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This study introduces an enhanced Variational Mode Decomposition (VMD) method for 

signal decomposition, based on the African Vulture Optimization Algorithm (AVOA). 

Addressing the limitations of the traditional AVOA in function optimization, this paper 

initially presents an Enhanced Convergence (EC) strategy. By refining the core formulas of 

AVOA, the EC strategy enhances its applicability and convergence performance in complex 

function optimizations. Building on this foundation, the EC-AVOA algorithm is utilized to 

globally optimize key VMD parameters, including the number of modes and penalty factors, 

thereby improving the adaptability and accuracy of the decomposition algorithm. 

Experimental results demonstrate that this method can effectively extract physically 

meaningful modal components from complex signals and has shown superior performance 

across various engineering applications. This research not only significantly enhances the 

decomposition effectiveness of the VMD algorithm but also expands the application scope 

of the EC-AVOA, offering an innovative optimization strategy for the field of signal 

processing. 
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1. INTRODUCTION

In the field of signal processing, the Variational Mode 

Decomposition (VMD) [1] algorithm has garnered widespread 

attention for its exceptional adaptability and efficiency. This 

algorithm effectively decomposes complex signals into 

multiple modal components with distinct frequency and 

temporal characteristics, providing a more precise time-

frequency analysis method compared to traditional Fourier 

transform, especially when dealing with non-stationary 

signals. However, the selection of parameters in the VMD 

algorithm significantly impacts the results, and optimizing 

these parameters for various practical engineering problems 

presents a meaningful engineering challenge [2-5]. 

Optimization algorithms, as powerful mathematical tools, 

play a crucial role in various fields such as industrial 

manufacturing, transportation, finance, and artificial 

intelligence. In the realm of industrial manufacturing, these 

algorithms enhance processes, logistics routes, and production 

plans, effectively increasing efficiency and reducing costs. In 

the transportation sector, they refine public transit routes, 

flight schedules, and shipping paths, markedly improving 

operational efficiency [6-9]. As an advanced form of heuristic 

algorithms [10, 11], metaheuristic algorithms emulate the 

evolutionary processes found in nature. They significantly 

enhance flexibility and evolutionary capabilities by adaptively 

learning and adjusting predefined heuristic methods through 

higher-level adaptive strategies and meta-knowledge. This 

enables metaheuristic algorithms to handle complexity more 

effectively than traditional heuristic algorithms and to 

generalize well across a variety of problem domains [12-18]. 

The African Vulture Optimization Algorithm (AVOV), 

inspired by the hunting behavior of African vultures, is a 

notable metaheuristic algorithm [19]. Since its introduction in 

2021, it has been recognized for its ability to utilize individual 

and social intelligence to find optimal solutions. The algorithm 

consists of three stages: reconnaissance, foraging, and 

aggregation. During the reconnaissance phase, potential areas 

are searched; in the foraging phase, individuals explore these 

areas with random movements; and during the aggregation 

phase, individuals interact and cooperate to effectively 

discover and exploit promising areas. 

In recent years, researchers have made significant progress 

in the improvement and application of the AVOA algorithm. 

For instance, Zhang et al. [20] proposed a novel optimized 

design of a hybrid AlexNet/Extreme Learning Machine (ELM) 

network for providing an optimal identification tool for Proton 

Exchange Membrane Fuel Cells (PEMFCs). Gürses et al. [21] 

investigated the optimization problem of shell-and-tube heat 

exchangers using the AVOA. Kumar and Mary [22] improved 

the AVOA algorithm based on the Newton-Raphson method 

to accurately predict photovoltaic power output and determine 

the optimal model. Furthermore, other specific algorithms 

based on AVOA have been developed for different domains: 

Alanazi et al. optimized photovoltaic systems; Khodadadi et 

al. [23] utilized multi-objective version of AVOA to solve 

industrial engineering problems; Balakrishnan et al. [24] 

performed feature selection and sentiment analysis on movie 
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reviews. In addition, the AVOA has been combined with other 

algorithms to create hybrid versions. For example, Xiao et al. 

[25] integrated it with the Ant Colony Optimization algorithm, 

while Liu et al. [26] combined it with the Honey Badger 

Optimizer. Furthermore, researchers have also incorporated 

AVOA with other optimization algorithms, such as 

Differential Evolution and Harmony Search, to address 

various practical problems. These successful enhancements 

and applications have expanded the potential of AVOA, 

providing effective solutions across multiple fields. 

