
Performance Analysis of Momentum of Adam Optimizer on YOLO-V8 Using Traffic Object

Dataset

Madhura M. Bhosale1* , Yogesh S. Angal2

1 Department of Electronics and Telecommunication Engineering, JSPM's Rajarshi Shahu College of Engineering,

Pune 411033, India
2 Department of Electronics and Telecommunication Engineering, JSPM's Bhivarabai Sawant Institute of Technology &

Research, Pune 412207, India

Corresponding Author Email: Madhurabhosale4@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ts.420143 ABSTRACT

Received: 22 March 2024

Revised: 29 August 2024

Accepted: 15 October 2024

Available online: 28 February 2025

In the past ten years, object detection has evolved significantly. Deep learning offers a big

advantage for this task. The recent YOLO-V8 development makes object detection faster

and more reliable. The optimizer is crucial in neural networks because it helps achieve

accurate results. Choosing the right optimizer with the right parameters is very important.

Currently, Adaptive Moment Estimation (Adam) works well among optimizers. Adam

combines Momentum and RMSProp to efficiently adjust the weights of a neural network.

In our work, we test the open-source KITTI dataset, looking at performance using metrics

like Recall, Precision, F1 score, and mAP accuracy. We examine how different momentum

values of the Adam optimizer affect traffic object detection. We choose momentum values

of 0.222, 0.555, and 0.999. The 0.555 momentum with Adam optimizer performs the best,

achieving mAP50 and mAP95 accuracies of 90% and 70%, respectively. We train 5,984

images using an NVIDIA RTX A5000 GPU. Training times for momentum values of 0.222,

0.555, and 0.999 are 3.482, 3.271, and 3.375 hours, respectively. Adam optimizer with 0.555

momentum reduces both training time and inference time on video data compared to the

other values. Inference times are 8.4, 5.9, and 13.1 milliseconds for momentum values of

0.222, 0.555, and 0.999, respectively. The 0.555 momentum halves the prediction time

compared to the other values.

Keywords:

object detection, machine learning,

optimizer

1. INTRODUCTION

Object detection plays an important role in the field of

autonomous vehicles. In the last ten years, the evolution in

object detection is remarkable. Recent developments in deep

learning provide a significant edge for object detection. This

evolution starts with traditional object detection algorithms.

The first major improvement in traditional object detection

comes with the Viola-Jones detector in 2001. This algorithm

is mainly used for real-time human face detection and operates

efficiently on a 700MHz Pentium III CPU, making it ten times

or more faster than other algorithms at that time [1]. Viola-

Jones is a straightforward solution for detection using a sliding

window approach, which scans all possible locations and

scales in an image to detect any human face present. It

improves accuracy using techniques such as integral images,

feature selection, and detection cascades. Later, in 2005, N.

Dalal and B. Triggs propose the Histogram of Oriented

Gradients (HOG) [2]. The Histogram of Oriented Gradients is

an important improvement for scale-invariant feature

transformation. It is designed to balance feature invariance and

non-linearity. In 2008, the deformable part-based model is

introduced [3], following a detection and refinement approach.

After 2012, the era of deep learning begins. Deep learning

algorithms fall into two categories: two-stage detection and

one-stage detection. Object detection using selective search is

introduced by Uijlings et al. [4] and Szegedy et al. [5] explains

how deepening convolutional layers helps extract more

meaningful features from images. Lowe [6] provide a method

for object recognition using local invariant scale features. As

handcrafted features of images reach their limit, deep learning

evolves to offer new methods for calculating high-level

features. Girshick [7] introduced R-CNN. In R-CNN, each

image is rescaled to different levels, and these images are fed

into a CNN to calculate features. These features are then used

by a classifier to determine if an object is present in a specific

area. Ren et al. [8] proposed Fast R-CNN, which improves

upon R-CNN by training both bounding box regression and

detection on the same network. This makes Fast R-CNN 200

times faster than R-CNN and includes a region proposal

network. Faster R-CNN represents the first unified

architecture, where each block is linked in a way that

effectively represents object detection. The researchers [9-11]

