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Accurate medical image segmentation is essential for computer-assisted diagnosis and 

treatment systems. While conventional U-Net architectures and hybrid models integrating 

U-Net with Transformer networks have demonstrated remarkable performance in automatic

segmentation tasks, these approaches frequently face challenges in effectively integrating

multi-scale features. Additionally, semantic inconsistencies arising from simple skip

connections during the encoding-decoding process remain problematic. To address these

limitations, a novel architecture, MSF-TransUNet, is proposed, which incorporates a Feature

Fusion Attention Block (FFA-Block) to enhance the fusion of multi-scale features. This

approach facilitates dense feature interactions through the integration of uniform attention,

achieving this with minimal computational overhead. The experimental results on the

Synapse and ACDC medical image segmentation datasets reveal that MSF-TransUNet

outperforms existing models. Specifically, the average Hausdorff Distance (HD) on the

Synapse dataset is reduced to 22.40 mm, accompanied by an impressive Dice Similarity

Coefficient (DSC) of 80.78%. Furthermore, the model achieves a DSC of 91.52% on the

ACDC dataset, demonstrating its superior performance. These findings highlight the

potential of MSF-TransUNet in advancing medical image segmentation by effectively

addressing the challenges of multi-scale feature fusion and semantic consistency.
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1. INTRODUCTION

In addition to its many other uses, medical imaging 

segmentation can help with clinical diagnosis by making it 

easier to find diseased abnormalities and identify organs more 

accurately. Through this method, physicians can conduct 

qualitative and quantitative examinations on abnormal tissue 

and clinically relevant regions, enhancing the reliability and 

accuracy of clinical diagnoses. Tumor segmentation is 

especially crucial in surgical planning, which helps in the 

detection of precise tumor boundaries and guiding the surgical 

process. Hence, there is a clear need for advanced 

segmentation technologies in medical diagnostics. 

Applications in segmentation tasks for medical imaging in 

recent years have been significantly influenced by 

Convolutional Neural Networks (CNNs). Models built on 

CNNs have been extensively developed due to their 

exceptional performance and straightforward network 

architecture. The FCN network [1], devoid of fully connected 

layers, employs convolutional layers in encoding and 

decoding stages. This design facilitates the preservation and 

reconstruction of spatial features, resulting in a streamlined 

model with enhanced generalization performance. The widely 

used U-Net [2] incorporates long skip connections at every 

level of its symmetric U-shaped encoder and decoder structure, 

aiming to mitigate the loss of spatial information caused by 

down-sampling operations. Despite the advantages of skip 

connections, U-Net still encounters challenges in modeling 

global multi-scale context and addressing the semantic gap.  

UNet++ [3], based on nested U-Nets with dense skip 

connections and deep supervision methods, was developed to 

reduce the semantic gap between the encoder and decoder. U-

Net 3+ [4] employs full-scale skip connections and deep 

supervision to learn multi-level features from feature maps 

that are aggregated at full scale. To address the narrow 

receptive field of CNNs, dilated convolutions are being used 

by DeepLab [5] to widen the receptive field. SegNet [6] 

enhances the up-sampling methods employed by the decoder 

used for features that are of low resolution while decreasing 

the quantity of trainable parameters and inference time. 

Utilizing a hybrid of the U-Net model and the atrous spatial 

pyramid pooling [7], DoubleU-Net [8] is able to precisely 

gather both spatial and contextual information. While U-Net 

structures have dominated image segmentation, they face 

challenges in acquiring long-term dependencies.  

Transformers [9], initially proposed for natural language 

processing, excel at capturing long-range dependencies. 

Vision Transformers (ViTs) [10] subsequently applied 
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Transformers to computer vision, achieving performance 

comparable to convolution-based approaches. Multi-head self-

attention is often credited with the superior performance of 

ViTs, as it facilitates global dependencies across every layer 

of the ViT architecture [11]. Swin Transformer [12] uses 

multiple layers of Transformers, employing shifted windows 

to ensure local information interacts effectively. Swin-UNet 

[13] made progress by combining Swin Transformer and U-

Net architectures, but suffered from increased computational 

cost and limited performance improvement. Despite 

employing a pre-trained MaxViT encoder and a Convolutional 

Attention Mixing (CAM) decoder to enhance segmentation 

precision, MIST [14] faces challenges in capturing local pixel-

level contexts. The Pyramid ViT [15] provides a convolution-

free alternative with effective global context modeling. 

