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Brain tumors are abnormal growths of brain cells that can be benign (non-tumor) or 
malignant (tumor). These tumors can arise from different types of brain cells and occur in 
various brain regions. Timely detection is crucial for reducing the severity and improving 
prognosis. However, the traditional human examination suffers in early tumor detection due 
to the irregular patterns in MRI scans. Additionally, Machine learning and deep learning-
based frameworks detect brain tumors more accurately than human analysis. This work 
introduces an efficient diagnostic approach with improved accuracy to classify the benign 
and malignant from MRI scans. This diagnostic approach consists of three levels. In the first 
level, the majority and minority samples are increased to train the framework with more 
subjects using ImageDataGenerator with real-time data augmentation. In the second level, a 
pre-trained Convolution Neural Network (CNN), namely the Xception framework, is 
utilized to learn comprehensive information about images. The hyperparameter tuning 
process improves the multi-class classification accuracy in the third level. The proposed 
framework classifies brain tumors into multiple such as glioma, meningioma, no tumor, and 
pituitary. The experimental dataset is obtained from the Kaggle repository to train the 
framework. The outcomes attained by the proposed framework deliberate higher accuracy 
compared with other CNN frameworks. The proposed framework proves its efficiency in 
the fine-grained classification of brain tumors with a validation accuracy of 99.87%. Thus, 
this framework may be employed in clinical services to diagnose brain MRI tumors. 
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1. INTRODUCTION

Brain tumors are among the illnesses that pose a severe risk
to life due to the difficulty in identifying the factors that cause 
them. Machine learning and deep learning can help identify 
tumors at earlier stages more quickly and effectively than 
human examination on the scans. The frameworks are trained 
with a bulk of magnetic resonance imaging (MRI) scans; this 
allows the frameworks to recognize and classify the tumors 
accordingly. These machine learning (ML) and deep learning 
(DL) approaches attracted researchers to utilize them in
medical diagnosis. There are three possible types of tumors:
malignant, non-cancerous, and occasionally precancerous.
Brain tumors lead to fatalities, with the most significant
growth rate among people over 65. They are the second

leading origin of cancer-related mortality in children under 15, 
with the youngest average age among cancer-related deaths. 
Around 71% of all brain tumors are classified as benign or 
non-cancerous, while malignant or cancerous tumors account 
for about 29% [1]. 

Brain tumors are categorized into two main types: primary 
tumors and secondary tumors. The early tumors develop in the 
brain and do not travel to other body areas; nevertheless, they 
may grow to different brain and spinal cord sections. 
Additionally, secondary tumors develop in other areas of the 
body and eventually spread to the brain. Primary tumors are 
more likely to spread than secondary tumors. Glioma, 
meningioma, and pituitary are some of the primary brain 
tumors that occur the most. Glioma refers to cell growth in the 
brain or spinal cord, known as glial cells. Glioma can be either 
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cancerous or non-cancerous. Meninges that serve as 
membranes around the brain are the origin of the meningioma 
tumor; these tumors evolve slowly, typically taking years 
without showing any signs of it. The abnormal development 
of cells in the pituitary gland is called a pituitary tumor [2]. 

These primary brain tumors are difficult to identify in MRI 
images by human ex-amination due to their different patterns. 
Several types of research have been done to ease the difficulty 
in detecting the various types of brain tumors from MRI 
images by indulging the concepts of ML and DL. ML uses 
image processing, segmentation, feature selection, and 
augmentation to eliminate the noise in MRI images and make 
them look clearer to categorize them better [3]. DL is a 
subfield of ML that provides various frameworks that use 
artificial neural networks to work like a human brain [4]. Deep 
learning has enhanced the advancement in detecting multiple 
medical diseases, including brain tumors. Several deep 
learning frameworks proposed for tumor detection have 
achieved a different accuracy range. 
 
1.1 Problem statement 
 

Brain tumors present a major health challenge, and early 
detection is essential for enhancing patient outcomes. 
However, the challenges posed by the irregular patterns in 
MRI scans make accurate detection difficult for traditional 
human examination methods. In contrast, ML and DL-based 
frameworks have demonstrated superior accuracy in brain 
tumor detection compared to human analysis. Thus, there is a 
critical need to develop an efficient diagnostic approach that 
combines the expertise of medical professionals with the 
power of DL approaches to classify benign and malignant 
brain tumors from MRI scans with enhanced accuracy. This 
research aims to design and evaluate such an efficient 
diagnostic framework to provide reliable and efficient support 
to medical practitioners in diagnosing brain MRI tumors. This 
method's success may enhance patient care and outcomes by 
enabling early detection and appropriate intervention in cases 
of brain tumors. 
 
1.2 Contribution 
 

This study presents a novel and effective method for the 
precise classification of brain tumors using MRI scan data. 
The proposed system consists of three levels of processing to 
achieve improved accuracy: 

In the first level, our approach increases the majority and 
minority samples using ImageDataGenerator with real-time 
data augmentation. This step helps mitigate class imbalance in 
the dataset, enhancing the framework’s capacity to handle 
various tumor types effectively. 

In the second level, a CNN framework, specifically the pre-
trained Xception architecture, is utilized. The Xception 
framework is chosen because it can learn comprehensive 
information from images, making it well-suited for brain 
tumor classification. 

