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In the realm of medical image analysis, the object detection task poses significant challenges 

related to classification and regression. The demand for accurate computer assisted detection 

and diagnosis techniques has prompted researchers to adapt existing object detection 

methodologies to the medical domain. However, prevailing approaches often overlook 

critical factors such as the low resolution inherent in medical images, the pervasive presence 

of noise, and the diminutive size of the objects under scrutiny. The response to these 

challenges, this study presents a novel algorithmic model termed the YOLO-UNET Fusion 

(Combination of YOLOv4-CSP and U-Net segmentation). A self-supervised learning 

strategy, the YOLO-UNET fusion employs a random mask applied to the input image. This 

process serves to reconstruct input features, fostering the acquisition of a more intricate 

feature vector while concurrently mitigating the impact of extraneous noise. To specifically 

address the detection of small objects, the paper introduces a YOLOv4 model. A sliding 

window incorporating a local self-attention mechanism is employed, assigning elevated 

attention scores to the smaller objects within the image. A streamlined single stage object 

detection structure is implemented. This framework predicts a sequence of sets, 

encompassing the position of the bounding box and the corresponding class of the objects 

in focus. The proposed model is put to the test on a benchmark dataset, namely NIH 

DeepLesion, where it outperforms existing methodologies. The suggested approach 

achieves a compromise between speed and accuracy by blending YOLOv4-CSP with U-

Net. This lends to the proposed model appropriate for real-world medical applications. 

Comprehensive experiments were done on datasets to demonstrate the efficacy and 

generalization of the proposed methodology. This offers an in-depth investigation of the 

model's functionality, highlighting its advantages in terms of accuracy and efficiency 

through comparative assessments with cutting-edge techniques with a detection rate of 

89.23%. 
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1. INTRODUCTION

Medical image enhancement plays a crucial role in object 

detection within field of medical imaging. Object detection 

involves identifying and locating specific structures, 

anomalies within medical images. The purpose of medical 

image enhancement in object detection includes: Improved 

visibility of Structures, enhanced feature discriminations, 

optimized preprocessing for object detection, increased 

specificity and sensitivity, and to reduce the noise. The 

purpose of medical image enhancement in object detection is 

to optimize the quality of input images, making it easier for 

detection algorithms to identify and locate specific structures 

or abnormalities. Enhanced images contribute to the overall 

performance, accuracy, and reliability of object detection 

models in the field of medical imaging. As deep learning 

technologies advance, the application of object detection 

techniques in medical diagnostics has become widespread, 

proving particularly beneficial in practical scenarios such as 

the identification of exudates in the retinas of diabetic patients 

[1, 2], before time tumor detection, and the segmentation of 

vascular plaques. In conventional medical diagnosis, the 

identification of lesions within images typically relies on 

manual assessment by physicians. This process is not only 

time-consuming but also demands significant labor, especially 

considering the vast number of images clinicians encounter 

daily. The repetitive nature of this task poses a risk of visual 

fatigue among doctors, potentially leading to critical 

misdiagnoses or missed detections—errors that can have 

severe consequences. Hence, the integration of deep learning 

techniques becomes imperative to empower machines to 

autonomously learn features from images and identify 

irregular areas, extensively contributing to the field of medical 

detection [3, 4]. This work presents an innovative approach 

Traitement du Signal 
Vol. 42, No. 1, February, 2025, pp. 167-176 

Journal homepage: http://iieta.org/journals/ts 

167

https://orcid.org/0000-0001-9750-2127
https://orcid.org/0000-0001-7535-3992
https://orcid.org/0000-0002-1180-7550
https://orcid.org/0000-0003-1569-0537
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420115&domain=pdf


that utilizes the YOLOv4-CSP and U-Net algorithms for better 

object detection for medical photos. Although current 

technologies have demonstrated potential, intrinsic challenges 

including variations in size, shape, and texture frequently 

render it hard for them to accurately recognize things in 

complex medical images. By leveraging the benefits of U-Net, 

which is renowned for being precise in semantically 

segmenting tasks, and YOLOv4-CSP, which is regarded for its 

effectiveness and speed, this study seeks to get around these 

limitations. 

