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Cardiac disease detection using Magnetic Resonance Imaging (MRI) inputs is encouraged 

using intelligent computer-aided visual processing techniques in smart health. The pixel-

dependent segmentation and classification are automated for disease detection and diagnosis 

in its early stages using conventional image processing. This article introduces a Unit-

Modified SwinTransformer Network (UMSN) for thwarting pixel differentiation issues in 

cardiac MRI analysis. The proposed network is different from the conventional 

SwinTransformer Network by grouping similar dimension pixels from 2×2 to 16×16 

segmentation. In this grouping the analysis layer is trained using unanimous feature 

extractable pixels and the end-of-pixel region is the segment boundary detected. In this 

detection process, the coinciding pixel boundaries with similar features are used for training 

the fundamental segment of the consecutive boundaries. Therefore, the disparity between 

grouped and independent boundary segments is identified as a false rate. This identified unit 

is used for independent training across various labeled classifications from the training 

inputs. Therefore, the disparity between the boundaries or segment pixels is used for 

identifying flaws in the input MRI. 
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1. INTRODUCTION

Magnetic resonance imaging (MRI) is a medical testing 

method that exact structure and condition of internal organs. 

MRI images are commonly used for disease detection, 

treatment, monitoring, and diagnosis processes. MRI images-

based cardiac disease detection and diagnosis processes are 

layered and sequential in healthcare applications [1]. A 

delayed-enhancement (DE) method using MRI images is used 

for cardiac disease detection. The DE method analyses the left 

ventricle (LV) and right ventricle (RV) characteristics for the 

diagnosis [2]. The DE method recognizes the important 

features and patterns from MRI images. The DE method 

maximizes the precision in disease detection for the diagnosis 

[3]. A machine learning (ML) algorithm is also employed for 

cardiovascular disease (CVD) detection. MRI images are used 

here which produce feasible information for disease detection 

[4]. The ML algorithm segments the data which decreases the 

computational complexity of the system. The exact types of 

CVD are also detected which provides feasible diagnosis 

services for the patients [5].  

Image segmentation is a method that segments the images 

based on quantitative biomarkers and pixels. The important 

region of interest (ROI) is segmented using MRI images that 

produce relevant data for cardiac disease detection. It 

segments images into regions such as texture, size, level, color, 

brightness, contrast, and condition of the patient’s heart [6]. 

An MRI-based segmentation method is used for the heart 

disease classification process. The MRI images predict the key 

values that contain important features or disease detection [7]. 

A pixel-wise classification method is used to evaluate the 

volumetric features of the cardiac disease classification [8]. 

The exact types of the disease minimize the complexity ratio 

of the systems. A DE-MRI-based model is also used for the 

cardiac disease classification process. The DE-MRI models 

predict the crucial types of heart diseases of the patients [9]. 

The DE-MRI model also evaluates the multi-scale transformer 

which is presented in MRI images. The actual cause of the 

disease is identified which provides feasible data for further 

diagnosis process [10]. 

The actual goal of the ML algorithm is to increase the 

overall accuracy of the detection process. The ML algorithms 

are used for cardiac disease classification to enhance the 

efficiency in providing treatment for patients [11]. A 

convolutional neural network (CNN) algorithm-based cardiac 

disease classification method is used in healthcare centers. The 

CNN algorithm uses a feature extraction technique is used here 

to extract the features for the detection process [12]. The 

extracted features contain key heart structures from MRI 

images. Both right and left ventricle cavities and 

functionalities of the hearts for detection and classification 

processes [13]. The CNN algorithm-based method increases 

the accuracy of cardiac disease detection. A deep learning (DL) 

algorithm-based automatic segmentation method is used for 

the cardiac disease detection process [14]. The DL algorithm 

identifies the regional cardiac functions to segment the MRI 

images. The DL algorithm gathers the necessary information 

from MRI images for disease detection. The MRI images are 

Traitement du Signal 
Vol. 42, No. 1, February, 2025, pp. 129-141 

Journal homepage: http://iieta.org/journals/ts 

129

https://orcid.org/0000-0003-2203-7317
https://orcid.org/0000-0002-6325-9947
https://orcid.org/0000-0001-9318-5953
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420112&domain=pdf


 

used here as inputs that provide exact content for the disease 

detection process [15]. The prime contributions are: 

• Designing a UMSN for addressing the pixel 

differentiation problem in diagnosing cardiac diseases through 

MRI inputs 

• Performing a dimension-based segmentation to improve 

the accuracy in detecting disease infections with boundary 

differentiation 

• Performing a MATLAB-based experimental assessment 

and metric-based comparative assessment for the proposed 

validation. 

 

 

2. RELATED WORKS 

 

Li et al. [16] proposed a weighted decision map based on a 

convolutional neural network (CNN) framework for cardiac 

magnetic resonance (MR) segmentation. The proposed 

framework is mainly used to segment the complex issues that 

are presented in MR images. A map extractor is used in the 

framework to categorize the pixel for the segmentation. The 

proposed framework enhances the feasibility ratio of the 

image segmentation. 

Xu et al. [17] developed a boundary mining with learning 

for myocardial infraction segmentation. A semi-supervised 

learning algorithm is used to classify the segments as per the 

condition of the patients. The semi-supervised learning 

algorithm analyses both spatial and temporal features which 

produce optimal values for the segmentation. The developed 

method reduces the time consumption level in the infraction 

segmentation. 

Wang et al. [18] introduced an improved U-net model for 

segmentation in multi-sequence cardiac MR images. The main 

aim of the model is to segment the features of MRI images. 

The introduced model uses a selective kernel (SK) module to 

evaluate the features that contain data for the segmentation. 

The introduced model decreases the energy consumption ratio 

in the computation. 

Su et al. [19] proposed a new two-stage deep learning (DL) 

model, named Res-DUnet for cardiac right ventricular (RV) 

segmentation. It detects the short-axis slices from the given 

MRI images. It also identifies the region of interest (ROI) of 

RV from the images. It decreases the complexity of image 

segmentation. The proposed Res-DUnet model increases the 

performance and feasibility range of segmentation. 

Cui et al. [20] designed a new attention-guided U-net 

architecture using short-axis MRI images for cardiac 

segmentation. The designed model is mostly used for ventricle 

segmentation which detects the multi-scale features of the 

images. The MRI images minimize the time and energy 

consumption in the segmentation and computation processes. 

The designed model increases the accuracy of the cardiac 

segmentation. 

