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In the past ten years, object detection has evolved significantly. Deep learning offers a big 

advantage for this task. The recent YOLO-V8 development makes object detection faster 

and more reliable. The optimizer is crucial in neural networks because it helps achieve 

accurate results. Choosing the right optimizer with the right parameters is very important. 

Currently, Adaptive Moment Estimation (Adam) works well among optimizers. Adam 

combines Momentum and RMSProp to efficiently adjust the weights of a neural network. 

In our work, we test the open-source KITTI dataset, looking at performance using metrics 

like Recall, Precision, F1 score, and mAP accuracy. We examine how different momentum 

values of the Adam optimizer affect traffic object detection. We choose momentum values 

of 0.222, 0.555, and 0.999. The 0.555 momentum with Adam optimizer performs the best, 

achieving mAP50 and mAP95 accuracies of 90% and 70%, respectively. We train 5,984 

images using an NVIDIA RTX A5000 GPU. Training times for momentum values of 0.222, 

0.555, and 0.999 are 3.482, 3.271, and 3.375 hours, respectively. Adam optimizer with 0.555 

momentum reduces both training time and inference time on video data compared to the 

other values. Inference times are 8.4, 5.9, and 13.1 milliseconds for momentum values of 

0.222, 0.555, and 0.999, respectively. The 0.555 momentum halves the prediction time 

compared to the other values. 
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1. INTRODUCTION

Object detection plays an important role in the field of 

autonomous vehicles. In the last ten years, the evolution in 

object detection is remarkable. Recent developments in deep 

learning provide a significant edge for object detection. This 

evolution starts with traditional object detection algorithms. 

The first major improvement in traditional object detection 

comes with the Viola-Jones detector in 2001. This algorithm 

is mainly used for real-time human face detection and operates 

efficiently on a 700MHz Pentium III CPU, making it ten times 

or more faster than other algorithms at that time [1]. Viola-

Jones is a straightforward solution for detection using a sliding 

window approach, which scans all possible locations and 

scales in an image to detect any human face present. It 

improves accuracy using techniques such as integral images, 

feature selection, and detection cascades. Later, in 2005, N. 

Dalal and B. Triggs propose the Histogram of Oriented 

Gradients (HOG) [2]. The Histogram of Oriented Gradients is 

an important improvement for scale-invariant feature 

transformation. It is designed to balance feature invariance and 

non-linearity. In 2008, the deformable part-based model is 

introduced [3], following a detection and refinement approach. 

After 2012, the era of deep learning begins. Deep learning 

algorithms fall into two categories: two-stage detection and 

one-stage detection. Object detection using selective search is 

introduced by Uijlings et al. [4] and Szegedy et al. [5] explains 

how deepening convolutional layers helps extract more 

meaningful features from images. Lowe [6] provide a method 

for object recognition using local invariant scale features. As 

handcrafted features of images reach their limit, deep learning 

evolves to offer new methods for calculating high-level 

features. Girshick [7] introduced R-CNN. In R-CNN, each 

image is rescaled to different levels, and these images are fed 

into a CNN to calculate features. These features are then used 

by a classifier to determine if an object is present in a specific 

area. Ren et al. [8] proposed Fast R-CNN, which improves 

upon R-CNN by training both bounding box regression and 

detection on the same network. This makes Fast R-CNN 200 

times faster than R-CNN and includes a region proposal 

network. Faster R-CNN represents the first unified 

architecture, where each block is linked in a way that 

effectively represents object detection. The researchers [9-11] 

proposed You Only Look Once (YOLO), which is the first 

one-stage object detection algorithm in the era of neural 

networks. YOLO adopts a different paradigm from two-stage 

detection by dividing input images into grids. When the center 

of an object falls on a grid, that grid is responsible for detecting 
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the object [12]. Andrie Dazlee et al. [13] discuss how YOLO 

is useful for object detection in the field of autonomous 

vehicles. Liang et al. [14] provide insights into real-time object 

detection through cloud-based operations on autonomous 

vehicle data. Blaschko and Lampert [15] present results on 

localizing objects using structured output regression. Zou [16] 

explain the evolution of object detection. Terven et al. [17] 

provide a comparative study of the evolution from YOLOv1 

to YOLOv8 and YOLO-NAS. Han et al. [18] discuss target 

fusion and camera-based object detection using an improved 

version of YOLO. YOLO creates a significant revolution in 

object detection. The optimizer plays an important role in 

neural network training for object detection. Finding the best 

set of parameters for a problem is the main task of an 

optimizer. Figure 1 shows the overall workflow of an 

optimizer in neural network training.  