proposed You Only Look Once (YOLO), which is the first

one-stage object detection algorithm in the era of neural

networks. YOLO adopts a different paradigm from two-stage

detection by dividing input images into grids. When the center

of an object falls on a grid, that grid is responsible for detecting

Traitement du Signal
Vol. 42, No. 1, February, 2025, pp. 505-518

Journal homepage: http://iieta.org/journals/ts

505

https://orcid.org/0000-0002-0700-2653
https://orcid.org/0000-0002-9473-9492
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420143&domain=pdf

the object [12]. Andrie Dazlee et al. [13] discuss how YOLO

is useful for object detection in the field of autonomous

vehicles. Liang et al. [14] provide insights into real-time object

detection through cloud-based operations on autonomous

vehicle data. Blaschko and Lampert [15] present results on

localizing objects using structured output regression. Zou [16]

explain the evolution of object detection. Terven et al. [17]

provide a comparative study of the evolution from YOLOv1

to YOLOv8 and YOLO-NAS. Han et al. [18] discuss target

fusion and camera-based object detection using an improved

version of YOLO. YOLO creates a significant revolution in

object detection. The optimizer plays an important role in

neural network training for object detection. Finding the best

set of parameters for a problem is the main task of an

optimizer. Figure 1 shows the overall workflow of an

optimizer in neural network training.

Figure 1. Sequence diagram of the optimization technique

Several optimization techniques, including SGD [19],

Adagrad, and Adam, each come with their own set of

advantages and disadvantages. Research indicates that the

Adam optimizer often outperforms other methods. It shows

strong generalization across different datasets and allows

neural networks to converge more efficiently and accurately.

A significant benefit of Adam is its capability to manage noisy

and sparse datasets, as well as its effectiveness in handling a

wide range of parameter values. In comparison to methods like

SGD and RMSProp, Adam typically produces better

outcomes. SGD is a simple optimization method, but it tends

to converge slowly and can get stuck in local minima. A

variant of SGD [20], known as Momentum, can also encounter

issues such as getting trapped at saddle points or showing

oscillatory behavior near the minimum. NAG, another

optimization technique, uses a look-ahead strategy to predict

the gradient of the cost function for the next step. However, it

may face challenges with instability and oscillation. AdaGrad

[21, 22] adjusts the learning rate dynamically, while AdaDelta

[23, 24] uses exponential decay to control the learning rate,

although it often moves slowly during the initial training

stages. RMSProp modifies the learning rate for each parameter

based on a moving average of squared gradients, but it can

sometimes demand considerable memory and experience

instability. Adam is recognized as a highly effective optimizer

for deep learning models [25]. By merging an adaptive

learning rate with momentum-based updates, it enables

quicker and more accurate convergence to an optimal set of

parameters that minimize the cost or loss function.

In Figure 1, we observe that initially, we need to segregate

data into training and testing parts. Next, we select an

appropriate CNN architecture and optimization techniques to

train our dataset. Backpropagation helps the algorithm iterate

the neural network in the backward direction to learn more

features from the dataset and update the weights. With each

epoch, accuracy improves. In a deep neural network, we aim

to find parameters that minimize the loss function, achieving

the lowest loss function using those parameters. The goal is to

reach a smaller function value at the global minimum

compared to other points. Generally, the optimizer function is

convex, where optimizers like SGD and RMSProp converge

towards the global minimum. Figure 2 shows the graph of the

cost function for every value of θ, illustrating how

convergence occurs at local and global minimum points, as

well as the location of the initial weight and how weights

change with the gradient slope. Adam optimizer, which stands

for Adaptive Moment Estimation, is an adaptive learning

algorithm designed to improve training speed in deep neural

networks and converge more easily.

Based on gradient history, Adam customizes adjustments to

help the neural network learn quickly. Standard gradient

descent provides the foundation, represented by equation 1,

where θ is the model parameter, α is the learning rate, and gt

is the gradient of the cost function with respect to the model

parameters.