However, the unique challenge in medical image object 

detection lies in the small size of the objects of interest. 

Effectively guiding machines to sift through conditions 

information and accurately pinpointing these small lesions 

remains a critical hurdle in the field. This emphasizes the 

ongoing need for advancements in object detection 

methodologies tailored specifically for medical applications.  

2. BACKGROUND OF THE RELATED WORK

In recent strides in object detection, A work introduced, R–

CNN model which employed a CNN to extract image features 

after obtaining candidate frames and used an SVM for object 

classification [5]. To enhance model accuracy, a recent work 

projected the Faster R–CNN model. Utilizing Region Proposal 

Networks (RPN), this model selected candidate frames, 

requiring only one feature extraction pass for the subsequent 

classification and regression of these frames. The R-CNN 

significantly improved detection speed [6]. 

In the latest breakthroughs, an algorithm DETR, a 

groundbreaking approach that integrates a Convolutional 

Neural Network (CNN) for extracting features [7]. They then 

harnessed the power of a Transformer for both encoding and 

decoding to predict bounding boxes. Shifting gears, 

introduced the Vision Transformer (ViT), a revolutionary 

concept that dissects input images into patches [8]. Utilizing a 

linear embedding layer for transformation and a self-attention 

mechanism, ViT excels in extracting discriminative features. 

Expanding on the ViT paradigm, a new algorithm introduced 

the Swin Transformer, a noteworthy extension that introduces 

the window attention mechanism [9]. This innovative addition 

not only reduces model complexity but also achieves 

remarkable performance gains in both image recognition and 

object detection. 

Comparatively, Transformers exhibit superior scalability 

with large-scale datasets compared to CNNs. The 

intercorrelation of features extracted by Transformers 

provides richer semantic information for models. 

In the realm of medical advancements, a method elevated 

the stability of retinal lesion detection by seamlessly 

integrating domain adaptive capabilities with fully 

convolutional embedding networks [10]. Venturing into the 

three-dimensional landscape, an innovative method applied a 

3-dimensional convolutional neural network to heighten the

accuracy of lesion detection in CT scans [11]. Expanding the

horizons of region proposal networks (RPN), a method called

extended RPN into the 3D space, ensuring the effective

extraction of intricate 3D backgrounds from CT data [12, 13].

Taking a holistic approach to semantic segmentation of 3D

medical images, a new technique introduced CoTr, a cutting-

edge model that amalgamates the advantages of both CNN and

transformer architectures for precise segmentation results

[14]. An innovator brought forth Swin-Unet, a novel approach

that leverages the Swin Transformer as a background encoder 

for medical images, coupled with a symmetric Transformer 

decoder designed for spatial resolution recovery [15]. This 

comprehensive strategy enhances the overall accuracy and 

efficiency of medical image analysis. A new method presented 

TransBTS, leveraging the Transformer architecture for local 

3D contextual history information extraction, excelling in 

tumor segmentation on 3D MRI scans [16]. 

While these methods demonstrate superior performance in 

general object detection, their applicability to small object 

detection in medical images is limited. Medical images often 

contain small, concentrated lesions, making them challenging 

for conventional algorithms due to low clarity and significant 

noise [17]. To address these challenges, the mask mechanism 

proves instrumental in filtering raw data, removing noise, and 

obtaining richer semantic information [18]. Integrating the 

mask mechanism into a hierarchical transformer model 

introduces a novel self-attention paradigm within a dynamic 

sliding window [19]. This innovation empowers the model to 

effectively distinguish nuanced features and concentrate its 

attention on diminutive objects [20]. This innovative approach 

holds promise for effective small object detection in the 

medical field [21]. This paper presents a holistic annotation 

approach for clinically significant findings in diverse CT 

images using radiology reports and label ontology, improving 

automated medical image analysis [22]. The study proposes a 

deep learning-based method for identifying and classifying 

leaf diseases, enhancing agricultural disease detection 

accuracy [23, 24].  