 

 
 

Figure 1. Sequence diagram of the optimization technique 

 

Several optimization techniques, including SGD [19], 

Adagrad, and Adam, each come with their own set of 

advantages and disadvantages. Research indicates that the 

Adam optimizer often outperforms other methods. It shows 

strong generalization across different datasets and allows 

neural networks to converge more efficiently and accurately. 

A significant benefit of Adam is its capability to manage noisy 

and sparse datasets, as well as its effectiveness in handling a 

wide range of parameter values. In comparison to methods like 

SGD and RMSProp, Adam typically produces better 

outcomes. SGD is a simple optimization method, but it tends 

to converge slowly and can get stuck in local minima. A 

variant of SGD [20], known as Momentum, can also encounter 

issues such as getting trapped at saddle points or showing 

oscillatory behavior near the minimum. NAG, another 

optimization technique, uses a look-ahead strategy to predict 

the gradient of the cost function for the next step. However, it 

may face challenges with instability and oscillation. AdaGrad 

[21, 22] adjusts the learning rate dynamically, while AdaDelta 

[23, 24] uses exponential decay to control the learning rate, 

although it often moves slowly during the initial training 

stages. RMSProp modifies the learning rate for each parameter 

based on a moving average of squared gradients, but it can 

sometimes demand considerable memory and experience 

instability. Adam is recognized as a highly effective optimizer 

for deep learning models [25]. By merging an adaptive 

learning rate with momentum-based updates, it enables 

quicker and more accurate convergence to an optimal set of 

parameters that minimize the cost or loss function. 

In Figure 1, we observe that initially, we need to segregate 

data into training and testing parts. Next, we select an 

appropriate CNN architecture and optimization techniques to 

train our dataset. Backpropagation helps the algorithm iterate 

the neural network in the backward direction to learn more 

features from the dataset and update the weights. With each 

epoch, accuracy improves. In a deep neural network, we aim 

to find parameters that minimize the loss function, achieving 

the lowest loss function using those parameters. The goal is to 

reach a smaller function value at the global minimum 

compared to other points. Generally, the optimizer function is 

convex, where optimizers like SGD and RMSProp converge 

towards the global minimum. Figure 2 shows the graph of the 

cost function for every value of θ, illustrating how 

convergence occurs at local and global minimum points, as 

well as the location of the initial weight and how weights 

change with the gradient slope. Adam optimizer, which stands 

for Adaptive Moment Estimation, is an adaptive learning 

algorithm designed to improve training speed in deep neural 

networks and converge more easily. 

Based on gradient history, Adam customizes adjustments to 

help the neural network learn quickly. Standard gradient 

descent provides the foundation, represented by equation 1, 

where θ is the model parameter, α is the learning rate, and gt 

is the gradient of the cost function with respect to the model 

parameters. 

 

𝜃 = 𝜃 − 𝛼 ∗ 𝑔𝑡 (1) 

 

The parameter update, represented as θ, shifts in the 

direction of the negative gradient to minimize the cost 

function. The learning rate, α, determines the size of each step 

taken during the update. In standard gradient descent, α stays 

constant, which means that training starts with a 

predetermined learning rate. Modifications to α can be 

implemented in discrete increments or through various 

methods to enhance optimization efficiency. 

 

 
 

Figure 2. Local and global minimum point 

 

If the learning rate is set too low, the convergence process 

can be sluggish, while a high learning rate might lead the 

model to overshoot the optimal minimum. The Adam 

optimizer addresses this issue by providing an adaptive 
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learning rate for each parameter. By modifying the learning 

rate according to the gradient history, Adam improves the 

efficiency of training neural networks. It combines aspects of 

Momentum and Root Mean Square Propagation (RMSProp). 

Recently, optimizers like AdamW and Ranger have emerged 

as competitors to Adam, but they require more computational 

resources and additional hyperparameter tuning. For this 

reason, we focus on Adam due to its lower complexity and 

easier hyperparameter tuning. In this work, we primarily 

evaluate the Adam optimizer with different momentum values 

on YOLO-V8 object detection. 

