incorrectly identifies as positive 

to all negative class samples, and generally the lower the better. 

The calculation formula is shown as follows: 

 

FP
Specificity

TN FP
=

+
 (8) 

 

The Dice coefficient is a function used to calculate the 

similarity between two sets and is widely applied in the field 

of medical image segmentation. It is typically used to compute 

the similarity between two samples, with a value range of [0, 

1]. Its calculation formula is: 

 

2

2

TP
Dice

TP FP FN


=

 + +
 (9) 

 

IoU is a detection measure used to assess the foreground's 

intersection-over-union ratio in segmentation tasks. This 

measure reflects the overlap between the detected regions and 

actual labels. IoU is calculated using a confusion matrix, 

which consists of four parts: true positives (TP), true negatives 

(TN), false positives (FP), and false negatives (FN). The 

calculation formula is shown as follows: 

 

TP
IoU

TP FP FN
=

+ +
 (10) 

 

(2) Experimental Results Analysis  

Using U-Net as the baseline network, experiments were 

conducted on the MRI image dataset collected in this study 

and compared with advanced lightweight models such as 

Dense-UNet and Attention-UNet in the image segmentation 

domain. The lesion segmentation and network model 

comparison results are shown in Table 2 and Table 3. To 

evaluate the effectiveness and superiority of the algorithm, all 

networks in the comparative experiments were set with the 

same conditions. 

 

Table 2. Lesion segmentation results 

 
MRI Image Doctor Annotation Model Segmentation 

   

   

   

 

Table 3. Network model comparison experimental results 

 
Model Accuracy Sensitivity Specificity DICE IoU 

U-Net 90.25% 80.45% 90.35% 86.41% 82.13% 

Dense UNet 93.35% 83.65% 92.65% 88.65% 85.42% 

Attention UNet 94.68% 85.54% 94.68% 88.45% 85.12% 

OURS 98.78% 92.03% 96.58% 90.12% 88.46% 

 

 

4. CONCLUSION 

 

This study leverages the non-invasive and rapid advantages 

of ECG technology, with LVH being an independent risk 

factor for stroke in elderly patients. An intelligent diagnosis 

model for elderly stroke is proposed to provide a new approach 

for stroke diagnosis. The model first extracts ECG features 

from local waveform characteristics and global long-range 
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dependency features using CNN and Transformer networks, 

respectively, and integrates the abnormal features of LVH 

ECG signals to improve the recall rate for lead-specific LVH 

arrhythmia types. The transformer’s self-attention mechanism 

captures long-range dependencies in ECG signals, providing 

global contextual information to optimize the model’s 

performance. Experimental results show that the model's 

sensitivity, specificity, accuracy, and F1 score on the self-

constructed dataset are 0.81, 0.92, 0.87, and 0.91, respectively, 

with an AUC of 0.91. These results demonstrate that LVH 

ECG can be used as a detection method for stroke 

classification tasks. To help neurologists obtain a more 

comprehensive view of stroke in patients through MRI 

medical imaging, aiding effective communication with stroke 

patients, this paper proposes an MRI image segmentation 

model based on the improved UNet network and attention 

mechanism. Experimental results show that this model 

achieves improvements over U-Net, Dense UNet, and 

Attention UNet on various evaluation metrics (accuracy, 

sensitivity, Dice coefficient, and IoU). 

However, despite achieving the goals set for this study, 

there is still room for improvement in terms of data and model 

performance. High-quality data and optimized networks are 

crucial not only for designing automated stroke diagnosis 

systems based on ECG but also for stroke segmentation tasks 

in elderly patients. In the custom-built dataset, the focus was 

mainly on classifying LVH patients from normal ones, 

neglecting other factors that may influence the classification 

results, such as other ECG abnormalities in LVH patients or 

chronic diseases in elderly patients (e.g., hypertension and 

diabetes). Regarding stroke MRI images, artifacts and the 

random nature of lesion sizes may affect algorithm accuracy 

and interfere with the network training process, indicating that 

further improvements in model accuracy are still necessary. In 

addition, due to medical ethics and privacy protection reasons, 

we are unable to obtain more types of cases, and the limitations 

of small sample data in the model make it difficult to 

accurately reflect the feature distribution of the entire dataset, 

resulting in fluctuations in training accuracy. At the same time, 

the randomness of lesion areas caused by various chronic 

disease factors in elderly patients has a certain impact on the 

accuracy of the algorithm. In the future, model optimization 

should be considered from three aspects: increasing the 

amount of training data, trying different optimization 

algorithms, and using ensemble learning to combine the 

prediction results of multiple models to improve the accuracy 

and generalization ability of the model. 
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