Wang et al. [21] developed a multi-scale deep learning 

network (MMNet) for the left ventricular (LV) segmentation 

process. It is mainly used for LV segmentation based on 

cardiac MRI images. A feature extraction technique is 

employed to extract the features and patterns of cardiac 

ventricular. The developed MMNet maximizes the accuracy in 

LV localization and segmentation processes.  

Li et al. [22] introduced a triple attention-based multi-

modality (TAUNet) model for cardiac pathology segmentation. 

The introduced model analyses the exact relationship between 

modalities and attention. A fusion encoder is used here to 

extract the modality features from cardiac MRI images. The 

TAUNet model reduces the time consumption of the cardiac 

pathological. The introduced model improves the performance 

level in cardiac pathology. 

Abdelrauof et al. [23] proposed a lightweight localization 

based on U-Net for the segmentation process. It is a CNN-

based framework to measure the features from cardiac MRI 

images. The CNN-based framework detects the ROI values for 

the ventricular segmentation. The proposed framework 

maximizes the accuracy and feasibility of cardiac 

segmentation. 

Joshi et al. [24] designed a dense deep transformer model 

for medical image segmentation. The designed model uses a 

CNN algorithm to identify the features from cardiac 

segmentation. The optimal features and patterns of the 

ventricular are extracted from the images that minimize the 

computation cost. Experimental results show that the designed 

model enhances the performance range of the segmentation.  

Wang et al. [25] introduced a two-stage progressive 

unsupervised domain adaptive network (TSP-UDANet) for 

cardiac segmentation. The actual goal of the model is to reduce 

the domain shift ratio during the segmentation process. The 

actual target domains are evaluated based on ROI from the 

given MRI images. The introduced TSP-UDANet model 

provides effective segmentation services for the cardiac 

diagnosis process. 

Zou et al. [26] developed a new LV segmentation approach 

using tagged MRI images. Local sine-wave modeling 

(SinMod) identifies the key characteristics of cardiac 

ventricular. The identified characteristics produce feasible 

information for LV segmentation. It predicts the exact location 

of cardiac diseases and enhances the efficiency of the 

diagnosis process. When compared with other approaches, the 

developed approach enlarges the accuracy of the LV 

segmentation. 

Chen et al. [27] proposed a multi-scale dilation convolution 

module-based segmentation method. The proposed method is 

commonly used for atrial septal defect (ASD) detection based 

on MRI images. The proposed method uses a k-means 

algorithm which evaluates the information for the 

segmentation. Experimental results show that the proposed 

method improves the overall feasibility and significance range 

of the segmentation process. 

Zhang et al. [28] introduced an automatic segmentation 

based on a fully convolutional dense (FCD) network. A dilated 

convolution algorithm is also used for the segmentation which 

minimizes the latency in the computation. The introduced 

method uses cardiac MRI images that produce optimal data for 

further processes. The introduced method enhances the 

performance and reliability level of the network. 

Hu et al. [29] proposed a fully automatic segmentation 

method using a deeply supervised network. The proposed 

method detects the both right and left large-scale cardiac for 

the segmentation process. It segments the heart issues based 

on the severity level of the patients. It also minimizes the 

computational complexity ratio in the right and left ventricular 

segmentation process. The proposed method enlarges the 

precision of the cardiac segmentation process.  

Yan et al. [30] developed a new SegNet-based model for the 

LV segmentation process using MRI images. The main aim of 

the model is to diagnose the myocardial disease of the patients. 

It detects the necessary ROI from the given cardiac MRI 

images. The ROI eliminates the unwanted pixels during 

analysis and segmentation processes. The developed model 
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provides optimal technical support to enhance the feasibility 

of the segmentation.  

Singh et al. [31] introduced an attention-guided residual W-

Net model for the cardiac segmentation process. It uses MRI 

images that contain information that is relevant to both right 

and left ventricles. The MRI images capture the data which 

decreases the latency in the computation. When compared 

with other models, the introduced model improves the 

performance and significance level of the network. 

Cardiac diseases are an important global health concern, 

and prior detection is decisive for efficacious treatment and 

enhanced patient results. The MRI scan has emerged as a 

beneficial tool for cardiac analysis due to its non-invasive 

nature and high-quality imaging. Suganyadevi et al. [32] have 

shown that to improve the precision and efficacy of cardiac 

disease detection, intelligent computer-aided visual processing 

techniques have gained preeminence in the field of smart 

health. One useful approach in this domain is the UMSN, 

which is the precise system designed to orate the problems 

related to pixel differentiation in cardiac MRI analysis. 

 

 

3. PROPOSED UNIT-MODIFIED 

SWINTRANSFORMER NETWORK 
 

UMSN is a different approach that engages a unique master 

plan by associating the similar-dimension pixels into segments 

ranging from 2×2 to 16×16. This segmentation perspective is 

instrumental in enhancing the accuracy of disease detection. 

Within this grouped pixel analysis, an indispensable layer is 

trained using pixels that manifest unanimous feature extraction. 

This training methodology allows the framework to determine 

the segment boundaries efficaciously. During the boundary 

detection procedure, this process organizes the coinciding 

pixel boundaries with similar features for training the 

fundamental segment of consecutive boundaries. The UMSN 

denotes an innovative advancement in cardiac MRI 

observation for disease detection and diagnosis. By 

associating the pixels, determining the disparities, and 

purifying its training process, UMSN contributes importantly 

to the prior detection of cardiac diseases, which leads to better 

patient care and results in the realm of smart health. In Figure. 

1 the overall process of the proposed network is portrayed. 

The MRI-Cardiac inputs are taken for further feature 

extraction operations. From the inputs, the high-quality 

images contribute precise functionalities that help provide the 

basement for the subsequent feature extraction operations. 

Through the proposed advanced image processing operations, 

the same characteristics and frameworks are extracted for 

future procedures. These extorted characteristics are necessary 

for the precise determination of cardiac diseases, which helps 

detect the diseases in their earlier stages. MRI-Cardiac inputs 

help in the precise analysis and then the detection of heart-

based diseases, producing indispensable insights into the 

patient’s health. The process of analyzing the MRI-Cardiac 

inputs for further operation is explained in the upcoming 

equation: 
 

𝛾𝑎 = 𝑎 − 2
𝑛

𝑖𝑓 
2𝑛

𝑎
 ∈ 𝑁

𝑎 − 2𝑛 ≥ 0
𝛾 = 𝑁 − 𝛾𝑛−1

𝛾′ = 𝛾 +
𝑁

2
(𝑛 ∗ 2)

𝛾(𝑁) =
𝑁

2
[∑ (𝛾 ∗

𝑛

2
)

𝑛=1

]