𝜃 = 𝜃 − 𝛼 ∗ 𝑔𝑡 (1)

The parameter update, represented as θ, shifts in the

direction of the negative gradient to minimize the cost

function. The learning rate, α, determines the size of each step

taken during the update. In standard gradient descent, α stays

constant, which means that training starts with a

predetermined learning rate. Modifications to α can be

implemented in discrete increments or through various

methods to enhance optimization efficiency.

Figure 2. Local and global minimum point

If the learning rate is set too low, the convergence process

can be sluggish, while a high learning rate might lead the

model to overshoot the optimal minimum. The Adam

optimizer addresses this issue by providing an adaptive

506

learning rate for each parameter. By modifying the learning

rate according to the gradient history, Adam improves the

efficiency of training neural networks. It combines aspects of

Momentum and Root Mean Square Propagation (RMSProp).

Recently, optimizers like AdamW and Ranger have emerged

as competitors to Adam, but they require more computational

resources and additional hyperparameter tuning. For this

reason, we focus on Adam due to its lower complexity and

easier hyperparameter tuning. In this work, we primarily

evaluate the Adam optimizer with different momentum values

on YOLO-V8 object detection.

1.1 Momentum role in Adam optimizer

Momentum improves training speed by amplifying

gradients in the right direction. It achieves this by adding a

portion of the previous gradient to the current one. When the

gradient consistently moves in the same direction across

several iterations, the accumulated momentum term—related

to past gradients—facilitates a faster optimization process

Gradient descent generally functions like rolling a ball down a

hill, taking fixed steps because the learning rate remains

constant throughout. This means the gradient is calculated

each step in the direction of alpha. Momentum techniques help

recognize that if the last few steps have been in the same

direction, fewer steps are needed.

𝑣𝑡 = 𝛾 ∗ 𝑣𝑡 − 1 + 𝑛 ∗ 𝑔𝑡 (2)

𝜃 = 𝜃 − 𝑣𝑡 (3)

From Eqs. (2) and (3), it is clear that subtracting the

momentum and updating the parameter θ differs from the

gradient descent algorithm. At time t the momentum vector vt

is influenced by the previous momentum vector vt−1. The

hyperparameter γ controls momentum decay, applying an

exponential reduction to past momentum values. The learning

rate η determines the step size in the direction opposite to the

gradient.

2. METHODOLOGY

In the YOLO-V8 framework, a momentum value of 0.999

is used for the Adam optimizer. To evaluate this choice, we

need to compare it with other momentum values. The range

for the momentum value in the Adam optimizer is between 0

and 1. Given that 0.999 is already in use, we will compare it

with lower and medium values. We select 0.222 as the lower

value and 0.555 as the medium value, in addition to the default

value of 0.999. The methodology is divided into two parts:

training the object detection model and testing the object

detection model.

Figure 3(a) shows the block diagram of the object detection

training model. First, we divide the input data into training and

validation sets, and then provide this data to the object

detection machine learning model. For our experiments, we

use YOLO-V8, which is a recent development in the field of

object detection.

Hyperparameters selection plays crucial role in machine

learning model training. For this work we have used Batch size

= 16, Image size = 640, Epochs = 150, Yolo variant = Yolov8-

x, Optimizer = Adam with momentum values 0.222, 0.555,

0.999 respectively.

Once model trained on training data and validate on

validation data then we need to provide unseen data to check

the predictions. Figure 3(b) represents testing block diagram

of object detection. Figure 4 gives idea about flowchart of

workflow.

(a)

(b)

Figure 3. (a) Block diagram of object detection model

training; (b) Block diagram of object detection model testing

Figure 4. Flowchart of system

3. RESULTS

The experiment described in this work is conducted on

Python version 3.9.13 with Windows 10 Pro OS, 32 GB RAM,

and a 2nd Gen Intel(R) Core (TM) i9-12900 2.40 GHz

processor. We use an Nvidia RTX A5000 GPU with 12 GB

RAM, along with torch-2.0.1 and CUDA version 11.7. For this

study, we utilize the KITTI [26] open-source dataset, which

includes classes such as car, pedestrian, van, cyclist, truck,

misc, tram, and person sitting. We use approximately 5,984

images for training and 1,400 images for validation.