 

1.1 Momentum role in Adam optimizer 

 

Momentum improves training speed by amplifying 

gradients in the right direction. It achieves this by adding a 

portion of the previous gradient to the current one. When the 

gradient consistently moves in the same direction across 

several iterations, the accumulated momentum term—related 

to past gradients—facilitates a faster optimization process 

Gradient descent generally functions like rolling a ball down a 

hill, taking fixed steps because the learning rate remains 

constant throughout. This means the gradient is calculated 

each step in the direction of alpha. Momentum techniques help 

recognize that if the last few steps have been in the same 

direction, fewer steps are needed. 

 

𝑣𝑡 = 𝛾 ∗ 𝑣𝑡 − 1 + 𝑛 ∗ 𝑔𝑡 (2) 

 

𝜃 = 𝜃 − 𝑣𝑡 (3) 

 

From Eqs. (2) and (3), it is clear that subtracting the 

momentum and updating the parameter θ differs from the 

gradient descent algorithm. At time t the momentum vector vt 

is influenced by the previous momentum vector vt−1. The 

hyperparameter γ controls momentum decay, applying an 

exponential reduction to past momentum values. The learning 

rate η determines the step size in the direction opposite to the 

gradient. 

 

 

2. METHODOLOGY 

 

In the YOLO-V8 framework, a momentum value of 0.999 

is used for the Adam optimizer. To evaluate this choice, we 

need to compare it with other momentum values. The range 

for the momentum value in the Adam optimizer is between 0 

and 1. Given that 0.999 is already in use, we will compare it 

with lower and medium values. We select 0.222 as the lower 

value and 0.555 as the medium value, in addition to the default 

value of 0.999. The methodology is divided into two parts: 

training the object detection model and testing the object 

detection model. 

Figure 3(a) shows the block diagram of the object detection 

training model. First, we divide the input data into training and 

validation sets, and then provide this data to the object 

detection machine learning model. For our experiments, we 

use YOLO-V8, which is a recent development in the field of 

object detection. 

Hyperparameters selection plays crucial role in machine 

learning model training. For this work we have used Batch size 

= 16, Image size = 640, Epochs = 150, Yolo variant = Yolov8-

x, Optimizer = Adam with momentum values 0.222, 0.555, 

0.999 respectively. 

Once model trained on training data and validate on 

validation data then we need to provide unseen data to check 

the predictions. Figure 3(b) represents testing block diagram 

of object detection. Figure 4 gives idea about flowchart of 

workflow. 

 

 
(a) 

 
(b) 

 

Figure 3. (a) Block diagram of object detection model 

training; (b) Block diagram of object detection model testing 

 

 
 

Figure 4. Flowchart of system 

 

 

3. RESULTS 

 

The experiment described in this work is conducted on 

Python version 3.9.13 with Windows 10 Pro OS, 32 GB RAM, 

and a 2nd Gen Intel(R) Core (TM) i9-12900 2.40 GHz 

processor. We use an Nvidia RTX A5000 GPU with 12 GB 

RAM, along with torch-2.0.1 and CUDA version 11.7. For this 

study, we utilize the KITTI [26] open-source dataset, which 

includes classes such as car, pedestrian, van, cyclist, truck, 

misc, tram, and person sitting. We use approximately 5,984 

images for training and 1,400 images for validation. 

The performance of YOLO-V8 is evaluated using different 

507



 

momentum values with the Adam optimizer. We adjust the 

Adam optimizer's momentum to 0.002, 0.005, and 0.999 and 

assess the performance of the object detection model. We 

conduct experiments with these momentum values and set 

hyper parameters to epochs 150, batch size 16, and image size 

640, using the YOLOv8-x variant. we observe that the mAP 

50 and 95 accuracies for a momentum of 0.222 are less than 

90% and less than 70%, respectively. For a momentum of 

0.555, the mAP 50 and 95 accuracies exceed 90% and 70%. 

For a momentum of 0.999, the mAP 50 and 95 accuracies are 

less than 80% and less than 60%, respectively. 

3.1 Object detection on image data 

 

Figure 5 illustrates the confusion matrix with the 0.222 

momentum value, and Figure 6 depicts the F1-confidence 

curve achieved with the same momentum. Figures 6 and 7 

show the F1 curve and precision-confidence for each class 

with a momentum value of 0.222, respectively. Table 1 

presents the results on the validation dataset using the 0.222 

momentum value. 