𝛾𝑛 = 𝛾𝑎 +
𝑁

2
(𝑛 ∗ 𝛾) }

 
 
 
 
 
 

 
 
 
 
 
 

 (1) 

where, γ  is denoted as the MRI-Cardiac inputs, a  is 

represented as the analysis procedure, and N is represented as 

the functionalities detected from the inputs. Now the features 

are extracted from the given MRI-Cardiac inputs. After the 

determination of the MRI-Cardiac inputs, the feature 

extraction process is performed which helps in separating and 

quantifying the distinctive features within the acquired cardiac 

input images. Features extract the entire information of the 

input images which includes the textural features. This 

operation helps in detecting the variations in the structure. In 

this process, the smoothness, or the tendency of the tissues is 

derived for further procedures. These characteristics produce 

valuable insights into the cardiac tissues insane and also help 

detect the subtle abnormalities that assist the healthcare in 

diagnosing priory. The process of feature extraction from the 

detected MRI-Cardiac inputs is explained in the following 

equation given below: 

 
𝛽 = 𝐹𝑎
𝐹 ∈ 𝛾𝑛×𝑛

𝑎 = 𝐹𝑛𝛽

𝑛 ∈ {0,1}𝑁

�̂� = 𝑁⨀𝛽

�̂� = 𝐹𝑛�̂�

𝑎∗ = ∑(𝑎) + 𝛾‖𝛽 − 𝑛⨀(𝐹𝑎)
2‖

𝑛=1

𝑎∗ =
𝛾𝑎
𝛾𝛽

𝛽∗ =
𝛾𝑎
𝛾�̂�
∗
𝛾�̂�

𝛾𝑛
∗
𝛾𝑛
𝛾𝑎 }

 
 
 
 
 
 

 
 
 
 
 
 

 (2) 

 

where, β is represented as the extraction of the characteristics, 

and F  is denoted as the detected textural features in the 

acquired inputs. Now the representation of the dimension’s 

operation is performed. This is the process of denoting the data 

in both the 2×2 to 16×16 dimensions. This plays an important 

role in cardiac MRI analysis. This operation engages the 

structuring of the extracted features and textural information 

in two distinct dimensions, producing the complete 

representation of the cardiac data. Therefore, in the 2× 2 

dimensions, the refined details and localized variations within 

the acquired input MRI input images are captured. This 

permits for the more explored assessment of the particular 

regions of the heart, making it fit for the detection of the 

irregularities within it. The dimension representation process 

is illustrated in Figure 2. 

The input  γ  is used for extracting  F ∀ β  such that  F ≤ β 

condition is to be satisfied. Based on the γ(N) =
N

2
 ∀ n ∈ N, 

the α  is performed in representing the γ  at its least and 

maximum formats. In this representation, the  F is validated 

based on available γn−1 ∀N  such that β̂ = N⨀β  is the idle 

condition. Therefore, for the F ≤ β  satisfying condition, 

segmentation is pursued (Figure 2). Also, the 16 × 16 

dimension provides an expanded perspective by integrating 

the data over larger cardiac image areas. This dimension is 

important for dehiscing the frameworks and overall cardiac 

structure and functionalities. By denoting the data in both 

dimensions, the algorithms assess the comprehensive dataset 

that associates the refined data with the precision and 

reliability of cardiac disease detection and diagnosis. This 

dimension representation improves the utilization of the MRI 

data in enhancing patient care and its outputs. The process of 

the dimension representation of the acquired data is explained 
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in the equation below: 

 

𝛽(𝑗) = {

𝛽𝛾(𝑗) 𝑖𝑓 𝑗 ∈ 𝑁

𝛽𝛾(𝑗) + 𝑁�̂�(𝑗)

1 + 𝑁
𝑖𝑓 𝑗 ∈ 𝑁

𝐹𝛾𝛽(𝑎, 𝛽, 𝛾) = 𝐹
𝑛 +

𝛾

1 + 𝛾
𝐹(𝑁⨀𝛽)

{

1 𝑖𝑓 𝐹 ∉ 𝑁
1

1 + 𝛾
𝑖𝑓 𝐹 ∈ 𝑁

𝜕𝐹𝑛
𝜕𝑎𝑛

= 𝐹𝑛𝑎𝛾

𝐹 ∈  𝑁𝑛×𝑛

𝐹 ⨀𝑁 ≈
𝛾

𝛽 }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 (3) 

 

where, 𝑗 represents the dimension representation of the data. 

Now the SwinTransform process takes place in this MRI 

analysis procedure. It is used in thwarting the pixel 

differentiation issued in the MRI cardiac analysis. This process 

is important in the MRI cardiac analysis particularly designed 

to address the issues that are related to pixel differentiation. It 

helps enhance the precision and efficaciousness of disease 

detection within the cardiac MRI data. In this swim 

transformer process, the segmentation and boundary detection 

procedures are performed for further procedures. The 

SwinTransform process is explained in the equation below: 

 

{𝐹𝑗
𝑖} = 𝑠𝑤𝑖𝑟𝑚(𝐼𝑛)

𝑛 = 1,2,3,4,5

{𝐹𝑉
𝑖 } = 𝑠𝑤𝑖𝑟𝑚(𝐼𝛾)

𝛾 = 1,2,3,4,5

 

𝐼 = 𝐼0 ∗ 𝛽
𝐼1 = 𝐼2 ∗ 𝛽1
𝛽1 = 𝐹𝑁

𝑎1 = 𝑓1(𝐹
𝑁(𝑁1⨀𝛽))

𝑎𝑛 = 𝑓𝑛(𝐹
𝑁(𝑁𝑛⨀𝛽𝑛))

𝑎𝐹 = 𝑎1 + 𝑎𝑛
�̅�1 = 𝐹(𝑁⨀𝛽)

�̅�𝑛 = 𝐹𝑛(𝑁𝑛⨀𝛽) }
 
 
 
 

 
 
 
 

 

(4) 

 

where, 𝐼 is denoted as the operation of SwinTransform in the 

further processes. Now the segmentation process is performed 

in the SwinTransform operation. This algorithm helps in 

grouping the pixels with similar features into segments, which 

range from 2×2 to 16×16 in dimensions. By associating 

similar pixels, the operation reduces the issues and problems 

based on pixel differentiation. This segmentation process is 

useful in simplifying the difficult cardiac images, permitting 

an efficient focused analysis. 