However, its high computational demands and dependence on 

large annotated datasets limit its applicability. 

Numerous endeavors have been undertaken to integrate the 

transformer structure with U-Net. Taking TransUNet [16] for 

an example, it was one of the early efforts to leverage the 

advantages of ViTs, which also utilizing U-Net based 

frameworks s to enhance medical image segmentation 

performance. DA-TransUNet [17] incorporates dual attention 

block into TransUNet framework. AE-TransUNet+ [18] 

utilize CBAM [19] and depth-wise separable convolution 

(DSC) built upon the TransUNet architecture. CBAM-

TransUNet [20] integrates the convolutional attention module 

within the bottleneck layer based on Swin Transformer. While 

attention techniques have been embedded into U-Net, 

Transformers, TransUNet, and other widely-used frameworks, 

for high-resolution images, the computational cost of self-

attention can be very high, thereby further enhancement is 

necessary to optimize performance. 

The skip connection serves as a crucial element in 

contemporary CNN architectures. Short skip connections in 

[21, 22] offer an additional pathway for uninterrupted gradient 

propagation. Long skip connections in studies [1, 2, 16, 23] 

preserve fine-grained features by linking earlier and deeper 

layers. Despite their application for amalgamating features 

through various pathways, the fusion of connected features 

typically involves addition or concatenation, allocating fixed 

weights to features regardless of content variations. 

Meanwhile, low-level features, like contours and edge, are 

essential for precise segmentation because of their ability to 

preserve key details. Nonetheless, their efficacy declines when 

they traverse several intermediary levels. However, low-level 

features, simply integrated with high-level feature as in Swin-

UNet, TransUNet and DA-TransUNet, may lead to 

inconsistent spatial alignment, as high-level features capture a 

broader receptive field while low-level features preserve local 

fine details. This challenge underscores the critical need for 

effective multi-scale feature fusion in complex segmentation 

task for medical image. 

In summary, balancing segmentation performance and 

computational efficiency remains a key challenge in designing 

medical image segmentation models based on deep learning. 

An effective multi-scale feature fusion strategy is essential for 

improving segmentation performance. Despite the fact that 

models such as TransUNet, which combine U-Net and 

Transformer, have been enhanced, they are still haunted by 

some intrinsic deficiencies: 

(1) The extensive use of transformer blocks significantly 

increases the number of parameters and computational costs, 

but not necessarily with proportional improvements in 

segmentation accuracy. 

(2) The researchers observed that ViT-based model 

attention maps favor dense interactions over sparse ones. This 

preference holds even though dense attention maps are more 

difficult to learn [11]. 

(3) Most existing methods struggle to fully utilize 

information at different scales. The challenge of balancing 

detailed features from low-level layer and semantic 

representations from high-level layer limits their ability to 

address scale discrepancies in medical image segmentation. 

MSF-TransUNet, a novel TransUNet-based segmentation 

network, is introduced in this paper as a solution to 

aforementioned constraints. It enhances multi-scale feature 

fusion without significantly compromising computational 

efficiency. MSF-TransUNet introduces a novel FFA-Block for 

dynamically fusing detailed and semantic features with 

learned spatial attention mechanisms. With this, the model can 

address semantic gaps in the encode-decoder architecture 

while effectively utilizing information at various scales. By 

fusing local fine details and global context selectively, MSF-

TransUNet enhances segmentation performance with 

improved feature representation. 

Furthermore, to enhance global and local feature 

interactions, MSF-TransUNet integrates a large kernel 

convolutional modulation (≥7×7) for suppressing redundant 

information and preserving valuable details for segmentation. 

Moreover, this paper integrates Context Broadcasting (CB) 

[11] into the Multilayer Perceptron Layer (MLP) so that all 

tokens can interact with global contextual information, thereby 

augmenting performance with merely linear computational 

cost increase, demonstrating a clear advantage over 

Transformer models, which typically suffer from quadratic 

complexity increase. 

To evaluate MSF-TransUNet, this paper performs 

comprehensive experiments on two benchmark medical 

datasets for segmentation tasks: Synapse and ACDC. The 

findings indicate that MSF-TransUNet significantly surpasses 

current leading methods in both segmentation accuracy and 

computational efficiency. The primary contributions of this 

paper are highlighted below: 

(1) MSF-TransUNet, a novel TransUNet-based 

segmentation framework, is introduced in this paper, which 

enhances multi-scale feature fusion and gains better 

segmentation performance in medical imaging applications. 