The third level involves hyperparameter tuning to optimize 
the multi-class classification accuracy further. Fine-tuning the 
framework's hyperparameters allows for better generalization 
and performance on the test data. 

The proposed framework categorizes brain tumors into 
various types, such as glioma, meningioma, pituitary tumors, 
and non-cancerous cases. The dataset utilized to train the 
framework was sourced from the Kaggle repository. 

The proposed framework's results show higher accuracy 
than other CNN frameworks. Specifically, the proposed 
framework achieves a validation accuracy of 99.87% in fine-
grained classification of brain tumors. This high accuracy 
determines the efficiency and effectiveness of the framework 
in accurately diagnosing brain MRI tumors. 

The structure of the article is planned as follows: The 
literature survey is presented in Section 2 of the article, Section 
3 details the materials and methods applied in this research, 
and Section 4 assesses the study's methodology. Section 5 
discusses the findings and provides an analysis, and Section 6 
offers a conclusion along with suggestions for future research 
directions. 
 
 
2. RELATED WORKS 

 
Numerous studies have explored early brain tumor 

detection through various ML and DL techniques [5]. 
According to Siar and Teshnehlab [6], Gaussian filter was 
used in the pre-processing step to reduce the noise in the 
images, which were then normalized to minimize the 
differences in the size of each image. A VGG16 CNN 
framework was utilized as a feature extractor, paired with an 
SVM classifier for classification on a public dataset, achieving 
a 98.8% accuracy. In another study, Rehman et al. [7] 
proposed a fine-tuned, pre-trained ResNet50 CNN framework 
to classify tumors including meningioma, glioma, pituitary, 
and no tumor. The framework was optimized with an SGD 
optimizer, which achieved an accuracy of 98.69% on the MRI 
scans of the ImageNet dataset. 

Khan et al. [8] proposed deep learning, k-means clustering, 
and data augmentation approaches for fine-tuned 
classification. The U-Net CNN has been employed for the 
segmentation. Several pre-trained CNN frameworks like 
ResNet-50, VGG16, and Xception were tested to obtain higher 
accuracy, where the Xception framework outperformed with 
the highest accuracy of 97.83% on the BRATS 2018 dataset. 
Noreen et al. [9] evaluated DensNet201 and InceptionV3 pre-
trained frameworks as feature extractors using the SoftMax 
classifier, which showed an accuracy of 99.51% and 99.34%, 
respectively. Saleh et al. [10] used five pre-trained frameworks 
of CNN for tumor classification. Xception, InceptionV3, 
MobileNet, and ResNet50 were used to classify the tumor. The 
Xception framework outperformed with an accuracy of 
98.75%. 

Toğaçar et al. [11] used the hypercolumn approach in the 
layers of the convolution framework and presented a 
BrainMRNet framework. The framework was used to extract 
the characteristics. An SGDR optimizer was used for 
optimization, and the activation function chosen was ReLu. 
The framework's accuracy in determining the kind of tumor 
was 96.05%. The dataset was first pre-processed and 
normalized before being fed to the framework. Siddique et al. 
[12] utilized a pre-trained VGG16 approach within a Deep 
CNN framework to classify tumor images. When applied to an 
MRI image dataset, the framework demonstrated enhanced 
performance over conventional methods, achieving an 
accuracy rate of 96%. 

Sharif et al. [13] introduced a DL framework using a fine-
tuned Densenet201 pre-trained architecture, integrating 
feature extraction enhanced through an improved genetic 
algorithm and an Entropy–Kurtosis-based High Feature Value 
(EKbHFV) approach. The extracted features were classified 
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using a multi-class SVM cubic classifier. The framework has 
attained a precision of 95% on the BRATS dataset. İncir and 
Bozkurt [14] compared the pre-trained CNN frameworks. 
MobileNetV2, InceptionV3, and VGG19 were tested on a 
public dataset. That was pre-processed by resizing them. The 
CNN framework used ReLu and Soft-Max activation 
functions in the dense layers. The MobileNetV2 framework 
outpaced with an accuracy of 92%. 

Agarwal et al. [15] developed a framework combining an 
orthogonal and Berkeley wavelet transform (BWT) with a DL 
classifier. To extract features, they employed the grey-level 
co-occurrence matrix (GLCM) technique. The genetic 
algorithm was used for the feature selection. CNN obtained an 
accuracy of 97.3% on the Health Insurance Probability and 
Accountability Act (HIPAA) dataset. Rasool et al. [16] 
employed a pre-trained GoogleNet framework with a fine-
tuned GoogleNet framework that included a SoftMax 
classifier as a feature extractor in the SVM classifier. On the 
MRI dataset, the modified GoogleNet framework was 
employed to extract features in the SVM classifier, and it 
achieved a high precision of 98.1%. 