 

𝛽𝑖 =∑(𝐹(𝑎𝑖))𝑎𝑖 + 𝑎𝑖
𝑛=1
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𝑛=1
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2
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∑

∑ 𝑎𝑖𝑗𝛽𝑖𝑗
𝐼
𝑖=1

∑ 𝑎𝑖𝑗
2 + ∑ 𝛽𝑖𝑗

2𝐼
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𝐼
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𝐽
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1

𝐼
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𝜀𝑖𝑗 =
2 × |𝑎 ∩ 𝛽|

|𝑎| + |𝛽|

𝜀𝑖𝑗 ← 𝐹𝑛(𝑎𝑛 − 1)

𝑛𝑛 ← 𝛽1. 𝛾𝑛−1 + (1 − 𝛽1)

𝛾𝑛 ← 𝛾𝑛−1. 𝑎(𝜀 + 𝑎𝛽)

𝛾𝑖𝑗 =
|𝑎 ∩ 𝛽| + 𝑖𝑗

|𝑎𝑖𝑗| + |𝑏𝑖𝑗|
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|𝑎 ∪ 𝛽| ∗ 𝑖𝑗

|𝑎𝑖𝑗| + |𝑏𝑖𝑗|

𝐹𝑖𝑗 =
|𝑎 ∩ 𝛽| + 𝑖𝑗

|𝑎𝑖𝑗| + |𝑏𝑖𝑗|
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|𝑎 ∪ 𝛽| ∗ 𝑖𝑗

|𝑎𝑖𝑗| + |𝑏𝑖𝑗| }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 (6) 

 

These steps assess the meaningful categories to segments 

based on their distinct features, helping differentiate between 

the various parts of the heart and surrounding tissues. The 

segmentation using a SwinTransformer is presented in Figure 

3. 

 

 
 

Figure 1. Overall process of the proposed network 
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Figure 2. Dimension illustration 

 

 
 

Figure 3. Segmentation process 

 

Algorithm 1 for Segmentation 

𝑰𝒏𝒑𝒖𝒕: 𝛾, 𝛽 

1: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝛾(𝑁) =
𝑁

2
(𝛾 ∗ 𝑛) 

2:𝑤ℎ𝑖𝑙𝑒 𝑗 = 𝑁𝑑𝑜 

3: 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝛽 ∗ 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (2)∀𝛽 ≠ 0 

4: 𝐷𝑒𝑓𝑖𝑛𝑒 𝛽(𝑗)𝑓𝑜𝑟 𝑗 
5: 𝑖𝑓 𝛽(𝑗) = 𝛽𝛾(𝑗) 

6: 𝑗 ∈ 𝑁; 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝐹 ≤ 𝛽(𝑗) 
7: 𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 (𝐹, 𝑗) 

8: 𝑈𝑝𝑑𝑎𝑡𝑒 �̂�, 𝜀𝑖𝑗  ∀ 𝑗 ∈ 𝑁 

9: 𝑒𝑙𝑠𝑒 𝑖𝑓 𝛽(𝑗) ≠ 𝛽𝛾(𝑗)𝑡ℎ𝑒𝑛 

10: 𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝐹⨀𝑁 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 

11: 𝑖𝑓 𝐹⨀𝑁 ≃
𝛾

𝛽
 𝑡ℎ𝑒𝑛 

12: 𝑖𝑓 = 𝑗 + 1;  𝛾(𝑁) =
𝑛𝛾

𝑗
 

13: 𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝐹∀ �̂�𝑖  𝑎𝑠 𝐹(𝑁 − 𝛾⨀𝑁) 
14: 𝐸𝑛𝑑 𝑖𝑓 

15: 𝑃𝑒𝑟𝑓𝑜𝑟𝑚 (𝜀𝑖𝑗, 𝐹𝑛) 

16: 𝐸𝑛𝑑 𝑤ℎ𝑖𝑙𝑒 

 

The extracted j forms the input for the segmentation process 

in which I = 1 to I = N layers are split. Based on the split, the 

segmentation is performed; β̂  andεij  validate the transform 

function for training and validation. Considering the Io and βN 

for the j , the layers are trained for the {Fj
i}  until I = N  is 

reached. This segmentation varies with F and j ∀(2 × 2), (4 ×

4), … (16 × 16)  instances. The transformer process 

assimilates εij  for Iγ  and β̂i  provided α̅n  satisfies Fn(Nn⨀β) 

in identifying a boundary (Figure 3). Segmentation helps in 

accurately determining the boundaries, structures, and 

anomalies, easing accurate disease detection and diagnosis. 

The process of segmentation in the SwinTransform is 

explained by the following equation given above. The 

segmentation process is described in Algorithm 1. 

Now the boundary detection procedure is performed using 

the SwinTransform algorithm. The boundary detection 

operation is established through this technique. After the data 

is segmented into valuable regions, the technique helps in 

determining and describing the boundaries that isolate these 

regions. It does this by assessing the pixel transitions and 

differences in intensity or the textural features between the 

adjacent segments. The process of detecting the boundaries is 

explained in the equation below: 

 
𝑍𝑖 = 𝑁𝑖(𝑍𝑖 − 1) + 𝑍𝑖 − 1

𝑍𝑖 = 𝑁𝑖([𝑍0, … , 𝑍𝑖−1])

𝛾 = 𝑍𝑛

𝑎 = 𝑁𝛾

𝛽 = 𝑁𝑖

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡,

𝑍𝑛 . 𝑁𝛾. 𝑁𝑖 ≈ 2
𝑍 ≥ 1,𝑁 ≥ 1,𝑁𝑖 ≥ 1

𝑍𝑖𝑗 =
|𝑎| + |𝛽|

|𝑎𝛽𝑖𝑗| }
 
 
 
 
 

 
 
 
 
 

 (7) 
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where, Z is denoted as the boundaries detected. By precisely 

detecting the boundaries, the SwinTransform technique in 

accurately detecting the structures within the cardiac images, 

such as the normal functionalities of the heart and its 

irregularities is analyzed. This information is useful for 

diagnostic purposes between the cardiac structures which 

leads to a more understanding of the patients’ cardiac health. 

Also based on these outcomes, the similar and disparity 

features are determined for the further necessities. 
 

𝑉𝑖𝑗 =

∑ (
−‖𝑎𝑖 − 𝑎𝑗‖

2

2𝑛2𝑖
)𝑛=1

∑ (
−‖𝑎𝑖 − 𝑎𝑗‖

2

2𝛾2𝑖
)𝑛≠𝑣

𝑉𝑖𝑗 =
(𝑉𝑗𝑖 + 𝑉𝑖𝑗)

2𝑛

𝛾𝑖𝑗 =
(1 + ‖𝛽𝑖 − 𝛽𝑗‖

2
)
−1

∑ (1 + ‖𝛽𝑛 − 𝛽𝑖𝑗‖
2
)
−1

𝑛=1

𝑍(𝑄||𝛽) = ∑∑𝑉𝑖𝑗 log
𝑉𝑖𝑗

𝛾𝑖𝑗
𝑗𝑖 }

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 (8) 

 

where, V  is denoted as the information produced by the 

SwinTransform procedure. Now similar features are detected 

from the outcome of the SwinTransform operation. This 

operation is engaged in determining and classifying the 

segments or regions that manifest similar characteristics 

within the cardiac MRI data. Similar features are organized for 

the analysis of the efficient features from the acquired MRI 

input images. It enables the technique to determine the 

consistent frameworks across the different parts of the heart. 