In this study, the sensitivity of AVOV to the location of 

convergence points was investigated, and an Enhanced 

Convergence (EC) strategy was proposed to address this issue. 

An in-depth analysis of the AVOV algorithm's performance 

on various test functions revealed significant sensitivity to the 

position of the optimal solution, particularly when the optimal 

solution was not located at the origin. Under such conditions, 

the convergence speed and precision of the algorithm were 

notably reduced. To mitigate this limitation, an Enhanced 

Convergence strategy was introduced, which optimized the 

core formulas of the algorithm to maintain efficient 

convergence performance even when the optimal solution was 

not at the origin. 

Experimental results indicated that the improved EC-

AVOV algorithm exhibited higher convergence accuracy and 

stability across different offset conditions. Compared to the 

original AVOV algorithm, the EC-AVOV demonstrated the 

ability to rapidly converge to the global optimal solution when 

dealing with complex functions that featured non-zero offsets, 

while effectively avoiding local optima. Additionally, the EC-

AVOV algorithm achieved significant enhancements in global 

search capability and robustness, showing good adaptability 

and convergence effects in the optimization of both unimodal 

and multimodal functions. 

 

 

2. VMD ALGORITHM 

 

VMD is a sophisticated, non-recursive, and quasi-

orthogonal multi-scale signal decomposition technique that 

operates within the frequency domain. VMD is designed to 

decompose intricate signals into a series of Intrinsic Mode 

Functions (IMFs) characterized by distinct central frequencies 

and narrow bandwidths. The algorithm's core mechanism 

involves formulating and addressing a variational problem that 

integrates Wiener filtering for noise reduction, Hilbert 

transformation for marginal spectrum resolution, and the 

application of the alternating direction multiplier method to 

tackle unconstrained optimization problems. 

VMD excels in handling signals with localized features that 

exhibit similar frequency characteristics and demonstrates 

robustness against noise interference. It decomposes a given 

signal X(t) into N narrowband IMFs xi(t) and a residual 

component r(t), as depicted in Eq. (1): 
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Each IMF is defined by a cosine wave shape, slowly varying 

positive envelopes, and a slowly changing instantaneous 

frequency that follows a non-decreasing pattern. The 

decomposition process encompasses Wiener filtering, Hilbert 

transformation, frequency mixing, and heterodyne 

demodulation. The essence of VMD is to identify a set of 

discrete IMFs xi(t) and their corresponding central frequencies 

wi(t) that minimize the constrained variational problem 

presented in Eq. (2): 
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where, {xi} represents the collection of all modes, {wi} 

denotes the central frequencies associated with these modes, δ 

is the Dirac delta function, ||·||2 signifies the L2 norm, and * 

indicates convolution. 

A critical challenge in employing VMD is the selection of 

the decomposition mode count K and the penalty factor α. 

Improper selection of these parameters can result in modal 

aliasing, noisy IMFs, or loss of significant information, 

impacting the predictability of the IMFs and the precision of 

the final forecast. 

 

 

3. DESCRIPTION OF AVOV ALGORITHM 

 

The AVOA, a newly proposed metaheuristic in 2021 by 

Abdollahzadeh et al. [19], mimics the competition and 

navigation behaviors of African vultures. African vultures are 

intelligent and resilient creatures due to their unique physical 

features. The rate of starvation for the i-th vulture at iteration 

k is denoted by Si,k and computed using Eqs. (3) and (4): 
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where, s denotes the disturbance term affecting the starvation 

rate which can be calculated as follows: 
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where, random values for the variables h,r1, and z are selected 

from the intervals [-2, 2], [0, 1], and [-1, 1], respectively. In 

AVOA, the parameter w is set to 2.5, k denotes the current 

iteration number, and K represents the maximum number of 

iterations. Depending on the value of starvation rate Si,k, 

AVOA updates the positions of vultures using different 

formulas. 

To showcase the key characteristics of vultures, the AVOA 

selects the first or second-best vulture as the lead vulture 

through Eq. (5): 
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where, Ri,k represents the randomly selected lead vulture, 

whereas BV1 and BV2 represent the vultures ranked first and 

second respectively. The value of constant p is set to 0.8 in 

AVOA. 