To address resolution challenges, noise, and the detection of 

smaller objects, this paper introduces a U-Net to self-

supervised learning in medical images. By segmenting the 

medical image into patches, applying random sampling and 

masking operations, and utilizing a YOLOv4-CSP as both 

encoder and decoder, the model reconstructs the image, 

effectively filtering out noise. The YOLOv4-CSP model, 

further optimized to include nonoverlapping windows with a 

self-attention mechanism, ensures the model's adaptability to 

the nuances of small object detection areas. This 

comprehensive approach bridges the gap between low-

resolution medical images, noise, and the effective detection 

of small objects. This paper is structured to provide a 

comprehensive overview of deep learning-based object 

detection from various modalities of medical images. 

Following this introduction, subsequent sections will delve 

into the various components of the object detection process. 

These sections will include discussions on pre-processing 

techniques, segmentation, machine learning models, dataset 

considerations, performance evaluation, and potential 

conclusions with future enhancements. 

3. DATASET

3.1 NIH DeepLesion dataset 

The NIH DeepLesion Dataset stands as an extensive 

collection of CT images, meticulously compiled by the 

esteemed U.S. National Institutes of Health (NIH) Clinical 

Center. Within its expansive database, one can find: 32,125 

Axial CT Slices, 10,599 CT Scans (Studies), 4,430 Distinct 

Patients, and 32,740 Lesions. Diverse in nature, the lesions 

encompass an array of types, including but not limited to: 

Lung Nodules, Liver Tumors, and Enlarged Lymph Nodes. 
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Common methods of preparation, such as sampling for 

consistent voxel separation, intensity leveling for consistent 

contrast, and brightness levels, are used to get the data ready 

for deep learning tasks. To improve data diversity and lessen 

class imbalance, data augmentation techniques including 

geometrical and intensity modifications are applied. 

combining these stages shared, deep learning models trained 

on the DeepLesion dataset grow more robust and capable of 

generalizing, which enhances lesion recognition in clinical 

settings and improves reliability as well as accuracy. 

Notably, the dataset boasts over 32,000 annotated lesions, 

offering valuable insights into medical imaging. The 

annotations provide 2D diameter measurements and bounding 

boxes for the lesions. It's important to note that the dataset does 

not include lesion segmentation masks, 3D bounding boxes, or 

fine-grained lesion details. 

Setting itself apart from many existing medical image 

datasets, the NIH DeepLesion Dataset possesses the potential 

to contribute significantly to various medical image 

applications. Its distinctive characteristic lies in its ability to 

detect and classify a multitude of lesion types, unlike 

conventional datasets that may focus solely on one specific 

lesion type.  

This breadth of lesion diversity enhances its utility in 

medical research and applications, marking it as a valuable 

resource for advancing our understanding and capabilities in 

the realm of diagnostic imaging. 

4. MATERIALS AND METHODS

The provided diagram in Figure 1 illustrates the 

architectural framework of the proposed methodology. This 

system is designed to handle input in the form of images, from 

SIH DeepLesion Subset. A deep learning model with a hybrid 

approach that utilizes the U-Net and YOLOv4-CSP 

architectures for identifying objects in medical pictures. 

YOLOv4-CSP is the core of an effective and rapid object 

identification technology that uses the Cross Stage Partial 

(CSP) connections to enhance the scalability and 

representation of features. At the same time, the U-Net 

component is used for fine-grained semantic segmentation, 

thereby enabling precise localization of objects inside the 

identified areas. This uses a multi-task method of learning 

during training, where the model is learned using an 

assortment of regression and classification losses on both 

detecting and segmentation assignments simultaneously. In 

addition, the proposed method incorporates a local self-

attention system into the model design to improve overall 

detection accuracy by enhancing the fusion of features and 

preserving contextual connections at various levels. 

The sequential process involves the following key steps: 

(1) Input processing

The journey commences with the intake of digital images of

medical findings. These images might be any medical images 

with various modalities. 