Raza et al. [17] projected a hybrid CNN approach. 
DeepTumorNet is a hybrid framework that Google developed 
based on the architecture of GoogleNet. Within the framework 
was included the usage of the leaky ReLu activation function. 
With an accuracy of 99.67%, this framework outperformed 
Resnet50, AlexNet, darknet53, ShuffleNet, SqueezeNet, 
GoogLeNet, ResNet101, Exception Net, and MobileNetv2. A 
hybrid technique was presented for the categorization of 
tumors by Senan et al. [18]. ML and DL are both types of 
learning combined in this approach. The AlexNet and ResNet-
18 were used for the feature extraction in the SVM algorithm 
with SoftMax activation function to classify the brain tumor. 
AlexNet, as a feature extractor in the SVM algorithm, got a 
better precision of 95.10% in the classification process.  

Arefin et al. [19] compared the accuracy of ResNet50 and 
InceptionV3 in classifying brain tumors. The LGG dataset 
images underwent pre-processing and augmentation before 
being input into CNN frameworks. In these frameworks, the 
ResNet50 and InceptionV3 encoders were integrated with a U-
net architecture. The framework combining the ResNet50 
encoder with the U-net architecture achieved superior 
performance, reaching a precision of 99.77%. Bashkandi et al. 
[20] introduced a combination of a CNN, a particle swarm 
optimizer to optimize the hyperparameters, and a political 
optimizer to select the informative features. The data was pre-
processed by histogram equalization, gamma correction, 
normalized, and augmented. The images were then fed to the 
framework to categorize the brain tumor, which showed an 
exactness of 97.09%. 

Nanda et al. [21] propose a social spider Basis Neural 
Network (SSO-RBNN) in which the data was pre-processed 
using Median filters. After the pre-processing step, the 
features were extracted by first-order intensity statistical and 
segmentation-based features. The authors have mentioned the 
usage of Saliency-K-means segmentation and the (SSO-
RBNN) for classification, which achieved an accuracy of 96% 
on the MRI images. Rahman et al. [22] conducted the category 
of brain tumor using the Parallel Deep CNN, which used the 
ReLu activation function in the convolutional layers. SoftMax 
was used in the classification network. This framework gave 
an accuracy of 97.30% after augmentation. After applying pre-
processing techniques, Satyanarayana et al. [23] used a DCNN 
to categorize brain tumors on the dataset. A mass correlation-

based pre-processing method helped achieve a better accuracy 
of 93.62% while classifying the high-grade glioma tumor 
using the DNN framework. 

Kurdi et al. [24] proposed a Harris Hawks optimized 
convolution network (HOCNN), a meta-heuristic optimized 
CNN that attained a precision of 98%. The quality of the 
images in the dataset was improved by applying histogram 
equalization and a median filter. The framework was 
accomplished on a small dataset which limits the framework's 
performance on other datasets. Jaspin and Selvan [25] 
proposed a Multi-class Classification Neural Network in 
which the data was pre-processed to eliminate the noise and 
normalized. The normalized data were then augmented with 
techniques like flipping and resizing. The data was then fed to 
the MCNN framework, which achieved an accuracy of 99% 
respectively. 
 
2.1 Extract from literature 
 

The survey mentioned above elaborates on the various 
machine learning frameworks like InceptionV3, DensNet201, 
ResNet50, VGG16, and Xception with their efficacy in 
handling various issues with its accuracy. The frameworks 
were fine-tuned using multiple techniques for optimization, 
like SGDR, SGD, MGA, and other optimizers. SoftMax and 
ReLu activation functions were used to bring the non-linearity 
into more complex neural network framework functions. 
However, dense frameworks tend to perform better on more 
complex tasks and larger datasets, but they require more 
computational resources for training and inference. Hence, 
Xception is designed to be more computationally efficient 
compared to traditional Inception frameworks and ResNet 
variants. 

Based on the recent investigation, the Xception framework 
outperformed in classifying the brain tumor. In addition, the 
Xception framework received high accuracy in several studies. 
According to the study by Khan et al. [8], the Xception 
framework achieved a higher concert associated with other 
pre-trained frameworks, reaching a precision of 97.83% on the 
BRATS 2018 dataset. The Xception framework was utilized 
for categorizing tumors by Saleh et al. [10] and achieved a 
98.75% accuracy. In this approach, we used the data 
augmentation technique to increase the minority classes, 
thereby improving the training process and achieving better 
multi-class classification accuracy. 
 
 
3. METHODS AND MATERIALS 
 
3.1 Dataset 

 
This study uses the brain tumor MRI dataset found on the 

Kaggle repository [26]. In all, the collection contains 3264 
different files. Testing and training data have previously been 
extracted from the dataset and separated. This dataset from 
Kaggle categorizes glioma, meningioma, pituitary, and no 
tumor. The testing data comprises 105 photographs with no 
tumor, 100 images with glioma, 115 with meningioma, 74 
with pituitary, and 100 with no tumor. The training set 
includes 395 photos that do not have tumors in addition to 822 
meningiomas, 826 gliomas, and 827 pituitary tumors. The 
scattering of various forms of brain tumors in the sample is 
shown in Figure 1. 
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Figure 1. Dataset proportion 
 
3.2 Image pre-processing and augmentation 
 

Pre-processing is a crucial step to enrich accuracy by 
enhancing the image quality. This study applies various pre-
processing steps to the dataset [27]. In the first step, we use a 
Gaussian blur filter to smoothen the image's appearance by 
minimizing noise and blurring the image. In the second step, 
we did thresholding to separate the image into background and 

foreground by setting the pixels with values less than 45 to 
black and greater than 45 to white. Then, we erode the images 
twice to remove the tiny noises and make the tumor's edges 
more defined. The borders of the cancer are detected, and the 
outer counters of the tumor are found using a computer vision 
library. The extreme points of the counter are determined to 
crop the image. The extraction of ROI removes the unwanted 
background of the image. 