The performance of YOLO-V8 is evaluated using different

507

momentum values with the Adam optimizer. We adjust the

Adam optimizer's momentum to 0.002, 0.005, and 0.999 and

assess the performance of the object detection model. We

conduct experiments with these momentum values and set

hyper parameters to epochs 150, batch size 16, and image size

640, using the YOLOv8-x variant. we observe that the mAP

50 and 95 accuracies for a momentum of 0.222 are less than

90% and less than 70%, respectively. For a momentum of

0.555, the mAP 50 and 95 accuracies exceed 90% and 70%.

For a momentum of 0.999, the mAP 50 and 95 accuracies are

less than 80% and less than 60%, respectively.

3.1 Object detection on image data

Figure 5 illustrates the confusion matrix with the 0.222

momentum value, and Figure 6 depicts the F1-confidence

curve achieved with the same momentum. Figures 6 and 7

show the F1 curve and precision-confidence for each class

with a momentum value of 0.222, respectively. Table 1

presents the results on the validation dataset using the 0.222

momentum value.

Figure 5. Confusion matrix with 0.222 momentum

Figure 6. F1 curve with 0.222 momentum

Figure 7. Precision-confidence with 0.222 momentum

508

Table 1. Validation results with Adam optimizer for 0.222 momentum

Class Images Instances Box (P) Box (R) mAP (50) mAP (95)

All 1045 5474 0.885 0.854 0.899 0.667

Car 1045 3888 0.927 0.929 0.97 0.812

Pedestrian 1045 585 0.921 0.699 0.822 0.489

Van 1045 386 0.925 0.894 0.948 0.764

Cyclist 1045 198 0.875 0.81 0.87 0.608

Truck 1045 150 0.951 0.987 0.984 0.837

Misc 1045 139 0.91 0.849 0.918 0.683

Tram 1045 80 0.883 0.943 0.958 0.714

Person Sitting 1045 48 0.69 0.648 0.72 0.427

Figure 8. Precision-recall with 0.222 momentum Figure 9. Recall-confidence with 0.222 momentum

Figure 10. Performance analysis with 0.222 momentum

Figures 8-10 display the Precision-recall curve, Recall-

confidence, and Performance analysis curves, respectively. In

the performance analysis curve, we observe the mAP50 and

mAP95 accuracy percentages for the 0.222 momentum value.

The mAP50 value is less than 90%, while the mAP95 value is

66%.

Figure 11 shows a training sample image, while Figure 12

illustrates the training time required with a 0.222 momentum

value.

Figures 13-16 display the confusion matrix, performance

analysis graphs, F1-confidence curve, and Precision-

confidence curve, respectively, for a 0.555 momentum value.

Table 2 presents the validation results using the Adam

optimizer with a 0.555 momentum value. In the performance

analysis curve, we see that the mAP50 value is 90% and the

mAP95 value is 70% for the 0.555 momentum.

509

Figure 11. Training images with 0.222 momentum

Figure 12. Training time with 0.222 momentum

Figure 13. Confusion matrix with 0.555 momentum

510

Figure 14. Performance analysis with 0.555 momentum

Table 2. Validation results with Adam optimizer for 0.555 momentum

Class Images Instances Box (P) Box (R) mAP (50) mAP (95)

All 1045 5474 0.883 0.858 0.906 0.682

Car 1045 3888 0.927 0.933 0.971 0.815

Pedestrian 1045 585 0.899 0.679 0.811 0.467

Van 1045 386 0.918 0.909 0.947 0.775

Cyclist 1045 198 0.828 0.833 0.878 0.614

Truck 1045 150 0.949 1 0.985 0.85

Misc 1045 139 0.926 0.878 0.921 0.694

Tram 1045 80 0.949 0.924 0.973 0.759

Person Sitting 1045 48 0.669 0.708 0.766 0.479

Figure 15. F1-confidence curve with 0.555 momentum

Figures 17 and 18 represent the Precision-Recall and Recall-

Confidence curves, respectively, for a momentum value of

0.555. Figure 19 shows a sample training image, and Figure

20 indicates the training time required to train the data with a

momentum value of 0.555.