Figure 1. Architecture diagram of the proposed method 
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(2) Pre-processing 

To optimize the input image for subsequent 

experimentation, this work engages in pre-processing 

techniques. This includes steps such as cropping, binarization 

using the Otsu method, and employing the CLAHE algorithm 

for image enhancement. These processes collectively serve to 

enhance image quality, eliminate salt and pepper noise, and 

smoothen the image, ensuring optimal conditions for object 

detection. 

(3) Segmentation 

The pre-processed image, now refined and prepared, 

undergoes segmentation. This is accomplished through the 

application of a U-NET. The primary objective here is to 

identify the lesions from a medical image. 

(4) Object Detection using YOLOv4-CSP 

The segmented medical image is fed into a YOLOv4-CSP 

algorithm. This sophisticated neural network is adept at object 

detection, leveraging its ability to learn hierarchical 

representations. This enables accurate object identification 

from a medical image. 

 

4.1 Image pre-processing 
 

Cropping: 

Creating a cropped image entails isolating a specific 

rectangular Region of Interest (ROI) from an original image. 

Here's an alternative explanation for the process: 

Procedure for Selecting and Cropping a Region of Interest 

(ROI) in an Image: 

Step 1: Import the Original Image Begin by loading the 

original image into your preferred image processing software. 

This serves as the starting point for the cropping process. 

Step 2: Define the Region of Interest (ROI) specify the ROI 

within the image by providing coordinates that outline a 

rectangular area. These coordinates determine the starting 

point (top-left corner) and dimensions (width and height) of 

the desired ROI. 
 

Binarization using the Otsu Method: 

Otsu's thresholding method is a widely used technique for 

automatically converting grayscale images into binary images. 

It operates by determining an optimal threshold that 

maximizes variance linking two classes of pixel intensities, 

effectively distinguishing foreground and background regions. 

Let's delve into the mathematical foundation of Otsu's 

thresholding algorithm. Consider a grayscale image 

represented by pixel intensities in the range [0, L-1], where L 

is the total number of possible intensity levels. The goal of 

Otsu's algorithm is to discover a threshold value, denoted as T, 

which partitions the image into two classes: 

Background (B): Pixels with intensities less than T. 

Foreground (F): Pixels with intensities greater than or 

equal to T. 

The algorithm maximizes the separation between these two 

classes by leveraging the concept of intra-class variance and 

inter-class variance. 

Step 1: Calculate the histogram of pixel intensities in the 

image, counting the frequency of each intensity value. 

Step 2: Normalize the histogram so that the sum of all 

frequencies is 1. 

Step 3: Compute the Cumulative Distribution Function 

(CDF) and the cumulative mean intensity up to each intensity 

level. 

Step 4: Calculate the global mean intensity of an entire 

image 

Step 5: For each intensity level k from 0 to L-1: 

•Calculate the probabilities of background and foreground 

classes up to intensity level k. 

•Calculate the mean intensities of the background and 

foreground classes up to intensity level. 

•Calculate the between-class variance (𝑠𝑖𝑔𝑚𝑎𝑏
2) using the 

formula: 

 

𝑠𝑖𝑔𝑚𝑎𝑏
2 =wb*wf *(meanb-meanf)2 (1) 

 

where, wb and wf are the probabilities of the background and 

foreground classes, and meanb and meanf are the mean 

intensities of the background and foreground classes. 

Step 6: Find the optimal threshold, The threshold that 

maximizes 𝑠𝑖𝑔𝑚𝑎𝑏
2 corresponds to the optimal threshold T. 

 

Image Enhancement using CLAHE: 

Contrast-Limited Adaptive Histogram Equalization 

(CLAHE) is a widely used algorithm for enhancing the 

contrast in medical images. It's particularly effective in 

scenarios where traditional histogram equalization may lead to 

overamplification of noise. Here's a step-by-step explanation 

of how the CLAHE algorithm is applied to enhance medical 

images: 

I(x,y): Original input image. 

M×N: Size of the image. 

L: Intensity levels (e.g., 256 for an 8-bit image). 

S×S: Size of the contextual region (tile). 

Step 1: Divide the Image into Non-Overlapping Tiles: 

Divide the image I(x,y) into non-overlapping tiles of size 

S×S. 