In this study, the dataset is not satisfactory for the 
framework to train accurately. Hence, data augmentation is 
introduced to raise the dataset size, and thereby, it also reduces 
the overfitting issue. The ImageDataGenerator class of Keras 
is used to perform various augmentation techniques. Later, the 
images are rotated to improve the framework's training by 
providing multiple angles for each image. Then, the shifting of 
images is performed to get different tumor positions. Shearing 
is applied to achieve robustness by generating various views 
of the image. The Brightness of the images is adjusted by 
adjusting the brightness range. Horizontal and vertical flipping 
increases the data and the framework's generalization. The 
procedure of data preprocessing and data augmentation is 
demonstrated in Figure 2. In addition, the dataset before and 
after augmentation is illustrated in Figure 3. 

 

 
 

Figure 2. A block diagram depicting image pre-processing and augmentation techniques 
 

 
 

Figure 3. Dataset before and after augmentation 
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4. PROPOSED METHODOLOGY 
 

The methodology in this paper follows a sequence in which 
the dataset was collected from Kaggle, which is first 
augmented to get all the possible dimensions of the image. The 
expanded dataset images are then pre-processed using various 
techniques mentioned in section 3 to extract the region of 
interest. The augmented and pre-processed dataset is then fed 
to the CNN framework as input to train the framework and get 
the results. The framework is finally evaluated by analyzing 
the performance metrics. 

 
4.1 Proposed framework 
 

This study used a pre-trained CNN framework, namely 
Xception [28]. The framework is 71 layers deep, out of which 
14 are depth-wise separable layers and is an extension of the 
Inception framework. It was pre-trained on the large-scale 
ImageNet dataset. The framework utilizes channel-wise and 
spatial convolutional layers. As the initial layer in the 
framework, the depth-wise convolutional layer processes each 
input channel separately using a filter. This is commonly 
referred to as channel-wise convolution. The output from this 
layer is subsequently passed to the pointwise convolutional 
layer, which performs a 1×1 convolution and applies linear 
transformations to each individual feature pixel. This process 
is referred to as spatial convolution. The Xception framework 

architecture has three stages: entry, middle, and exit flow. The 
architecture in Figure 4 describes the three different flows of 
the framework. 
 
4.2 Hyperparameter tuning 
 

The Xception framework has been utilized in this work due 
to its outstanding performance in various studies. The 
framework is hyper-tuned to get a more accurate brain tumors 
classification. Adam optimizer is employed in the Xception 
framework to improve the accuracy with efficient 
optimization. Adam optimizer dynamically adjusts the 
learning rate, making it suitable for the framework. The 
SoftMax activation function is used in the Xception 
framework for the multi-class classification of images. It helps 
the network produce normalized probability distribution 
among the classes. A batch size of 30 is used in training to 
improve convergence and good generalization. The 
framework is trained with 12 epochs to learn the underlying 
patterns of the data. 
 
4.3 Working process of framework 
 

Figure 5 illustrates the operational workflow of the 
Xception neural network used for brain tumor classification. 
The systematic approach of the Xception framework is 
presented as follows. 

 

 
 

Figure 4. The general architecture of the Xception framework 
 

 
(a) Proposed Framework 
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(b) VGG 19 

 
(c) ResNet 50 

 
 

 
(d) InceptionV3 
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e) AlexNet 

 
Figure 5. Illustration of the framework's validation loss, training loss, validation accuracy, and training accuracy 

 
(1) The input image of size 𝜀𝜀 × 𝜇𝜇 × 𝜔𝜔 is represented as a 

tensor 𝜒𝜒 ∈ 𝑅𝑅𝜀𝜀 × 𝜔𝜔 × 𝛾𝛾. 
(2) Convolutional Layers: In the Xception architecture, each 

depthwise separable convolutional layer is implemented by 
first applying a depthwise convolution, followed by a 
pointwise convolution. The depth-wise convolution can be 
represented as: 

 

𝛿𝛿(𝜒𝜒)𝒾𝒾𝒾𝒾𝛾𝛾 =  � �𝜒𝜒(𝒾𝒾 + 𝜄𝜄, 𝒾𝒾 + 1, 𝛾𝛾 )
ℒ−1 

𝜅𝜅

ℋ−1

𝜄𝜄=0

× 𝜔𝜔𝒹𝒹𝜄𝜄𝜄𝜄 

 
where, 𝛿𝛿(𝜒𝜒)𝒾𝒾𝒾𝒾𝛾𝛾 is the output of the depthwise convolution at 
location (𝒾𝒾, 𝒾𝒾) and channel 𝛾𝛾 , 𝜒𝜒(𝒾𝒾 + 𝜄𝜄, 𝒾𝒾 + 1, 𝛾𝛾 ) is the input 
value at the location (𝒾𝒾 + 𝜄𝜄, 𝒾𝒾 + 1, 𝛾𝛾 ) and channel 𝛾𝛾, 𝜔𝜔𝒹𝒹𝜄𝜄𝜄𝜄 is 
the depthwise convolutional filter at depth d and spatial 
location (𝜄𝜄, 𝜄𝜄), where ℒ , ℋ  are the width and height of the 
filter, respectively. 