 

3.1 Exploration phase 

 

When |Si,k| is larger than 1, vultures explore the entire 

solution space randomly. The exploration process employs 

two strategies based on the foraging behavior of vultures 

guarding their food. The mathematical model can be described 

by the Eqs. (6)-(8): 
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where, Pi,k+1 denotes the newly generated position, P1 is set to 

0.6, randP1 represents a random number between 0 and 1, Di,k 

represents the random distance between the current vulture 

and the selected lead vulture, 𝐷𝑖,𝑘 = |𝑋 × 𝑅𝑖,𝑘 − 𝑃𝑖,𝑘| 
represents the random distance between the current vulture 

and the lead vulture, X is chosen randomly from the range [0, 

2], while ub and lb denote the upper and lower bounds 

respectively. rand1 is a random number between 0 and 1, and 

𝑈𝑟𝑎𝑛𝑔𝑒(𝑙𝑏, 𝑢𝑏)  generates a uniformly distributed random 

number in the interval [lb, ub]. 

 

3.2 Exploitation phase 

 

When |Si,k| is less than 1, the vultures enter the development 

phase which comprises two stages. The first stage commences 

when |Si,k| lies between 0.5 and 1, as demonstrated in Eq. (9): 
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During this stage, vultures compete for food where they 

perform rotating flights, which are modeled by Eqs. (10) and 

(11), respectively. Here, P2 is set to 0.4, and randP2 is a 

random number between 0 and 1. 
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where, rand2, rand3 and rand4 are all random numbers between 

0 and 1. 

During the second stage, when |Si,k| < 0.5, the AVOA 

algorithm simulates two vulture behaviors: accumulation 

around the food source and aggressive competition for food. 

This process is described by Eq. (12) , while Eqs. (13) and (14) 

illustrate how vultures move around the food source. Eqs. 

(15)-(17) model the aggressive behavior of vultures towards 

the food source. 
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In Eq. (12), P3 is set to 0.4, and randP3 is a random number 

within [0,1]. 

 

 

4. EC-AVOV 

 

Many papers utilize standard sets of functions to test and 

validate new algorithms. Within these standard function sets, 

the AVOA algorithm outperforms commonly used algorithms. 

However, an interesting phenomenon was discovered in our 

research: the AVOA algorithm is sensitive to the location of 

the optimal points of the test functions. If the optimal point of 

the tested function is at the origin, the AVOA algorithm 

exhibits significantly better convergence speed and accuracy 

compared to functions with optimal points not at the origin. To 

illustrate this phenomenon, we specifically selected test 

functions F1-F4 and F9-F11, which originally have their 

optimal points at the origin. To analyze the impact of different 

optimal points, we introduced an offset represented by δ to 

these optimal points while maintaining the integrity of the 

function structures. Additionally, we uniformly shifted the 

definition ranges of these functions.  

 

Table 1. Definition of offset functions 

 

No. Function Range Optimization Value Optimal Point 
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Table 2. Sensitivity analysis of AVOA on 8 offset functions 

using δ = 0, 1, 10, and 100 

 
 δ = 0 δ = 1 δ = 10 δ = 100 

F1 5.53E-319 2.69E-07 1.95E+00 7.71E-01 

F2 2.26E-156 4.10E-01 1.86E+00 5.18E+02 

F3 4.10E-214 5.09E+03 1.78E+05 2.34E+06 

F4 1.54E-162 3.90E-05 4.38E-02 9.81E-01 

F6 0.00E+00 0.00E+00 0.00E+00 1.90E+01 

F9 0.00E+00 5.40E-02 5.96E+02 3.49E+03 

F10 8.88E-16 9.41E-04 5.89E-01 2.36E-01 

F11 0.00E+00 7.24E-10 5.96E-02 1.11E+00 

 

For detailed expressions of these functions, please refer to 

Table 1. We conducted tests on the functions listed in Table 1 

using the AVOA method with a dimension D of 50 and offset 

values δ of 0, 1, 10, and 100. The convergence curves of these 

calculations are displayed in Figure 1, while the corresponding 

sensitivity analysis data can be found in Table 2. From Figure 

1 and Table 2, it can be observed that even if the form of the 

function remains unchanged, merely changing the position of 

the optimal point can alter its optimization effect. This 

phenomenon is inappropriate for an algorithm because, for 

real-world problems, the position of the optimal solution 

cannot be known in advance. Therefore, it is necessary to 

investigate the reasons for this phenomenon and make 

improvements. 