Step 2: Calculate the Histogram for Each Tile: 

For each tile, calculate the histogram Hk(m,n) for intensity 

levels 00 to L−1. 

 

𝐻𝐾(𝑚, 𝑛) = ∑ ×

𝑚+𝑆−1

𝑥1=𝑚

∑ 𝐼(

𝑛+𝑆−1

𝑦1=𝑛

𝑥1, 𝑦1) (2) 

 

Step 3: Apply Histogram Equalization to Each Tile: 

For each tile, apply histogram equalization to obtain the 

cumulative distribution function (CDF)  

 

𝐶𝑘(𝑚, 𝑛) = 𝑐𝑢𝑚𝑠𝑢𝑚(𝐻𝐾(𝑚, 𝑛)) /𝑆2 (3) 
 

Step 4: Apply Contrast Limiting: 

For each tile, limit the contrast by clipping the values of the 

CDFCk(m,n) above a specified limit (clipLimit). 

 

𝐶𝑘(𝑚, 𝑛) = {
𝑐𝑙𝑖𝑝𝑙𝑖𝑚𝑖𝑡 𝑖𝑓 𝐶𝑘(𝑚, 𝑛) >  𝑐𝑙𝑖𝑝𝑙𝑖𝑚𝑖𝑡

𝐶𝑘(𝑚, 𝑛)                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4) 

 

Step 5: Interpolate Overlapping Tiles: 

Interpolate the contrast-limited histograms of overlapping 

tiles. 

Step 6: Map Original Intensities to Enhanced Intensities: 

For each pixel (x,y) in the image, find the corresponding 

histogram equalized intensity from the interpolated 

histograms. 

 

𝐼enhanced (𝑥, 𝑦) = 𝐶𝑘(𝑚, 𝑛) ⋅ (𝐼(𝑥, 𝑦) + 1) (5) 
 

It enhances the contrast in local regions of an image while 
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avoiding the overamplification of noise by limiting the 

contrast in each tile. 

Figure 2 shows the original input image taken for pre-

processing and Figure 3 shows the output after applying pre-

processing steps cropping and Figure 4 shows the image after 

applying Binarization, Figure 5 shows the output image after 

applying median and Gaussian filtering process. 

 

 
 

Figure 2. Original input image 

 

 
 

Figure 3. Pre-processed image (cropping) 

 

 
 

Figure 4. Pre-processed image (binarization) 

 

 
 

Figure 5. Pre-processing (CLAHE) 

4.2 Image segmentation using U-Net algorithm 

 

The U-Net algorithm, a convolutional neural network 

(CNN) architecture, is widely employed for image 

segmentation tasks, particularly in the domain of medical 

image analysis. Originally crafted for biomedical image 

segmentation, its primary objective is to discern and categorize 

distinct structures within an image, such as organs or tumors. 

Below is a detailed mathematical walkthrough of the U-Net 

algorithm: 

The U-Net architecture is composed of two fundamental 

components: the contracting path (encoder) and the expansive 

path (decoder). 

1. Contracting Path (Encoder): 

Convolutional Block: 

Let X be the input image. 

Convolution: Z1=Conv2D(X, W1)+b1, where W1 is the filter, 

and b1 is the bias. 

Activation: A1=ReLU(Z1). 

Down-sampling (Max-pooling): 

P1=MaxPooling2D(A1). 

Repeat Convolutional Block and Down-sampling: 

Z2=Conv2D(P1, W2)+b2, A2=ReLU(Z2). 

P2=MaxPooling2D(A2). 

Repeat this process to create a contracting path with 

multiple convolutional blocks and down-sampling layers. 

 

 
 

Figure 6. (a) Original image (b) to (j) Segmentation using U-

Net algorithm 
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2. Bottleneck: 

Central Convolutional Block: 

Zn=Conv2D(Pn, Wn)+bn, An=ReLU(Zn). 

3. Expansive Path (Decoder): 

Up-sampling (Transposed Convolution): 

U1=Conv2DTranspose(An, Wup)+bup, where Wup is the 

transposed convolution filter, and bup is the bias. 