The pointwise convolution can be represented as: 
 

𝜌𝜌�𝛿𝛿(𝜒𝜒)�𝒾𝒾𝒾𝒾𝛾𝛾 = �𝛿𝛿(𝜒𝜒)𝒾𝒾𝒾𝒾𝒹𝒹 × 𝜗𝜗𝒹𝒹𝛾𝛾
𝛿𝛿−1

𝒹𝒹=0

 

 
where, 𝜌𝜌�𝛿𝛿(𝜒𝜒)�𝒾𝒾𝒾𝒾𝛾𝛾 is the output of the pointwise convolution 
at location (𝒾𝒾, 𝒾𝒾) and channel 𝛾𝛾, 𝛿𝛿(𝜒𝜒)𝒾𝒾𝒾𝒾𝒹𝒹 is the output of the 
depthwise convolution at location (𝒾𝒾, 𝒾𝒾) and depth 𝒹𝒹, 𝜗𝜗𝒹𝒹𝛾𝛾 is 
the pointwise convolutional filter at depth d and channel 𝛾𝛾, and 
𝛿𝛿  is the numeral of output channels of the depthwise 
convolution. 

Together, the depth-wise separable convolution can be 
represented as: 

 
𝜎𝜎(𝜒𝜒)𝑖𝑖𝑖𝑖𝛾𝛾 = 𝜌𝜌(𝛿𝛿(𝜒𝜒))𝑖𝑖𝑖𝑖𝛾𝛾 

 
where, 𝜎𝜎(𝜒𝜒)𝒾𝒾𝒾𝒾𝛾𝛾  is the output of the convolutional layer at 
location (𝒾𝒾, 𝒾𝒾)and channel 𝛾𝛾. 

(3) Skip Connections: Xception uses skip connections to 
connect some convolutional layers directly to the output. Let 

𝜎𝜎(𝜒𝜒) and �́�𝜎(𝜒𝜒) denotes the output of two convolutional layers 
in Xception, and let Y be the output of the skip connection. 
The skip connection can be represented as: 

 
𝜓𝜓 = ∆�𝜎𝜎(𝜒𝜒) + �́�𝜎(𝜒𝜒)� 

 
where, ∆  is an activation function (usually ReLU), and + 
denotes element-wise addition. 

(4) Global Average Pooling: A global average pooling layer 
is applied to the output feature maps, computing the average 
value for each feature map across all spatial positions. The 
global average pooling can be represented as: 

 

𝒢𝒢�𝜎𝜎(𝜒𝜒)�𝛾𝛾 =  
1

(𝜀𝜀 × 𝜔𝜔) × ��𝜎𝜎(𝜒𝜒)𝒾𝒾𝒾𝒾𝛾𝛾
𝜔𝜔−1

𝒾𝒾=0

𝜀𝜀−1

𝒾𝒾=0

 

 
where, 𝒢𝒢�𝜎𝜎(𝜒𝜒)�𝛾𝛾 is the global average pooling layer produces 
an output for each channel 𝛾𝛾. 

(5) Fully Connected Layers: The feature vector is sent 
through a set of fully connected layers to produce the output 
probabilities for each class in the classification task. Let F be 
the feature vector and let 𝜓𝜓 be the output probabilities. The 
fully connected layers can be represented as: 

 
ℱ = �𝒢𝒢�𝜎𝜎(𝜒𝜒)�1,𝒢𝒢�𝜎𝜎(𝜒𝜒)�2, … … . ,𝒢𝒢�𝜎𝜎(𝜒𝜒)�𝛿𝛿� 

𝒴𝒴 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜆𝜆 × ℱ + 𝜙𝜙) 
 
The SoftMax function converts the output of fully 

connected layers into probability values. In this context, 𝜆𝜆 and 
𝜙𝜙  represent the weight and bias matrices of these layers, 
respectively; 𝛿𝛿 denotes the number of output channels in the 
final convolutional layer. 
 
4.4 Hyperparameter tuning and selection criteria 
 

This study employed hyperparameter tuning to enrich the 
performance of the Xception framework for brain tumor 
classification. Key hyperparameters were optimized to 
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achieve the best trade-off between accuracy and 
generalization. The learning rate was initially configured at 
0.001 and was adaptively modified throughout training by the 
Adam optimizer, which is recognized for its ability to adjust 
learning rates and promote stable convergence. Different batch 
sizes were evaluated, leading to the selection of a batch size of 
30 to achieve an optimal balance between memory efficiency 
and training speed. Training epochs were limited to 12 to avoid 
overfitting, based on early convergence observed in validation 
trials. 

The SoftMax activation function was applied in the final 
layer to generate normalized probability distributions across 
classes, ensuring effective multi-class classification. Transfer 
learning was leveraged by fine-tuning pre-trained weights 
from ImageNet, providing a solid foundation for accurate 
classification. Categorical cross-entropy was employed as the 
loss function, appropriate for multi-class tasks by measuring 
the difference between predicted probabilities and true class 
labels. 