Figures 21-23, along with Table 3, represent the confusion

matrix, F1-Confidence curve, and Precision-Confidence

curve, respectively, for a momentum value of 0.999. These

figures and table display the validation results for each class

using this momentum value.

Figures 24-28 represent the Precision-Recall Curve, Recall-

Confidence curve, Performance Analysis, Training Time, and

a Training Sample Image, respectively, for a momentum value

of 0.999. In the Performance Analysis curve, we can see that

the mAP50 and mAP95 accuracy percentage values for the

0.999 momentum are shown. The mAP50 value is less than

80%, and the mAP95 value is around 60%.

Figure 16. Precision-confidence with 0.555 momentum

511

Figure 17. Precision-recall with 0.555 momentum

Figure 18. Recall-confidence with 0.555 momentum

Figure 19. Training images with 0.555 momentum

512

Figure 20. Training time with 0.555 momentum

Figure 21. Confusion matrix with 0.999 momentum

Figure 22. F1-confidence curve with 0.999 momentum Figure 23. Precision-confidence with 0.999 momentum

513

Table 3. Validation result with Adam optimizer for 0.999 momentum

Class Images Instances Box (P) Box (R) mAP (50) mAP (95)

All 1045 5474 0.883 0.858 0.906 0.682

Car 1045 3888 0.927 0.933 0.971 0.815

Pedestrian 1045 585 0.899 0.679 0.811 0.467

Van 1045 386 0.918 0.909 0.947 0.775

Cyclist 1045 198 0.828 0.833 0.878 0.614

Truck 1045 150 0.949 1 0.985 0.85

Misc 1045 139 0.926 0.878 0.921 0.694

Tram 1045 80 0.949 0.924 0.973 0.759

Person Sitting 1045 48 0.669 0.708 0.766 0.479

Figure 24. Precision-recall with 0.999 momentum

Figure 25. Recall-Confidence with 0.999 momentum

514

Figure 26. Performance analysis with 0.999 momentum

Figure 27. Training time with 0.999 momentum

Figure 28. Training images with 0.999 momentum

515

3.2 Object detection on video data

We apply the object detection trained model with

momentum values of 0.222, 0.555, and 0.999 on a video. For

comparative analysis, we use the KITTI video dataset, which

has 85 frames. Using the Adam optimizer, the detection times

are approximately 8.4 ms, 5.9 ms, and 13.1 ms for momentum

values of 0.222, 0.555, and 0.999, respectively. You can see

the results in Figures 29-31. If you use the Adam optimizer

with the proper momentum, the inference time will reduce.

Table 4 explains about comparative analysis between

different momentum values of Adam optimizer. We have p-

value test to evaluate the statistical significance of accuracy

and training time. For momentum values of 0.222, 0.555, and

0.999, the p-values are 1.13, 4.81, and 2.71, respectively, with

a hypothesized value of 90. A lower p-value indicates that the

result is more divergent from the hypothesis. From these

results, we see that the momentum value of 0.555 is less

divergent from the hypothesis compared to the other two

momentum values for the Adam optimizer.

Table 4. Comparative analysis between different momentum values of Adam optimizer

No.
YOLO

Version

YOLO

Variant

Momentum

Value

mAP50

(%)

mAP95

(%)

Training Time

(hours)