This feature-dependent approach helps enhance the precision 

of disease detection and diagnosis, as it permits a better 

understanding of the regions with shared attributes. The 

process of detecting the similar features is explained in the 

equation given below: 
 

𝜎𝑛 =
1

𝑉
(∑ 𝑎𝑖

𝑉

𝑖=1
)

𝜎𝛾 = √
1

𝑉
∑ (𝑎𝑖 − 𝜎

𝑛)2
𝑉

𝑖=1

𝜎 = √
∑ (𝑎𝑖𝑗 ∗ 𝛽𝑖𝑗)𝑛=1

∑ (𝑎 + 𝛽) ∗ ∑ (
𝑎

𝛽(𝑛)
)𝑖=1𝑛=1

𝜎𝑖𝑗 (∑(𝑎, 𝛽)

𝑛=1

) =
1

2
[∑(

1

𝑉
(𝑎, 𝛽))

𝑛=1

]

𝜎(𝑉𝑖𝑗) =
1

2
∑

𝑎𝑖𝑗

𝛽𝑖𝑗(𝑁)
𝑛=1 }
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where, σ is denoted as the similar features detected from the 

outcome of the SwinTransform. Now the disparity features are 

extracted. It involves determining the differences among the 

detected features and regions [33, 34]. These disparities may 

manifest as differences in textures or intensities within the 

segmented and classified data. The boundary detection and the 

disparity feature classification using the SwinTransformer are 

illustrated in Figure 4. 

 

 
 

Figure 4. Boundary detection and classification 

 

The SwinTransformer model is designed with 1 input and 1 

output layers. A N consecutive layer withIo to IN and β1 to βN 

with F  input is sandwiched between the input and output 

layers. Based on the validation of I = N, I is incremented by 1 

for Ir  or εij  or γ  reciprocating to [αi, Pi ∈ β̂]  differences. 

Therefore, the initial parameters (Pi, αi)  are tuned by  I  and 

(βN − β̂)  difference until I = N  conditiondl. These N  layers 

are dependent on the number of transformer instances required 

to meet the∑ j ∀Fn(Nn⨀β).The β̂i  inputs are used for the I 
process in theFn  and feature classification. The boundary 

detection process is performed from F1 to Fn layers using σn 

and αn entries matching Z. In this process, the j is required for 

σ(Vij)  estimation as in Eq. (9). The normalization using 

‖αi−αj‖

2n2i
∀ i ∈ n is used for feature classification across Nγ for 

disparity. A similar feature is estimated using  V⨀Q 

assessment from n  and (σn. αn)  outputs from  Z . Therefore, 

the transformer network requires F1 to Fn for all the possible 

βî  (Figure 4). By separating these disparities, the analysis 

exhibits the regions that deviate from the criteria. These 

deviations signify efficient irregularities that need depth 

evaluation. 
 

𝑄 = 𝑉𝑄 × 𝑎
𝛾 = 𝑉𝛾 × 𝑎

𝐼 = 𝑉𝐼 × 𝑎

∑(𝑄, 𝛾, 𝐼) = (
𝑄 × 𝛾𝑇

√𝑑𝛾
)

𝑖𝑗

𝑎𝑡 = 𝑉𝑁1(𝑎) ∗ 𝛽1
𝑎𝑡 = 𝑉𝑁2(𝑎) ∗ 𝛽2
𝛽 = 𝑎𝑡 × 𝑎

× 𝑄

𝑄𝑖𝑗 = (
𝛾𝑖𝑗 ∗ 𝑉𝑖𝑗
(𝑎, 𝛽)

)
}
 
 
 
 
 

 
 
 
 
 

 (10) 
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The disparity features determination operation is explained 

by the following equation given above. Now the coinciding 

features are estimated from the feature determination process 

outputs. This process involves determining the characteristics 

that coincide with each other across the different regions or 

segments of the acquired MRI data. These coinciding features 

represent similar characteristics. The evaluations of the 

coinciding features are an important strategy for enhancing the 

precision and reliability of disease detection and diagnosis in 

the cardiac MRI analysis, as it eases the determination of 

consistent cardiac features. The process of determining the 

coinciding features is explained in the upcoming equation: 
 

𝑎𝑡1 = 𝑉𝑁1(𝑎
𝑉−1) + 𝑄(𝑎𝑉−1)

𝑎𝑡 = 𝑉𝑁2(𝑎
𝑡1) + 𝑄(𝑎𝑡1)

𝑎𝑡2 = 𝑉𝑁3(𝑎
𝑡) + 𝑄(𝑎𝑡)

𝑉 = 𝑉𝑁4(𝑎
𝑡2) + 𝑄(𝑎𝑡2)

𝑎𝑉

𝑎𝑖𝑗
=

2||𝑎 ∩ 𝛽||

||𝑎|| + ||𝛽||

=
2𝛾

2𝛾 + 𝐹𝑉 + 𝐹𝑁 }
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𝜑𝑖 = 𝑎𝑖 × 𝑄

𝜑

𝑉𝑖 = 𝑎𝑖 × 𝑄
𝑉

𝐹𝑖 = 𝑎𝑖 × 𝑄
𝐹

𝛽𝑄 = 𝛽𝑉

𝑎𝑖𝑗 = ∑(
𝑄𝑖𝑗
1

√𝑉𝑛
)

𝑛=1

=

∑ (
𝑎𝑖𝑗
1

√𝑉𝑛
)𝑛=1

∑ (
𝑎𝑖𝑗
1

√𝑉𝑛
)𝑗=1

𝑎𝑖𝑗
1 = 𝑄𝑖 × 𝑉

𝑇
}
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where, Q  is denoted as the disparities in the features, φ  is 

denoted as the coinciding features. Now the training is 

provided based on the coinciding features of the 

SwinTransform procedures. During this operation, the 

algorithm technique understands the determined coinciding 

features that denote consistent patterns within the detected 

MRI data. These features help as important training, enabling 

the process to efficacious understanding and to categorize 

similar patterns in MRI scan outputs. By training on 

coinciding features, the SwinTransform operations become 

more adept at determining and interpreting irregular 

conditions, improving accuracy and diagnostic capabilities. 