 

 

 
 

Figure 5. Confusion matrix with 0.222 momentum 

 

 
 

Figure 6. F1 curve with 0.222 momentum 

 
 

Figure 7. Precision-confidence with 0.222 momentum 
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Table 1. Validation results with Adam optimizer for 0.222 momentum 

 
Class Images Instances Box (P) Box (R) mAP (50) mAP (95) 

All 1045 5474 0.885 0.854 0.899 0.667 

Car 1045 3888 0.927 0.929 0.97 0.812 

Pedestrian 1045 585 0.921 0.699 0.822 0.489 

Van 1045 386 0.925 0.894 0.948 0.764 

Cyclist 1045 198 0.875 0.81 0.87 0.608 

Truck 1045 150 0.951 0.987 0.984 0.837 

Misc 1045 139 0.91 0.849 0.918 0.683 

Tram 1045 80 0.883 0.943 0.958 0.714 

Person Sitting 1045 48 0.69 0.648 0.72 0.427 

 

  
  

Figure 8. Precision-recall with 0.222 momentum Figure 9. Recall-confidence with 0.222 momentum 

 

 
 

Figure 10. Performance analysis with 0.222 momentum 

 

Figures 8-10 display the Precision-recall curve, Recall-

confidence, and Performance analysis curves, respectively. In 

the performance analysis curve, we observe the mAP50 and 

mAP95 accuracy percentages for the 0.222 momentum value. 

The mAP50 value is less than 90%, while the mAP95 value is 

66%. 

Figure 11 shows a training sample image, while Figure 12 

illustrates the training time required with a 0.222 momentum 

value. 

Figures 13-16 display the confusion matrix, performance 

analysis graphs, F1-confidence curve, and Precision-

confidence curve, respectively, for a 0.555 momentum value. 

Table 2 presents the validation results using the Adam 

optimizer with a 0.555 momentum value. In the performance 

analysis curve, we see that the mAP50 value is 90% and the 

mAP95 value is 70% for the 0.555 momentum. 
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Figure 11. Training images with 0.222 momentum 

 

 
 

Figure 12. Training time with 0.222 momentum 

 

 
 

Figure 13. Confusion matrix with 0.555 momentum 
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Figure 14. Performance analysis with 0.555 momentum 

 

Table 2. Validation results with Adam optimizer for 0.555 momentum 

 
Class Images Instances Box (P) Box (R) mAP (50) mAP (95) 

All 1045 5474 0.883 0.858 0.906 0.682 

Car 1045 3888 0.927 0.933 0.971 0.815 

Pedestrian 1045 585 0.899 0.679 0.811 0.467 

Van 1045 386 0.918 0.909 0.947 0.775 

Cyclist 1045 198 0.828 0.833 0.878 0.614 

Truck 1045 150 0.949 1 0.985 0.85 

Misc 1045 139 0.926 0.878 0.921 0.694 

Tram 1045 80 0.949 0.924 0.973 0.759 

Person Sitting 1045 48 0.669 0.708 0.766 0.479 

 

 
 

Figure 15. F1-confidence curve with 0.555 momentum 

 

Figures 17 and 18 represent the Precision-Recall and Recall-

Confidence curves, respectively, for a momentum value of 

0.555. Figure 19 shows a sample training image, and Figure 

20 indicates the training time required to train the data with a 

momentum value of 0.555. 

Figures 21-23, along with Table 3, represent the confusion 

matrix, F1-Confidence curve, and Precision-Confidence 

curve, respectively, for a momentum value of 0.999. These 

figures and table display the validation results for each class 

using this momentum value. 

Figures 24-28 represent the Precision-Recall Curve, Recall-

Confidence curve, Performance Analysis, Training Time, and 

a Training Sample Image, respectively, for a momentum value 

of 0.999. In the Performance Analysis curve, we can see that 

the mAP50 and mAP95 accuracy percentage values for the 

0.999 momentum are shown. The mAP50 value is less than 

80%, and the mAP95 value is around 60%. 