The hyperparameters were chosen after several rounds of k-
fold cross-validation, aimed at enhancing framework 
robustness and reducing the risk of overfitting. The 
combination that yielded the highest validation accuracy and 
minimal loss was adopted. This tuning process contributed to 
the framework’s superior performance, with the proposed 
approach achieving a validation accuracy of 99.87% and 
minimal validation loss (0.0026%). By systematically 
optimizing these parameters, the framework was able to 
balance accuracy, efficiency, and generalization effectively. 
 
 
5. RESULT ANALYSIS AND DISCUSSION 
 

In this section, we explore the experimental setup, assess the 
framework's performance, and compare it with other 
frameworks. 
 
5.1 Experimental setup 
 

This study seeks to categorize brain tumors into four distinct 
types: Meningioma, Glioma, Pituitary Tumor, and No Tumor, 
using Python as the primary programming language. 
TensorFlow and Keras are utilized to build, compile, and train 
the frameworks, with Keras serving as a high-level neural 
network API running on TensorFlow. The experiment was 
carried out on a system equipped with a 12th Gen Intel Core 
i7-12700F processor, running at a base clock speed of 2.10 
GHz, with 32GB of RAM, and operating on a 64-bit version 
of Windows 10, with Jupyter Notebook serving as the 
development environment. The dataset comprises 3624 tumor 
files, which are pre-processed and augmented using Python 
libraries. The data is split into training (80%), validation 
(10%), and testing (10%) subsets. To enhance generalization 
and prevent overfitting, k-fold cross-validation is employed. 
This setup leverages high computational power and robust 
data management to achieve accurate brain tumor 
classification. 

In addition, we use SoftMax as an activation function in the 
Xception framework for multi-class classification of images as 
it helps the network produce normalized probability 
distribution among the classes. SoftMax cross-entropy loss 
function helps in reducing overfitting by penalizing the 
framework. It assigns a greater probability in the case of the 
correct type and a lesser chance in the case of the wrong class. 

The frameworks used to compare with the proposed 
framework of this study are described as follows. 

 
5.1.1 InceptionV3  

InceptionV3 is a convolutional neural network (CNN) 
introduced by Google. The inception framework served as the 
building block for the inceptionV3 framework. This pre-
trained deep learning framework uses max pooling, 
convolutional layers, and average pooling layers to extract 
input image features [29]. 

 
5.1.2 ResNet50 

ResNet50 is a Convolutional neural network framework 
introduced by Microsoft. It was proposed to overcome the 
limitations of ResNet architecture, such as vanishing gradient 
Descent. The introduction of ResNet50 made the training of 
the framework easy. ResNet50 contains five blocks in which 
the convolutional layers keep adding at the last block of five 
convolutional layers, which helps in better feature extraction 
[30]. 

 
5.1.3 VGG19 

VGG19 was found at the University of Oxford.VGG19 is a 
19-layer deep convolutional layer. It consists of 16 
convolutional layers and three fully connected layers. VGG19 
extracts more complex features from the images than VGG16 
because of its depth [31]. 

 
5.1.4 AlexNet 

AlexNet is an eight-layer deep CNN framework proposed 
in 2012.AlextNet has five layers of convolution with three 
fully connected layers. AlexNet has a dropout regularization 
that drops neurons preventing the overfitting issues in the 
framework [32]. 

The frameworks are tuned to achieve better accuracies in 
classifying brain tumors. These frameworks' accuracy is then 
compared with the Xception framework, which outperformed 
the other frameworks.  
 
5.2 Performance metrics 
 

Performance metrics are used as a standard for measuring 
the performance and efficiency of a framework. Metrics like 
sensitivity, Accuracy, Precision, Specificity, and False 
Positive Rate (FPR) are used to monitor the performance of a 
particular framework. The mathematical representation of the 
metrics is depicted in the equations below. 

Sensitivity (Se), also known as the true positive rate, 
measures how accurately the system identifies positive cases. 
High sensitivity ensures most tumors are correctly detected, 
with very few false negatives. 

 

𝑆𝑆𝑆𝑆 =
�𝑇𝑇𝑝𝑝�

(𝑇𝑇𝑃𝑃) + (𝐹𝐹𝑁𝑁) × 100 

 
Precision (P) determines the percentage of tumor classes 

classified correctly out of all predictions made for that class. 
High precision indicates the excellent performance of the 
framework. 

 

𝑃𝑃 =
�𝑇𝑇𝑝𝑝�

(𝐹𝐹𝑃𝑃) + (𝑇𝑇𝑁𝑁) × 100 

 
False Positive Rate (FPR) determines the percentage of 
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cases in which the tumor was classified incorrectly into a 
particular class as a positive classification out of all the 
pessimistic predictions that belong to that class. Low FPR 
determines the better performance of the framework. 

 

𝐹𝐹𝑃𝑃𝑅𝑅 =
�𝐹𝐹𝑝𝑝�

(𝐹𝐹𝑃𝑃) + (𝑇𝑇𝑁𝑁) × 100 

 
Specificity (SP), Or True Negative Rate, determines the 

percentage of classifications predicted as negative for a 
particular class. 