The process of providing the training the SwinTransform is 

explained in the following equation: 

 

𝐴𝑉𝑖 = ∫𝑉𝑖(𝑄𝑖)𝑑𝑄𝑖

1

0

𝐼𝑜𝑉 =
𝑎 ∩ 𝛽

𝑎 ∪ 𝛽

𝑉𝑎𝛽 =
∑ 𝐴𝑉𝑖𝑛=1

𝑛

𝜖𝑖𝑗 =
1

𝑇

𝐴𝑉𝑖𝑗 = ∫
𝑉𝑖
𝛾𝑖

1

0

(𝑄𝑖) ∗ ∫𝑄𝑖𝑗

1

0

𝑉(𝑄 ∗ 𝑁) =
𝑎 ∩ 𝛽

𝑎 ∪ 𝛽
∗ 𝑁 (

𝛾 ∪ 𝛽

𝛾 ∩ 𝛽
)
}
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where, ϵ  is denoted as the training provided based on the 

determined coinciding features. Now the independent 

boundary is determined based on the prior process outputs. 

Independent boundaries exhibit unique characteristics or 

differences, distinct from the coinciding features [35]. This 

identification helps the technique to determine the boundaries 

that represent the particular cardiac structures, enhancing the 

precision of the analysis. The process of extracting the 

independent boundary as per the previous process is explained 

by the following equation given below: 
 

𝜇0 = [𝐹1 + 𝑉1, 𝐹2 + 𝑉2 +⋯+ 𝐹𝑛 + 𝑉𝑛]

𝑄𝑖 ← 𝛽𝑖−1, 𝑉𝑖 ← 𝛽𝑖−1, 𝐹𝑖 ← 𝛾1+1

𝑉𝑖 =
(𝑄𝑖 − 𝑉𝑖)

√𝑁/𝑁𝑇
. 𝑉𝑖

𝛽𝑖 = 𝑉𝑁[(𝛽𝑖
∗) + (𝛽𝑖𝑗

∗ )]

𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,… , 𝑁

𝛽𝑛 =
(𝑄𝑛 − 𝑉𝑛)

√𝑉/𝑉𝑇
. 𝑉𝑛

𝛽𝑖𝑗 = (
𝑄𝑖𝑗 . 𝑉𝑖𝑗

√𝑉/𝑉𝑖𝑗
)

}
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where, μ is represented as the independent boundary detected 

from the analysis process. The overall algorithm of the feature 

classification is presented as Algorithm 2. 
 

Algorithm 2 for Feature Classification 

Input: 𝑛, 𝑍 

1: ∀ 𝑛 ∈ 𝑍 𝑑𝑜 { 
2: 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝛽 𝑢𝑠𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 \

\𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 

3: 𝐷𝑒𝑓𝑖𝑛𝑒 𝐹 ⊙ 𝑁∀ 𝛽𝑖  
∈ 𝑛 //𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

4: 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝐼 = 𝐼𝑜 ∗ 𝛽 𝑎𝑛𝑑 𝛼𝑛 = 𝑓𝑛(𝐹
𝑁(𝑛𝑛⊙𝛽𝑛)) 

5: 𝐼𝑓{(𝛼, 𝛽) = 1}{𝑡ℎ𝑒𝑛 

6: 𝛾𝑖𝑗 =
|𝛼 ∩ 𝛽| + 𝑖𝑗

|𝛼| + |𝛽|
∀ 𝑛 ∈ 𝑁 

7: 𝑖𝑓{𝑦𝑖𝑗 = 𝑛 + 1}{𝑡ℎ𝑒𝑛 //𝑐ℎ𝑒𝑐𝑘 𝑓𝑜𝑟 𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒 𝑝𝑖𝑥𝑒𝑙 

8: 𝜀𝑖𝑗 = 1 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐹𝑛 = 𝛾𝑖𝑗 

9: 𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝑍𝑖 = 𝑁𝑖([𝑍𝑜, … 𝑍𝑖−1]) 𝑢𝑛𝑡𝑖𝑙 𝐹𝑛
≠ 𝑟𝑖𝑗  \\𝑐ℎ𝑒𝑐𝑘 𝑓𝑜𝑟 𝑛𝑒𝑤 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 

10: 𝑅𝑒𝑝𝑒𝑎𝑡 𝑓𝑟𝑜𝑚 𝑠𝑡𝑒𝑝 5 𝑢𝑛𝑡𝑖𝑙 (𝛼, 𝛽)
≠ 1𝑅𝑒𝑝𝑒𝑎𝑡 𝑡ℎ𝑒 𝐼 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 

11: 𝑈𝑝𝑑𝑎𝑡𝑒 𝑍(𝑄||𝛽) ∀ 𝑛 ∈ 𝑁 

12: 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝜎𝑛 𝑎𝑛𝑑 𝛼𝑛 𝑓𝑜𝑟 𝐹𝑖  ∀ 𝑖 ∈ 𝑛 𝑖𝑓 (𝛼, 𝛽) = 1 

13: 𝑖𝑓 {𝜎(𝑉𝑖𝑗) > 1 }{ 𝑡ℎ𝑒𝑛 

14: 𝑛 = 𝑛 + 1; 𝐼 = 𝑉𝐼 ×  𝛼; 𝑄
= 𝑉𝑄 × 𝛼\\ 𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝐼 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

15: 𝑅𝑒𝑝𝑒𝑎𝑡 𝑓𝑟𝑜𝑚 𝑠𝑡𝑒𝑝 4 𝑢𝑛𝑡𝑖𝑙 (𝑉𝑖𝑗) ≤ 1 

16: 𝐸𝑙𝑠𝑒 

17: 𝜓𝑖 = 𝛼𝑖 ∗ 𝑄
𝜓 and𝛽𝑄 = 𝛽𝑉 

18: 𝐹𝑛 → 𝛼𝑖  𝑎𝑛𝑑 𝐹𝑖  ∈ 𝛽𝑉  ∀ 𝑖 < 𝑛 //𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 

19: 𝑒𝑛𝑑 𝑖𝑓 } 
20: 𝑈𝑝𝑑𝑎𝑡𝑒 𝑛, 𝑖, 𝐹𝑖 
21: } 𝑒𝑛𝑑 𝑖𝑓 

22: 𝛾𝑖𝑗 = 𝑉 } 𝑒𝑛𝑑 𝑖𝑓 

23: } 𝑒𝑛𝑑 𝑓𝑜𝑟 
 

This process helps in precise analysis of the MRI-Cardiac 

inputs. It also helps in mitigating the issues in the MRI-cardiac 

analysis. The SwinTransform helps in accurate segmentation 
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and boundary detection operations. From that, the similar and 

disparity features are estimated to provide the training for it. 