To address this phenomenon, we first conducted an in-depth 

study of the AVOA algorithm. The original algorithm consists 

of two stages: exploration and exploitation. During the 

exploration phase, the algorithm performs random searches to 

find unutilized or unexplored areas in the function space and 

generates random noise to escape local optima, providing 

more useful information for the exploitation phase. In the 

exploitation phase, the algorithm uses previous probing results 

and knowledge to accurately identify the global optimal 

solution, gradually narrowing the search range and rapidly 

converging to the global optimal solution within the feasible 

domain. 

 

  
(a) F1 (b) F2 

  
(c) F3 (d) F4 
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(e) F6 (f) F9 

 
 

(g) F10 (h) F11 

 

Figure 1. The convergence curves of AVOA on 8 offset functions using δ = 0, 1, 10, and 100 

 

 

Therefore, the update formulas during the exploitation 

phase should be universally applicable and convergent, not 

just applicable to the origin. To improve the convergence of 

the optimal point at non-origin locations, in this paper, Eq. (11) 

and Eq. (14) of the AVOA algorithm are modified to Eqs (18) 

and (19). From the above formulas, it is evident that even for 

the optimal point located away from the origin, as the current 

iteration count t approaches the total iteration count T, the 

algorithm will be forced to converge towards the optimal 

point. The term 2×rand-1 is used to introduce randomness and 

enhance the convergence direction in the iterative algorithm. 

The new algorithm obtained by updating the two formulas of 

the existing AVOA algorithm is referred to as EC-AVOA in 

this paper. 
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5. EXPERIMENT RESULTS 

 

The current study aims to validate that the new algorithm 

maintains high convergence accuracy even when the optimal 

solution is not at the origin. To achieve this, we employed the 

EC-AVOA algorithm to compute eight functions listed in 

Table 2, with offset values of δ set to 1, 10, and 100, 

respectively. Subsequently, these computational results were 

compared with those obtained using the AVOA algorithm. The 

iterative convergence curves are depicted in Figures 2, with 

detailed data recorded in Table 3. 

Based on the data in Table 3 and Figures 2, the following 

conclusions can be drawn: as the offset δ increases, the 

convergence accuracy of the AVOA algorithm significantly 

decreases. This implies that as the offset increases, the 

difficulty for these algorithms to find the optimal solution 

relatively increases. In contrast, the convergence accuracy of 

the EC-AVOA algorithm also slightly declines, but its 

performance surpasses that of the original algorithm. The EC-

AVOA algorithm maintains relatively stable convergence 

accuracy under different offsets. It enhances the global 

convergence and mitigates the impact of the offset by 

introducing a forced convergence mechanism, thereby 

improving the performance of the AVOA algorithm. This 

modification effectively enhances the algorithm's global 

search capability and robustness, achieving good convergence 

performance across various offset values. Moreover, except 

for the F3 function, the EC-AVOA algorithm demonstrates 
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satisfactory convergence performance for both unimodal and 

multimodal functions. 

The algorithm exhibits stability in handling offsets and has 

been proven to be more suitable and reliable for solving 

practical problems. In practice, many problem-solving 

processes involve certain offsets. The EC-AVOA algorithm 

effectively addresses these offsets and maintains high 

convergence accuracy, making it a reliable choice for 

optimizing various practical problems. Whether dealing with 

unimodal or multimodal functions, the EC-AVOA algorithm 

shows satisfactory convergence performance, thus serving as 

a powerful tool for solving complex problems. Therefore, 

when addressing real-world problems that require 

consideration of optimal solutions not located at the origin, the 

EC-AVOA algorithm is trustworthy and worth adopting. 