 

𝑆𝑆𝑃𝑃 =
(𝑇𝑇𝑁𝑁)

(𝑇𝑇𝑁𝑁) + (𝐹𝐹𝑃𝑃) × 100 

 
F1-Score combines precision and recall values. F1-Score 

measures the framework's performance. A high F1-Score 
determines a good version of the framework. The 
mathematical formulation of the metric is represented as: 

 

𝑃𝑃 =
𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃
𝑃𝑃 + 𝑆𝑆𝑃𝑃

× 100 
 
Accuracy (ACC) determines the percentage of tumor 

classifications done correctly out of all the predicted 

categories. A high accuracy determines the efficiency of the 
system. It is mathematically represented as  

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝐴𝐴𝐴𝐴 =
(𝑇𝑇𝑁𝑁) + (𝑇𝑇𝑇𝑇)

�𝑇𝑇𝑝𝑝� + (𝑇𝑇𝑁𝑁) + (𝐹𝐹𝑃𝑃) + (𝐹𝐹𝑁𝑁)
× 100 

 
The abbreviations TN, TP, FN, and FP in the equations 

represent True Negative (TN), True Positive (TP), False 
Negative (FN), and False Positive (FP), respectively. True 
positive describes the actual valid values that are predicted 
correctly as accurate, True negative describes the actual false 
values that are precisely expected as false, False positive 
describes the actual false values that are incorrectly classified 
as true, and false negative represents the actual valid values 
that were incorrectly predicted as false. 
 
5.3 Analysis of frameworks 
 

This study evaluates the Xception framework alongside 
other pre-trained CNN frameworks, including ResNet50, 
AlexNet, VGG19, and InceptionV3. Comparing the Xception 
framework to other state-of-the-art frameworks demonstrates 
the efficacy of our proposed mod-el. Figure 4 illustrates the 
achieved precision and loss for each framework. 

 

  
(a) Proposed Xception framework (b) VGG19 

  
(c) AlexNet (d) ResNet50 

 
Figure 6. Confusion matrix obtained by the proposed Xception framework, VGG19, AlexNet and ResNet50 frameworks 
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The confusion metrics that analyze the predictions of a 
classification framework that compares them to the actual 
values of the data are calculated for the evaluated CNN 
frameworks, as represented in Figure 5. The performance 
metrics for each framework are calculated from the confusion 
matrix described in Table 1. 
 

Table 1. Performance outcome of the proposed framework 
 

Class Precision (%) Recall (%) F1-score (%) 
Glioma 99.9 99.9 99.9 

Meningioma 99.8 99.9 99.8 
No tumor 99.9 99.9 99.9 
Pituitary 100 100 100 

 
Confusion metrics (CM) are vital in analyzing frameworks 

like Xception, AlexNet, VGG19, and ResNet50 performance, 
as illustrated in Figure 6. CM represents the predicted values 
on the x-axis and the y-axis. In addition, it also helps to 
calculate metrics like precision, accuracy, recall, and F1-score 
equations as described in equations 1 to 6, as specified in the 
earlier section. 

The performance metrics are calculated from the confusion 
metrics as specified in Figure 6 of each framework to estimate 
the effectiveness of the frameworks. 
From the above performance metrics of the Xception 
framework (Figure 7), we can say that it has a good precision 
value depicting that the framework has hardly made false 
optimistic predictions. A good recall value of this framework 
shows that the framework has attained good accuracy by 

correctly classifying the positive instances, and a high f1-score 
depicts that our framework has achieved perfect precision and 
recall. 
 

 
 

Figure 7. Graphical representation of the Xception 
framework's performance metrics 

 
The performance outcomes of the other frameworks are also 

calculated to compare with the proposed Xception framework, 
as described in Tables 2 and 3. The graphical representation of 
the F1 score, precision, and recall performance scores are 
presented in Figures 8 and 9. 

 
Table 2. F1 Score of the proposed framework and other CNN frameworks 

 
Model F1-Score (%) Overall Accuracy (%) Glioma Meningioma No Tumor Pituitary 

AlexNet 96 98 98 99 98 
ResNet50 80.2 88.8 76.09 89.68 85.5 
VGG19 97 98 99 99 98 

Proposed model 99.9 99.8 99.9 100 99.87 
 

Table 3. Precision and recall (%) of the proposed model and other CNN models 
 

Model Precision (%) Recall (%) 
Glioma Meningioma No Tumor Pituitary Glioma Meningioma No Tumor Pituitary 

AlexNet 96 99 98 99 97 98 98 100 
ResNet50 75.4 91.8 75 90.97 85.7 85.99 77.22 88.43 
VGG19 97 99 98 99 98 98 99 99 

Proposed model 99.9 99.8 99.9 100 99.8 99.8 99.9 100 
 

 
 

Figure 8. Graphical representation of precision and recall 
values obtained by the proposed framework and other CNN 

frameworks 

 
 

Figure 9. Graphical representation of F1 Score obtained by 
the proposed framework and other CNN frameworks 
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From the analysis, it is observed that the Xception 
framework, which is the proposed framework of our study, has 
obtained precision and recall of 100% for all the classes. The 
framework has hardly fallen into false pessimistic or 
optimistic predictions. The Xception framework gained an f1-
score of 100%. The other CNN frameworks were compared 
with the f1-score of Xception. AlexNet and VGG19 were close 
to the perfect score, whereas the ResNet50 came after the 
remaining frameworks. 
 