Inference Time on

Video

1 YOLO-V8 YOLOV8-x 0.222 90 66 3.482 8.4 ms

2 YOLO-V8 YOLOV8-x 0.555 90 70 3.271 5.9 ms

3 YOLO-V8 YOLOV8-x 0.999 80 60 3.375 13.1 ms

Figure 29. Inference time on video 0.222 momentum

Figure 30. Inference time on video 0.555 momentum

Figure 31. Inference time on video 0.999 momentum

516

4. CONCLUSIONS

In this paper, we use the YOLO-V8 deep learning model

with the Adam optimizer and perform experiments on

different momentum values of the optimizer. We choose a

default momentum value of 0.999 and compare it with two

other values: 0.222 and 0.555. Our results show that, for the

KITTI dataset, the Adam optimizer with a momentum value

of 0.555 performs best compared to the other two values,

achieving mAP50 and mAP95 accuracies of 90% and 70%,

respectively. The training time also decreases with the proper

momentum value selection; training the KITTI dataset with a

momentum of 0.555 takes 3.271 hours, which is 20 minutes

less than with a momentum of 0.222 and 10 minutes less than

with a momentum of 0.999. For video inference, the

momentum of 0.555 performs well, with an inference time of

5.9 ms, which is reduced by half compared to the 0.222 and

0.999 momentum values. Thus, using an appropriate

optimization technique with the right momentum values helps

the model converge in a shorter time, reducing both training

and inference times. Tao et al. [26] published results on the

KITTI dataset using a modified version of YOLO, OYOLO,

and achieved a mAP-50 of around 80.1%. With our

methodology on the same dataset, we achieve a mAP accuracy

of around 90%, representing an improvement of almost 10%

in accuracy.

In future scope focus needs to be given on to increase the

dataset or to try with other datasets. You can improvise the

results using other optimizers or with the help of modified

version of optimizers.

ACKNOWLEDGMENT

We would like to show our gratitude to RSCOE Pune for

sharing their pearls of wisdom with us during the course of the

proposed work.

REFERENCES

[1] Viola, P., Jones, M. (2001). Rapid object detection using

a boosted cascade of simple features. In Proceedings of

the 2001 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition. CVPR 2001,

Kauai, HI, USA, pp. I-I.

https://doi.org/10.1109/CVPR.2001.990517

[2] Dalal, N., Triggs, B. (2005). Histograms of oriented

gradients for human detection. In 2005 IEEE Computer

Society Conference on Computer Vision and Pattern

Recognition (CVPR'05), San Diego, USA, pp. 886-893.

https://doi.org/10.1109/CVPR.2005.177

[3] Felzenszwalb, P., McAllester, D., Ramanan, D. (2008).

A discriminatively trained, multiscale, deformable part

model. In 2008 IEEE Conference on Computer Vision

and Pattern Recognition, Anchorage, AK, USA, pp. 1-8.

https://doi.org/10.1109/CVPR.2008.4587597

[4] Uijlings, J.R., Van De Sande, K.E., Gevers, T.,

Smeulders, A.W. (2013). Selective search for object

recognition. International Journal of Computer Vision,

104: 154-171. https://doi.org/10.1007/s11263-013-0620-

5

[5] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,

Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.

(2015). Going deeper with convolutions. In 2015 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), Boston, MA, USA, pp. 1-9.

https://doi.org/10.1109/CVPR.2015.7298594

[6] Lowe, D.G. (1999). Object recognition from local scale-

invariant features. In Proceedings of the Seventh IEEE

International Conference on Computer Vision, Kerkyra,

Greece, pp. 1150-1157.

https://doi.org/10.1109/ICCV.1999.790410

[7] Girshick, R. (2015). Fast R-CNN. In 2015 IEEE

International Conference on Computer Vision (ICCV),

Santiago, Chile, pp. 1440-1448.

https://doi.org/10.1109/ICCV.2015.169

[8] Ren, S., He, K., Girshick, R., Sun, J. (2016). Faster R-

CNN: Towards real-time object detection with region

proposal networks. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 39(6): 1137-1149.

https://doi.org/10.1109/TPAMI.2016.2577031

[9] Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016).

You only look once: Unified, real-time object detection.

In 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Las Vegas, NV, USA, pp.

779-788. https://doi.org/10.1109/CVPR.2016.91

[10] Dai, P., Yao, S., Li, Z., Zhang, S., Cao, X. (2022). ACE:

Anchor-free corner evolution for real-time arbitrarily-

oriented object detection. IEEE Transactions on Image

Processing, 31: 4076-4089.

https://doi.org/10.1109/TIP.2022.3167919

[11] Amirkhani, A., Karimi, M.P., Banitalebi-Dehkordi, A.