(2) An innovative FFA-Block is presented to address 

semantic inconsistency problem more effectively in encoder-

decoder structure for improving multi-scale feature fusion. 

(3) Incorporating the CB module improves dense feature 

interactions in MSF-TransUNet, making both local and global 

feature learning more effective with minimal added 

computational complexity. 

(4) MSF-TransUNet exhibits outstanding results on two 

medical imaging datasets, Synapse and ACDC, showcasing its 

superiority over current Transformer models.  

 

 

2. METHODS AND MATERIALS 

 

Figure 1 shows the MSF-TransUNet architecture with three 

components: encoder, skip connection, and decoder. (1) The 

encoder learns global features by dividing the provided 

medical images into 2D patches, flattening them into 

sequences and using the self-attention mechanism of 

Transformer model. Besides, CB module enhances feature 
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learning and model generalization. (2) Skip connections are 

redesigned in this new architecture by combining the low-

dimensional features with the original skip connection layers, 

hence enhancing the decoder's capacity to include multi-scale 

features. Rather than directly adding features from a single 

encoder level to the decoder, the model makes use of multiple 

levels' information, which is obtained from the newly designed 

skip connections, through FFA-Block to enrich the learned 

representations. This ensures that the new skip connections' 

effectiveness by selectively enhancing and refining features 

obtained. Such an approach also enables the decoder to 

balance global contextual information with local fine details 

more efficiently. (3) The decoder consists of three core parts: 

Feature Concatenation, the FFA-block and up-sampling 

operations. The FFA-block, comprised of a Pre-Fusion block, 

Feature Fusion block, and Feature Selection block, which 

could adaptively grasp the most informative features, hence 

improving segmentation accuracy. 

 

 
 

Figure 1. The structure of proposed MSF-TransUNet 

 

2.1 Encoder incorporating CB module 

 

MSF-TransUNet, like TransUNet [16], employs a hybrid 

architecture combining CNNs and Transformers in its encoder. 

It also incorporates the CB module [11], which enhances the 

model by promoting dense interactions. Previous research has 

shown the benefits of adding extra dense interactions in ViTs. 

Given the inherent challenge in learning dense attention 

through gradient descent, researchers manually implemented 

this process using a straightforward yet effective module 

called CB. The CB module is smoothly incorporated into the 

MLP layers of the MSF-TransUNet encoder, achieved with 

just a single line of code: X = 0.5﹡X + 0.5﹡X.mean(dim=1, 

keepdim=True) [11]. This CB module, by introducing uniform 

attention, inserts the token resulting from average pooling to 

each token individually, for infusing dense interactions. This 

integration not only simplifies the overall optimization process 

for MSF-TransUNet but also enhances its generalization. The 

CB module redirect MSF-TransUNet's focus from modeling 

dense attention maps to acquiring other valuable information, 

incurring only negligible additional operations for both 

inference and training. 

 

2.2 Decoder 

 

The architecture of the MSF-TransUNet decoder is akin to 

that of the TransUNet decoder. As shown in Figure 1, the 

MSF-TransUNet decoder utilizes three main operations: up-

sampling operations, feature concatenation, and the FFA-

Block. The model's final layer is a segmentation head that 

generates a feature map representing the prediction results. 

 

2.2.1 FFA-block 

To leverage features of varied scales extracted from the 

CNN part of the encoder and minimize the semantic disparity 

within the encoder-decoder architecture, optimizing the 

integration process of multi-scale features becomes imperative. 

In this paper, an FFA-Block, as illustrated in Figure 2, is 

introduced. The FFA-Block consists of a Pre-Fusion Block, a 

Feature Fusion Block, and a Feature Selection Block. This 

design aims to bridge the semantic gap effectively by utilizing 

multi-scale information while enhancing attention to capture 

salient features.  

Specifically, this paper utilizes skip connections with 

elaborate FFA-Block to merges multiple low-dimensional 

features with the ones obtained at the previous decoding stage, 

which could attain a comprehensive hierarchical feature map. 

This map is subsequently incorporated into a Pre-Fusion Block 

for initial feature extraction, followed by a Feature Fusion 

Block that assigns a unique spatial importance map for 

channels, which could direct the model to prioritize crucial 

regions within every channel [24], ensuring the interaction of 

information across different scales.  