 

 
 

Figure 16. Precision-confidence with 0.555 momentum 
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Figure 17. Precision-recall with 0.555 momentum 

 

 
 

Figure 18. Recall-confidence with 0.555 momentum 

 

 
 

Figure 19. Training images with 0.555 momentum 
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Figure 20. Training time with 0.555 momentum 

 

 
 

Figure 21. Confusion matrix with 0.999 momentum 

 

  
  

Figure 22. F1-confidence curve with 0.999 momentum Figure 23. Precision-confidence with 0.999 momentum 
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Table 3. Validation result with Adam optimizer for 0.999 momentum 

 
Class Images Instances Box (P) Box (R) mAP (50) mAP (95) 

All 1045 5474 0.883 0.858 0.906 0.682 

Car 1045 3888 0.927 0.933 0.971 0.815 

Pedestrian 1045 585 0.899 0.679 0.811 0.467 

Van 1045 386 0.918 0.909 0.947 0.775 

Cyclist 1045 198 0.828 0.833 0.878 0.614 

Truck 1045 150 0.949 1 0.985 0.85 

Misc 1045 139 0.926 0.878 0.921 0.694 

Tram  1045 80 0.949 0.924 0.973 0.759 

Person Sitting 1045 48 0.669 0.708 0.766 0.479 

 

 
 

Figure 24. Precision-recall with 0.999 momentum 

 

 
 

Figure 25. Recall-Confidence with 0.999 momentum 
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Figure 26. Performance analysis with 0.999 momentum 

 
 

Figure 27. Training time with 0.999 momentum 

 

 
 

Figure 28. Training images with 0.999 momentum 
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3.2 Object detection on video data 

 

We apply the object detection trained model with 

momentum values of 0.222, 0.555, and 0.999 on a video. For 

comparative analysis, we use the KITTI video dataset, which 

has 85 frames. Using the Adam optimizer, the detection times 

are approximately 8.4 ms, 5.9 ms, and 13.1 ms for momentum 

values of 0.222, 0.555, and 0.999, respectively. You can see 

the results in Figures 29-31. If you use the Adam optimizer 

with the proper momentum, the inference time will reduce. 

Table 4 explains about comparative analysis between 

different momentum values of Adam optimizer. We have p-

value test to evaluate the statistical significance of accuracy 

and training time. For momentum values of 0.222, 0.555, and 

0.999, the p-values are 1.13, 4.81, and 2.71, respectively, with 

a hypothesized value of 90. A lower p-value indicates that the 

result is more divergent from the hypothesis. From these 

results, we see that the momentum value of 0.555 is less 

divergent from the hypothesis compared to the other two 

momentum values for the Adam optimizer. 

 

Table 4. Comparative analysis between different momentum values of Adam optimizer 

 

No. 
YOLO 

Version 

YOLO 

Variant 

Momentum 

Value 

mAP50 

(%) 

mAP95 

(%) 

Training Time 

(hours) 

Inference Time on 

Video 

1 YOLO-V8 YOLOV8-x 0.222 90 66 3.482 8.4 ms 

2 YOLO-V8 YOLOV8-x 0.555 90 70 3.271 5.9 ms 

3 YOLO-V8 YOLOV8-x 0.999 80 60 3.375 13.1 ms 

 

 
 

Figure 29. Inference time on video 0.222 momentum 

 

 
 

Figure 30. Inference time on video 0.555 momentum 

 

 
 

Figure 31. Inference time on video 0.999 momentum 
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4. CONCLUSIONS 

 

In this paper, we use the YOLO-V8 deep learning model 

with the Adam optimizer and perform experiments on 

different momentum values of the optimizer. We choose a 

default momentum value of 0.999 and compare it with two 

other values: 0.222 and 0.555. Our results show that, for the 

KITTI dataset, the Adam optimizer with a momentum value 

of 0.555 performs best compared to the other two values, 

achieving mAP50 and mAP95 accuracies of 90% and 70%, 

respectively. The training time also decreases with the proper 

momentum value selection; training the KITTI dataset with a 

momentum of 0.555 takes 3.271 hours, which is 20 minutes 

less than with a momentum of 0.222 and 10 minutes less than 

with a momentum of 0.999. For video inference, the 

momentum of 0.555 performs well, with an inference time of 

5.9 ms, which is reduced by half compared to the 0.222 and 

0.999 momentum values. Thus, using an appropriate 

optimization technique with the right momentum values helps 

the model converge in a shorter time, reducing both training 

and inference times. Tao et al. [26] published results on the 

KITTI dataset using a modified version of YOLO, OYOLO, 

and achieved a mAP-50 of around 80.1%. With our 

methodology on the same dataset, we achieve a mAP accuracy 

of around 90%, representing an improvement of almost 10% 

in accuracy. 

In future scope focus needs to be given on to increase the 

dataset or to try with other datasets. You can improvise the 

results using other optimizers or with the help of modified 

version of optimizers. 
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