The independent boundaries are detected which is free from 

flaws post the training production process. 

 

 

4. EXPERIMENTAL ASSESSMENT 

 

Table 1. Dimension representation 

 
Input Dimensions 

  
 

Table 2. Segmented outputs 

 
Dimensions Segmented Output 

  

  

 

Table 3. Boundary detection 

 
Input Boundary (Similar) 

  
Boundary (Disparity) 

 

The experimental assessment is performed using MATLAB 

software using the inputs from the data source linked by Yoon 

et al. [33]. Table 1 represents the dimension representation. 

From this data source, the following description of the inputs 

is considered: the MRI cardiac inputs are acquired from 1616 

patients among whom 55 are asymptotic. Table 2 illustrates 

the segmented outcomes. The training is pursued with the 

maximum inputs whereas the testing is performed using 84 

MRI inputs among which 21 are disease free and 63 are 

diagnosed as infected. Table 3 provides the boundary detection 

details. The image scale varies from 10.8mm×10.8mm to 

50mm×50mm in size with minimum pixel differentiation of 

2×2 to 16 ×16. The preprocessing includes noise reduction 

using Gaussian filter with a histogram contrast improvement. 

Table 4 represents the infection detection information. The 

proposed method is implemented using MATLAB deployed 

in a computer with 8GB memory and 2.4GHz processing 

capacity. The maximum epochs for the network training are 

800 splits into 10 recurrent iterations. Using this information, 

the experimental validations are performed and the results are 

tabulated. 

 

Table 4. Infection detection 

 
Input Independent Boundary 

  
Detected Region 

 
 

Apart from the above experimental analysis, the disparity 

with variance for the different sizes is analyzed in Table 5. 

The disparity analysis is presented in the above Table 5 

along with the variance estimated. The transformer function is 

responsible for categorizing the dimensions of similar and 

dissimilar features. As the size varies the various increases 

such that the transformer network is trained using multiple 

disparities. Therefore, the disparities are correlated within 

multiple F⨀N instances to reduce the variance to increase the 

accuracy. In Table 6 the precision for different layered and 

process outputs are tabulated. 

In Table 6 the process precision for different dimensions is 

tabulated. The proposed transformer-based disparity detection 

method. Classifies different regions based on feature 

distribution. The distribution ensures F⨀N  optimality at its 

highest rate through iterated training. In particular, if I’s output 

is less then βN  is incremented to match segmentation. This 

process is different from the process disclosed under multiple 

features. The analysis of sensitivity and specificity 

augmenting the precision for different processes and 

dimensions is presented in Table 7. 
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Table 5. Disparity with variance for different dimensions 

 

Type Dimensions Disparity Variance Accuracy (%) 

Similar 

2×2 0.16 ±0.06 92.09 

4×4 0.227 ±0.091 90.86 

8×8 0.293 ±0.1 88.63 

16×16 0.361 ±0.12 87.48 

Heterogeneous 

2×2 0.069 ±0.02 94.51 

4×4 0.092 ±0.052 93.29 

8×8 0.138 ±0.068 91.77 

16×16 0.165 ±0.087 91.02 

 

Table 6. Precision outputs for I and βN 

 

Process Dimension 𝑰 Output 𝜷𝑵 Output Precision 

Boundary 

2×2 0.93 0.61 0.81 

4×4 0.925 0.654 0.854 

8×8 0.924 0.632 0.832 

16×16 0.928 0.631 0.871 

Segmentation 

2×2 0.901 0.741 0.882 

4×4 0.914 0.769 0.897 

8×8 0.919 0.824 0.915 

16×16 0.921 0.851 0.929 

Disparity 

Detection 

2×2 0.901 0.897 0.925 

4×4 0.897 0.886 0.918 

8×8 0.881 0.91 0.93 

16×16 0.875 0.908 0.924 

 

Table 7. Sensitivity and specificity for different processes 

and dimension 

 

Process Dimension 
False 

Positives 
Sensitivity Specificity 

Boundary 

2×2 +0.077 0.94 0.974 

4×4 +0.065 0.935 0.964 

8×8 +0.0415 0.94 0.954 

16×16 +0.0325 0.89 0.942 

Segmentation 

2×2 +0.0254 0.94 0.854 

4×4 +0.0189 0.98 0.841 

8×8 +0.0254 0.89 0.941 

16×16 +0.0124 0.92 0.954 

Disparity 

Detection 

2×2 -0.04 0.87 0.921 

4×4 -0.028 0.95 0.933 

8×8 -0.0147 0.926 0.872 

16×16 -0.0151 0.945 0.898 

 

The sensitivity and specificity are illustrated for the 3 

processes: boundary detection, segmentation, and disparity 

detection in Table 7. The consecutive Avi∀
 Vi

γi
 and (

α∩β

γ∪β
) 

increases the true positives. If the false positives is increased, 

then(
α∪β

γ∩β
) is reduced confining the true negatives. Therefore, 

the next successive feature extraction is opted to maximize the 

disparity detection. The transformer model increases the 

chances of σn  and αn  such thatψi  and Fn → αn  is hiked to 

maximize the number of f computed. Thus, if the true negative 

is high the consecutive 𝑁  is incremented for (I = N)  using 

Vi = (αi × Q
v) for multiple f. 

 

 

5. RESULTS AND DISCUSSION 

 

Apart from the experimental analysis discussed above, this 

section presents the accuracy, precision, false rate, 

classification, and differentiation error as a comparative study. 

The number of segments (1 to 11) and features (1 to 14) are 

varied for verifying the proposed network process across each 

improvement. For this comparative study, the allied methods 

considered are FCDNet [28], MMNet [21], and TAUNet [22]. 

The methods are discussed in the related works session. 

The accuracy is enhanced in this method with the help of 

the SwinTransform method. The association of the 

SwinTransform method importantly improves the accuracy of 

the cardiac MRI analysis. This process estimates the several 

difficult issues that often lead to more reliable and precise 

results. SwinTransform pixel association and segmentation 

methods streamline the analysis, mitigating the risk of pixel 

differentiation issues. Classifying the pixels into valuable 

segments, permits for a more focused evaluation of the cardiac 

data, mitigating the irrelevant information. The 

SwinTransform helps determine the similar features and 

disparities within the acquired MRI data. It also secures the 

subtle frameworks and dissimilarities mitigation which help in 

enhancing the accuracy of the procedure. This accuracy is 

necessary for prior disease detection, where the small 

difference is indicative of the cardiac conditions. The 

estimation of the coinciding features and then the training on 

them enhances the understanding of the method, enabling it to 

determine consistent cardiac patterns (Figure 5). 