(2023). A survey on adversarial attacks and defenses for

object detection and their applications in autonomous

vehicles. The Visual Computer, 39(11): 5293-5307.

https://doi.org/10.1007/s00371-022-02660-6

[12] He, Q., Xu, A., Ye, Z., Zhou, W., Cai, T. (2023). Object

detection based on lightweight YOLOX for autonomous

driving. Sensors, 23(17): 7596.

https://doi.org/10.3390/s23177596

[13] Andrie Dazlee, N.M.A., Abdul Khalil, S., Abdul-

Rahman, S., Mutalib, S. (2022). Object detection for

autonomous vehicles with sensor-based technology

using yolo. International Journal of Intelligent Systems

and Applications in Engineering, 10(1): 129-134.

https://doi.org/10.18201/ijisae.2022.276

[14] Liang, S., Wu, H., Zhen, L., Hua, Q., Garg, S., Kaddoum,

G. (2022). Edge YOLO: Real-time intelligent object

detection system based on edge-cloud cooperation in

autonomous vehicles. IEEE Transactions on Intelligent

Transportation Systems, 23(12): 25345-25360.

https://doi.org/10.1109/TITS.2022.3158253

[15] Blaschko, M.B., Lampert, C.H. (2008). Learning to

localize objects with structured output regression. In

Computer Vision–ECCV 2008: 10th European

Conference on Computer Vision, Marseille, France, pp.

2-15. https://doi.org/10.1007/978-3-540-88682-2_2

[16] Zou, X. (2019). A review of object detection techniques.

In 2019 International Conference on Smart Grid and

Electrical Automation (ICSGEA), Xiangtan, China, pp.

251-254. https://doi.org/10.1109/ICSGEA.2019.00065

[17] Terven, J., Córdova-Esparza, D.M., Romero-González,

J.A. (2023). A comprehensive review of yolo

architectures in computer vision: From YOLOv1 to

YOLOv8 and YOLO-NAS. Machine Learning and

Knowledge Extraction, 5(4): 1680-1716.

https://doi.org/10.3390/make5040083

517

[18] Han, J., Liao, Y., Zhang, J., Wang, S., Li, S. (2018).

Target fusion detection of LiDAR and camera based on

the improved YOLO algorithm. Mathematics, 6(10):

213. https://doi.org/10.3390/math6100213

[19] Darken, C., Chang, J., Moody, J. (1992). Learning rate

schedules for faster stochastic gradient search. In Neural

Networks for Signal Processing II Proceedings of the

1992 IEEE Workshop, Helsingoer, Denmark, pp. 3-12.

https://doi.org/10.1109/NNSP.1992.253713

[20] Ruder, S. (2016). An overview of gradient descent

optimization algorithms. arXiv preprint

arXiv:1609.04747.

https://doi.org/10.48550/arXiv.1609.04747

[21] Uijlings, J.R., Van De Sande, K.E., Gevers, T.,

Smeulders, A.W. (2013). Selective search for object

recognition. International Journal of Computer Vision,

104: 154-171. https://doi.org/10.1007/s11263-013-0620-

5

[22] Zeiler, M.D. (2012). ADADELTA: An adaptive learning

rate method. arXiv preprint arXiv:1212.5701.

https://doi.org/10.48550/arXiv.1212.5701

[23] Cai, Z., Vasconcelos, N. (2018). Cascade R-CNN:

Delving into high quality object detection. In 2018

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, Salt Lake City, UT, USA, pp. 6154-6162.

https://doi.org/10.1109/CVPR.2018.00644

[24] Dozat, T. (2016). Incorporating Nesterov momentum

into Adam. Workshop Track - ICLR 2016.

https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtN

EZ.

[25] Kitti Dataset.

https://www.kaggle.com/datasets/klemenko/kitti-

dataset.

[26] Tao, J., Wang, H., Zhang, X., Li, X., Yang, H. (2017).

An object detection system based on YOLO in traffic

scene. In 2017 6th International Conference on Computer

Science and Network Technology (ICCSNT), Dalian,

China, pp. 315-319.

https://doi.org/10.1109/ICCSNT.2017.8343709

518