 

Table 3. Comparison of sensitivity analysis of new algorithms and AVOV on 8 offset functions using δ = 1, 10, and 100 

 
  F1 F2 F3 F4 F6 F9 F10 F11 

δ=1 
AVOA 4.55E-06 3.45E-01 3.37E+03 4.99E-05 0.00E+00 3.18E-02 7.30E-04 2.53E-02 

EC-AVOA 2.86E-08 1.44E-15 5.86E+02 0.00E+00 0.00E+00 0.00E+00 4.44E-15 1.54E-08 

δ=10 
AVOA 3.25E+00 2.24E-00 9.46E+04 1.68E-02 0.00E+00 3.15E+02 2.64E-01 8.39E-02 

EC-AVOA 1.69E-02 1.77E-15 8.69E+04 5.32E-15 0.00E+00 0.00E+00 1.47E-12 3.75E-03 

δ=100 
AVOA 2.16E+01 5.78E+02 4.48E+06 1.01E-01 0.00E+00 4.45E+03 5.72E-00 6.09E-03 

EC-AVOA 1.29E+00 2.42E+00 1.61E+05 4.76E-04 0.00E+00 9.99E-01 9.65E-02 2.57E-01 

 

  
(a) F1 (b) F2 

  
(c) F3 (d) F4 

  
(e) F6 (f) F9 
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(g) F10 (h) F11 

Figure 2. The convergence curves of new algorithms and AVOV on 8 offset functions using δ = 0, 1, 10, and 100 

 

 

6. ENHANCING THE VMD ALGORITHM WITH EC-

AVOV 

 

In this study, a signal of length 2048 was employed as the 

target for decomposition. The experimental settings included 

15 iterations, an initial population size of 10, a penalty factor 

α range of [200, 3500], and a decomposition mode number K 

range of [2, 10]. The time-domain waveform of the signal is 

illustrated in Figure 3. 

Table 4 presents the optimized VMD parameters obtained 

using three distinct algorithms: AVOA, MPA, and EC-AVOA. 

The corresponding iteration curves are depicted in Figure 4. 

 

 
 

Figure 3. Time domain waveform of the signal 

 

Table 4. Optimization results of VMD parameters by 

different algorithms 

 

Algorithm 
Optimal Parameters 

Time (s) 
𝜶 K 

AVOA 223 8 352 

MPA 213 10 729 

EC-AVOA 239 8 406 

 

As shown in Table 4, the optimization of VMD parameters 

using AVOA, MPA, and EC-AVOA algorithms resulted in 

different optimal parameter combinations. Specifically, 

AVOA yielded α=223 and K=8, MPA resulted in α=213 and 

K=10, while EC-AVOA achieved α=239 and K=8. 

Additionally, there were notable differences in computation 

time among the algorithms: AVOA required 352 seconds, 

MPA took 729 seconds, and EC-AVOA completed in 406 

seconds. 

The iteration curves in Figure 4 demonstrate that the EC-

AVOA algorithm exhibited the highest convergence 

efficiency and precision throughout the iterative process. In 

contrast, AVOA showed the lowest convergence precision, 

while MPA, although achieving comparable convergence 

precision to EC-AVOA, had a lower convergence efficiency. 

Overall, EC-AVOA demonstrated the best overall 

performance in optimizing VMD parameters. It not only 

matched the convergence precision of MPA but also 

significantly outperformed MPA in terms of computation 

time, while avoiding the low-precision issues associated with 

AVOA. Therefore, EC-AVOA provides a more efficient and 

accurate solution for complex signal decomposition tasks. 

 

 
 

Figure 4. Convergence profile of parameter optimised VMDs 

 

 

7. CONCLUSION 

 

This study presents an enhanced VMD method based on 

EC-AVOV for the decomposition of complex signals. By 

introducing an EC strategy, the applicability and convergence 

performance of the traditional AVOV in complex function 

optimization were significantly improved. Experimental 

results demonstrate that the EC-AVOV algorithm exhibits 

higher convergence accuracy and stability when optimizing 

key VMD parameters, including the number of modes and 

penalty factors. Notably, the algorithm effectively avoids local 

optima when dealing with complex functions featuring non-

zero offsets. Compared to the original AVOV algorithm, EC-
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AVOV shows substantial enhancements in global search 

capability and robustness, displaying good adaptability and 

convergence effects in the optimization of both unimodal and 

multimodal functions. Additionally, the EC-AVOV algorithm 

excels in computational efficiency, significantly 

outperforming existing optimization algorithms such as MPA 

and AVOV. This makes EC-AVOV more advantageous in 

addressing practical engineering problems, providing a more 

efficient and accurate solution for complex signal 

decomposition tasks. Future research will further explore the 

application potential of the EC-AVOV algorithm in multi-

objective optimization and algorithm fusion, aiming to expand 

its scope of application in the field of signal processing. 
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