 

 

 
 

Figure 5. Accuracy analysis 

 

The precision is high in this process with the appropriate 

segmentation and boundary detection operation. Precision in 

cardiac MRI analysis is huge, as it directly affects the precision 

of disease detection and diagnosis. The SwinTransform 

algorithm pixel segmentation ensures that the cardiac images 

are separated into valuable segments, mitigating the irrelevant 
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information. This accurate segmentation allows for the main 

analysis, improving the accuracy of the detection and 

characterizing the particular regions within the heart. The 

feature detection precision is also enhanced during this 

operation which excels in detecting and extracting the 

characteristics with high precision. It also detects the subtle 

differences in textures and its intensities. The method's ability 

to detect the independent boundaries with accuracy is 

important. It secures the cardiac structures and depth 

irregularities are precisely defined, mitigating the risk of 

oversight in this MRI analysis. This operation significantly 

enhances the precision in identifying and classifying cardiac 

conditions (Figure 6). 

 

 

 
 

Figure 6. Precision analysis 

 

 

 
 

Figure 7. False rate analysis 

 

The false rate is lesser in this process after detecting the 

similar and disparity features from the output of the 

SwinTransform operation. Exhibiting a lower false rate results 

in a substantial improvement in accuracy and reliability. By 

determining and classifying similar features within the cardiac 

MRI data, the system becomes perfect at determining 

consistent patterns. This mitigates the irregularities, which 

results in a significant reduction in the false positive rates. The 

extraction of the disparity feature is also helpful in enhancing 

the reduction of the inconsistencies and variations within the 

data, permitting the system to showcase the areas that are 

deviating from the measures. This results in less production of 

the false negatives with the enhanced MRI analysis. Training 

the approach on coinciding and disparity features further 

improves its capacity to differentiate between normal and 

abnormal cardiac conditions. This clarified understanding 

importantly mitigates the false rates where the process 

becomes more discerning in its assessments (Figure 7). 

 

 

 
 

Figure 8. Classification time analysis 
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The time taken for the classification is less in this method 

using the SwinTransform algorithm. The integration of the 

SwinTransform in this method importantly mitigates the time 

needed for the classification tasks. This approach to pixel 

grouping and feature extraction streamlines the data analysis 

operation, making it more efficacious and quicker. Classifying 

the pixels into valuable segments and aiming at pertinent 

characteristics, mitigates the need for extensive resources and 

time-consuming manual interventions. Furthermore, the 

SwinTransform method’s capability to determine the 

similarities and disparities within the data improves the 

categorization operation by establishing a more clarified 

dataset for the analysis. This efficiency permits the healthcare 

to obtain timely results according to the presentation of the 

MRI state. It helps in disease diagnosis and treatment planning 

for better results within a short time. The reduced 

classification time helps in the establishment of quicker 

assessments, providing improved healthcare outcomes (Figure 

8). 

 

 

 
 

Figure 9. Differentiation error analysis 

 

The differentiation error is lesser in this process after the 

precise determination of the features from the SwinTransform 

operation. The pixel grouping, segmentation, and feature 

extraction procedures enhance the overall accuracy of the 

cardiac MRI analysis. Classifying the pixels into meaningful 

segments and boundaries reduces the risk of errors arising 

from pixel differentiation issues. It also ensures that the data is 

interpreted with precision. The system’s capability to 

determine and utilize the same and disparity features further 

refines its assessment of the data, mitigating the similarities 

misinterpretation. This process involves determining the 

characteristics that coincide with each other across the 

different regions or segments of the acquired MRI data. These 

coinciding features represent similar characteristics. During 

this operation, the algorithm technique understands the 

determined coinciding features that denote consistent patterns 

within the detected MRI data and thus it mitigates the 

differentiation errors in the operation (Figure 9). Table 8 and 

Table 9 presents the comparative analysis results with their 

discussion. 

The proposed UMSN improves accuracy and precision by 

9.123% and 9.96% respectively. This method reduces false 

rate, classification time, and differentiation error by 9.97%, 

11.29%, and 10.04% respectively. 

The proposed UMSN improves accuracy and precision by 

9.5% and 10.53% respectively. This method reduces false rate, 

classification time, and differentiation error by 10.57%, 

10.87%, and 10.86%, respectively. 

 

Table 8. Comparative analysis results for segments 

 
Metrics FCDNet MMNet TAUNet UMSN 

Accuracy (%) 63.67 74.63 85.44 93.005 

Precision 0.656 0.721 0.855 0.9432 

False Rate 0.087 0.076 0.051 0.0381 

Classification 

Time (s) 
3.19 2.56 1.73 0.806 

Differentiation 

Error 
0.129 0.113 0.099 0.0802 

 

Table 9. Comparative analysis results for features 

 
Metrics FCDNet MMNet TAUNet UMSN 

Accuracy (%) 63.79 74.15 83.75 92.897 

Precision 0.659 0.737 0.844 0.9572 

False Rate 0.059 0.048 0.035 0.0262 

Classification 

Time (s) 
3.16 2.54 1.37 0.817 

Differentiation 

Error 
0.128 0.116 0.098 0.0778 

 

 

6. CONCLUSION 

 

In this article, the UMSN is designed to improve cardiac 

disease infection using MRI inputs. This network segregates 

the input for its maximum and minimum possible segments for 

precise feature extraction. This creative technique mitigates 

the inconsistency between associated and unconventional 

boundary segments, mitigating the fictitious feasible rate in 

disease detection. Moreover, the determined unit with 

inconsistencies between boundaries or segment pixels serves 

as a valuable advantage for independent training across 

various marked categorizations attained from the training 

inputs. This denotes that the operation may grasp these 

disparities and clarify its understanding of different cardiac 

conditions, thus enhancing its diagnostic precision. The 

proposed network improves accuracy by 9.213%, reduces 

false rate by 9.97%, and differentiation error by 10.04% for 

the varying segments.  

The transformer network used in this proposed method 

relies on a step-by-step procedure for identifying segments for 

any sized inputs. The process is eventually time-consuming 

and computationally prolonged. Therefore, adaptable filtered 

transformer functions are required for reducing such 

complexities in the future. This leads to the design and 
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development of a filter transformer network with feature 

adaptability in the future. 
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