5.4 Comparison of the proposed framework concerning 
validation loss and accuracy 
 

The performance of the proposed Xception framework is 
evaluated against four other pre-trained CNN frameworks—
ResNet50, InceptionV3, AlexNet, and VGG19—using the 
same dataset to demonstrate its superiority in fine-grained 
classification. The Xception framework is built on the 
Inception framework with depth-wise separable convolutional 
layers as an additional performing both spatial and channel-
wise convolution resulting in powerful feature extraction. The 
depth-wise convolutional layers in Xception are 
computationally more effective than the traditional 
convolution layers of AlexNet, VGG19, and ResNet50. The 
Xception framework uses parameters effectively because of 
the depth-wise separable convolutional layers, whereas other 
state-of-art frameworks evaluated in this paper require more 
parameters leading to more training time. 

 
Table 4. Validation accuracy and loss of the proposed 

framework and other CNN frameworks 
 

CNN 
Frameworks 

Validation Accuracy 
(%) 

Validation Loss 
(%) 

AlexNet 98.26 0.11 
ResNet50 85.51 0.42 
VGG19 91.13 0.27 

InceptionV3 90.53 1.3 
Proposed 

framework 99.87 0.0026 

 

 
 

Figure 10. Comparison of the proposed framework with 
various deep learning architectures with respect to validation 

accuracy and loss 
 

In this paper, the Xception framework performed fine-
grained classification. The proposed framework achieved a 
validation accuracy of 99.87%, surpassing the performance of 
other CNN frameworks in terms of accuracy. Table 4 and 
Figure 10 depict the validation performance of the proposed 

and other CNN frameworks. The proposed framework 
demonstrated exceptional performance, attaining a validation 
accuracy of 99.87% and a very low validation loss of just 
0.0026%. AlexNet, VGG19, and InceptionV3 show their 
performance in classifying tumors a bit closer to Xception, 
whereas ResNet50 comes after all these frameworks in 
ranking. 
 
5.5 Discussion 
 

In this study, we compared our proposed framework with 
other CNN frameworks whose accuracies have been 
calculated and compared in Table 4, as presented earlier in this 
section. The confusion and performance metrics have been 
computed in Tables 2 and 3. In addition, the graphical 
illustration is provided in Figures 8 and 9. The main problem 
in the tumor classification was determining the irregular 
shapes of the tumor. The feature extraction methods can 
evaluate the odd shapes. Our proposed Xception framework, a 
powerful feature extractor with a depth-wise separable 
convolutional layer, has depth-wise and pointwise 
convolutional layers, extracting more features than the 
standard convolutional layers. The Xception framework was 
hyper-tuned in this study because of its ability to retain spatial 
information by which the object can be easily identified.  

The framework achieved a perfect classification score and a 
minor validation loss in the fine-grained classification of brain 
tumors on the MRI dataset obtained from Kaggle. The dataset 
in this study was pre-processed to extract the region of interest 
and then augmented to get all the dimensions of the MRI 
image so that the framework can train on all the various angles 
of the MRI images. Adam optimizer used in this study 
dynamically adjusted the learning rate. The optimizer fine-
tuned the weights, which helped improve the framework's 
training process speed. In Figure 10, the validation accuracy 
and loss of different frameworks are compared. The proposed 
framework outperforms AlexNet, ResNet50, VGG19, and 
Inception V3, achieving the highest validation accuracy while 
maintaining a low validation loss. The framework took less 
time in training and effectively used the parameters while 
maintaining high validation accuracy than the other CNN 
frameworks, such as AlexNet, InceptionV3, VGG19 and 
ResNet50, which use a more significant number of parameters. 
Feature selection could have increased the framework's 
performance for real-world data use. The powerful feature 
extraction capabilities of the Xception framework proved 
sufficient to achieve high validation accuracy in accurately 
classifying brain tumors. 
 
 
6. CONCLUSION 
 

A brain tumor ranks among the most rapidly progressing 
and life-threatening conditions. Much research has been done 
to eradicate the problem of differentiating among various 
types of brain tumors using ML and DL frameworks. The 
hyper tuning of parameters of the Xception framework utilized 
in this study gave an exceptional performance in the fine-grain 
classification of the brain tumors into four classes: glioma, 
meningioma, pituitary, and no tumor. Pre-processing and 
augmenting the MRI images helped the framework train better 
on various images. The proposed Xception framework 
demonstrated outstanding performance in comparison to other 
CNN frameworks, including AlexNet, ResNet50, 
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InceptionV3, and VGG19. The high validation accuracy and 
accurate classification of the proposed Xception framework 
make it fit for predicting brain tumors. The framework can be 
more promising when tested on various datasets; performing 
segmentation and localizing the exact position of the tumor 
will provide better treatment to the subject. The work can be 
expanded by employing optimization algorithms to select the 
most relevant features, thereby minimizing computational 
complexity and enhancing the framework's performance in 
real-time analysis. 
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