Concatenation and Convolutional Block: 

Concatenate feature maps from the corresponding 

contracting path:  

C1=Concatenate(U1,A2). 

Zn+1=Conv2D(C1,Wn+1)+bn+1, An+1=ReLU(Zn+1). 

Repeat Up-sampling, Concatenation, and Convolutional 

Block: 

Repeat this process to create an expansive path with 

multiple up-sampling, concatenation, and convolutional block 

layers. 

4. Output Layer: 

Convolutional Layer with Sigmoid Activation: 

Zoutput=Conv2D(Aexpansive_path,Woutput)+boutput. 

Apply a sigmoid activation function to obtain the final 

output:  

Youtput=Sigmoid(Zoutput). 

Figure 6(a) shows the original image and Figures 6(b)-6(j) 

shows the output of the u-net segmentation algorithm which 

segments all objects from an input image that will be given as 

input to the next stage called object detection. Apart from that 

Figure 7 shows the output of contour-based segmentation 

which will help the experts to identify all the objects in a single 

image. 

 

 
 

Figure 7. (a) Original image (b) Contour-based segmentation 

using U-Net algorithm (c) Binarized image of contour-based 

(d) Inverted image of contour-based for object identification 

analysis 

 

Figure 7(a) shows the original image Figure 7(b) shows the 

contour-based segmentation using the U-Net algorithm, and 

Figures 7(c) and (d) show the binarized and inverted binarized 

image of the contour-based segmented image which will be 

used to identify the objects in the medical images accurately. 

 

4.3 Object detection using YOLOv4-CSP algorithm 

 

Renowned for its real-time object detection prowess, YOLO 

(You Only Look Once) excels by partitioning the input image 

into a grid and making predictions for bounding boxes and 

class probabilities within each grid cell. This unique approach 

allows for swift and accurate identification of objects in a 

single pass, distinguishing YOLO as a leading algorithm in 

real-time computer vision applications. CSPNet (Cross Stage 

Partial Network) is a network module that aims to improve the 

information flow across different stages of a neural network. 

YOLOv4-CSP incorporates CSPNet into the YOLOv4 

architecture to enhance its performance. 

Step 1: Input Image: 

Let I be the input image with dimensions H×W×C, where 

H is the height, W is the width, and C is the number of 

channels. 

Step 2: Backbone Network (CSPDarknet53): 

-The backbone network processes the input image and 

produces feature maps at different scales. 

-Let Fbackbone represent the feature maps generated by the 

backbone. 

Step 3: Feature Pyramid Network (FPN): 

-FPN processes the feature maps from the backbone to 

create a pyramid of features at different scales. 

-Let FFPN represent the feature maps from the FPN. 

Step 4: Head Network: 

-The head network processes the feature maps from FPN to 

make predictions. 

-For each grid cell in the feature map, the head predicts 

bounding box coordinates (x,y,w,h), confidence scores, and 

class probabilities. 

-Let B represent the number of bounding boxes predicted 

per grid cell. 

-Predictions for each grid cell:  
 

P=(x,y,w,h,confidence,class1,class2,...,classN) 

 

where, N is the number of classes. 

Step 5: Anchor Boxes: 

-YOLOv4-CSP uses anchor boxes to improve bounding box 

prediction accuracy. 

-Let A represent the number of anchor boxes. Each anchor 

box has a width and height. 

Step 6: Loss Function: 

The loss function is defined as a combination of localization 

loss, confidence loss, and class loss. 

Localization Loss: 

 

𝐿𝑐𝑜𝑛𝑓 = 𝑦𝑐𝑜𝑜𝑟𝑑 ∑ 1𝑜𝑏𝑗𝑖

𝐵

𝑖=0
 

[(𝑎𝑖 − 𝑎̂𝑖)2 + (𝑏𝑖 − 𝑏̂𝑖)
2

+ (√𝑤𝑖 − √𝑤̂𝑖)
2

+ (√ℎ𝑖 − √ℎ
̂

𝑖)
2

] 

(6) 

 

Confidence Loss:  

 

𝐿𝑐𝑜𝑛𝑓 = 𝑦𝑐𝑜𝑜𝑟𝑑  

∑ 1𝑜𝑏𝑗𝑖

𝐵

𝑖=0
[(𝑐𝑖 − 𝑐̂𝑖)2 + (µ𝑛𝑜𝑜𝑏𝑗 − µ̂𝑖𝑛𝑜𝑜𝑏𝑗𝑖)

2

+ (𝑐𝑖 − 𝑐̂𝑖)2] 

(7) 

 

Class Loss: 

 

𝐿𝑐𝑙𝑎𝑠𝑠 = 𝜆𝑐𝑙𝑎𝑠𝑠 ∑ 1𝑜𝑏𝑗𝑖

𝐵

𝑖=0
 (8) 
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∑ 1𝑜𝑏𝑗𝑖

𝑁

𝑐=1
(𝑝𝑖(𝑐) − 𝑝̂𝑖(𝑐))2

Total Loss: 

L=Lloc+Lconf+Lclass (9) 

where, 𝑜𝑏𝑗𝑖  is an indicator function that is 1 if object i is

present in the grid cell and 0 otherwise. 

Step 7: Non-Maximum Suppression (NMS): 

Following the generation of predictions, a crucial 

refinement step is employed through non-maximum 

suppression, strategically implemented to discard redundant 

bounding boxes. This post-processing technique ensures the 

final selection of the most accurate and relevant bounding 

boxes, enhancing the precision and efficiency of the object 

detection results. 

Step 8: Post-processing: 

-Bounding box coordinates are converted from the grid cell

space to the image space. 

-Predictions below a certain confidence threshold are

filtered out. 

Figure 8 shows the output after applying the YOLOv4-CSP 

object detection algorithm. The output image clearly shows 

that the proposed algorithm after the U-Net segmentation 

process, identifies all the objects in medical images. This will 

help the medical experts and also patients to identify the parts. 

If measurements are taken then if any lesions are there that also 

will be identified very easily by the medical experts. 

Figure 8. Output image of YOLOv4-CSP algorithm with identified objects 

5. RESULTS AND DISCUSSION

The proposed methodology was realized using MATLAB, 

integrating the YOLOv4-CSP and U-Net segmentation 

algorithms. Utilizing Stochastic Gradient Descent (SGD), our 

system underwent an 8-epoch training regimen, initializing 

with a base learning rate of 0.005. Notably, this rate underwent 

a tenfold reduction after the 4th and 6th epochs. The inference 

time for predicting a sample stands at an impressive 30 

milliseconds. 

The experimentation hinged on the NIH DeepLesion 

dataset, encompassing 32,740 lesions. This meticulously 

partitioned the dataset into training (75%), validation (15%), 

and test (10%) sets at the patient level. Throughout the training 

phase, the proposed method incorporated data augmentation 

techniques into each image. These techniques comprised 

random resizing with a ratio of 0.75 to 1.0, random translation 

of -8 to 8 pixels in both the x and y axes, and 3D augmentation. 

Leveraging the unique annotation characteristics of NIH 

DeepLesion, where lesions span multiple slices, our 3D 

augmentation involved randomly shifting the slice index 

within half of the lesion's short diameter, resulting in a robust 

enhancement. 

Each augmentation method, whether in resizing, translation, 

or 3D manipulation, contributed significantly to an augmented 

detection accuracy ranging from 0.25% to 0.45%. To assess 

detection performance, the proposed approach calculates 

sensitivities at 0.5, 1, 2, and 4 false positives (FPs) per image, 

averaging these metrics for a comprehensive evaluation of the 

system's efficacy. 

This comprehensive evaluation strategy provides a robust 

assessment of the system's capabilities across different levels 

of false positives, ensuring a thorough understanding of its 

performance characteristics. To assess the performance of our 

proposed method, both qualitatively and quantitatively, we 

present the results in Figures 8 and 9 and Table 1, respectively. 

Table 1. Detection % based on average sensitivity and 

segmentation distance of proposed methodology 

Method Used 
Detection % 

(Average Sensitivity) 

Segmentation 

(Distance in mm) 

ULDor [20] 69.22 1.47 

MULAN [24] 86.12 1.41 

AutoRECIST [21] 79.73 1.71 

3DCE [22] 75.55 1.97 

Proposed YOLOv4-

CSP with U-Net 
89.23 1.24 

Table 1 emphasizes that segmentation accuracy was 

determined by predicting masks based on GT bounding boxes. 
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This approach ensures that segmentation assessments are 

conducted under the same settings and remain independent of 

detection accuracy, offering a nuanced understanding of the 

model's segmentation capabilities. 

Figure 9. Detection % based on average sensitivity and 

segmentation distance of proposed methodology 

Table 1 demonstrates that the proposed methodology 

outperforms existing approaches in universal lesion detection 

by a significant margin, exceeding them by more than 5% in 

average sensitivity. The conducted ablation study reveals that 

the incorporation of U-Net contributes the most to the 

enhancement in detection accuracy, resulting in an impressive 

89.23%. Moreover, we ensured the robustness of our findings 

by conducting a thorough investigation. By randomly re-

splitting the training and validation sets of the NIH 

DeepLesion dataset five times, our methodology consistently 

outperformed, showcasing the reliability and stability of the 

YOLOv4-CSP and U-Net combination. 

Predicted diameters exhibit a minimal average error when 

compared to the ground truth (GT) diameters. Examining 

Figure 10, it becomes evident that the proposed method excels 

in accurately delineating lesions with well-defined borders. 

However, challenges arise when dealing with lesions featuring 

indistinct or irregular borders, presenting an area for 

improvement in segmentation accuracy. Notably, the detection 

task's impact on segmentation performance is noteworthy, 

potentially serving as a key factor in why the proposed method 

outperforms Auto RECIST, a dedicated framework for lesion 

measurement. This observation suggests that employing a U-

Net may yield superior segmentation results, hinting at the 

potential for further advancements in our approach by refining 

the segmentation component. 

For identifying objects in medical images, the YOLOv4-

CSP with U-Net methods shows the possibility, but there are 

still a few limitations. These include possible complexity 

caused by merging two designs, challenges with precisely 

recognizing small or odd-shaped objects, and variable efficacy 

of the localized self-attention system in capturing contextual 

relationships. Important challenges also include limited 

interpretability, dependence on annotated data, and the high 

computational costs of training such models. It will take 

ongoing research to improve comprehension, optimize 

methods for training, and refine model architecture in order to 

get around these limitations and ensure the dependable and 

clinically useful use of deep learning-powered object 

recognition techniques in medical imaging. 

Figure 10. Output image - Object identification with lesion 

details 

6. CONCLUSION

The integration of YOLOv4-CSP for object detection and 

U-Net (YOLO-UNET Fusion) for segmentation in medical

image analysis has proven to be a promising and effective

approach. The proposed method demonstrated notable success

in lesion detection and segmentation, outperforming existing

frameworks and showcasing competitive results in accuracy,

particularly for lesions with well-defined borders. The

proposed method achieved 89.23% of detection with average

sensitivity. The minimal average error in predicted diameters

compared to ground truth and the robustness of the

methodology across various lesion types highlight its potential

for practical clinical applications. However, challenges persist

in accurately delineating lesions with indistinct or irregular

borders, indicating a focus area for future improvements.

Future work could involve the refinement of the segmentation

component, potentially incorporating advanced architectures

or fine-tuning existing ones, such as exploring variations of U-

Net. Additionally, leveraging larger datasets or diverse

datasets can enhance the model's generalization capabilities.

Investigating the impact of different hyper-parameters and

optimization strategies on model performance may also

contribute to further advancements. Moreover, the integration

of explainability features, such as attention mechanisms, could

enhance the interpretability of the model's predictions,

facilitating its acceptance and trust in clinical settings.

Collaborations with medical experts for feedback and

validation can provide valuable insights for refining the

model's performance and ensuring its relevance in real-world

medical scenarios.
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