The Feature Selection Block generates a more efficient 
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spatial attention map leveraging a convolutional modulation 

operation [25] after passing through two consecutive 3 × 3 

convolutional layers. This block selects task-relevant features  

 

and filters out low-frequency information regions, which 

could augment the model's capacity to extract meaningful 

information. 

GAPs

GMPs

GAPc

C

+ C S ×

×

C Channel-wise Concatenation

Element-wise Multiplitation + Addition

S Sigmoid Depthwise Separable Convolution

Depthwise Convolution

GAP Global Average Pooling

GMP Global Max Pooling

×

Pre-fusion Feature Fusion Block Feature Selection Block

 
 

Figure 2. The schematic of FFA-block 

 

2.2.2 Pre-fusion block 

The Pre-Fusion block inputs from the previous decoder 

section and the CNN component within the encoder via skip 

connections. In this paper, Pointwise Convolution (PWConv) 

is chosen as the channel context aggregator, effectively 

combining information across channels and enabling the 

model to extract rich representational details from the input 

feature representations. After being processed by PWConv, 

these features are passed to DSC, which first applies a depth- 

 

wise convolution (DConv) independently to each individual 

channel, after which comes a 𝑃𝑊𝐶𝑜𝑛𝑣  that transforms the 

output channels of the 𝐷𝐶𝑜𝑛𝑣 to a new channel space [26]. 

This structure allows for better fusion of features with 

inconsistent semantics and the extraction of spatial features 

from the input feature map while preserving channel 

information. Given 𝑋 ∈ 𝑅𝐶×𝐻×𝑊, where X is the input with C 

channels and a size of H×W, 𝐹(𝑋) ∈ 𝑅𝐶×𝐻×𝑊 is computed as 

follows: 

𝐹(𝑋) = 𝐵 (𝑃𝑊𝐶𝑜𝑛𝑣(𝑋)(𝛿) (𝐵 (𝐷𝐶𝑜𝑛𝑣 (𝛿 (𝐵(𝑃𝑊𝐶𝑜𝑛𝑣(𝑥)))))))  (1) 

 

Here, 𝛿  denotes ReLU6 activation function, 𝐵  denotes 

batch normalization, 𝑃𝑊𝐶𝑜𝑛𝑣 denotes pointwise convolution, 

𝐷𝐶𝑜𝑛𝑣 denotes depthwise convolution and 𝐹(𝑋) denotes the 

feature map obtained from the concatenated features via Pre-

Fusion block. 

 

2.2.3 Feature fusion block 

As shown in following equations, the feature map F, 

obtained from Pre-Fusion block, which contains multi-scale 

information, is subsequently processed by the Feature Fusion 

Block. To obtain a channel-specific spatial importance map 

[24], spatial global average pooling (GAPs) and spatial global 

max pooling ( GMPs ) are applied on spatial dimension of 

feature map 𝐹 ∈ ℝ𝐶×𝐻×𝑊  to produce 𝐹𝑎𝑣𝑔
𝑠 ∈ ℝ1×𝐻×𝑊  and 

𝐹𝑚𝑎𝑥
𝑠 ∈ ℝ1×𝐻×𝑊. These operations extract spatial-wise feature 

information to encode critical spatial dependencies and 

discriminative patterns. Simultaneously, using global average 

pooling (GAPc) across the channel dimension, a global channel 

descriptor 𝐹𝑎𝑣𝑔
𝑐 ∈ ℝ𝐶×1×1 is generated from the feature map 𝐹. 

 

𝐹𝑎𝑣𝑔
𝑠 = 𝐺𝐴𝑃𝑠(𝐹) (2) 

 

𝐹𝑚𝑎𝑥
𝑠 = 𝐺𝑀𝑃𝑠(𝐹) (3) 

 

𝐹𝑎𝑣𝑔
𝑐 = 𝐺𝐴𝑃𝑐(𝐹) =

1

𝐻 × 𝑊
∑  

𝐻

ℎ=1

∑  

𝑊

𝑤=1

𝐹(ℎ, 𝑤) (4) 

𝐺𝐴𝑃𝑐  denotes global average pooling across the spatial 

dimension. 𝐺𝑀𝑃𝑠 denotes global max pooling along the spatial 

dimension, highlighting the most salient spatial feature per 

channel. 𝐺𝐴𝑃𝑐  denotes global average pooling across the 

channel dimension. For every position (h, w), the feature 

values from all channels are averaged.  

By concatenating 𝐹𝑎𝑣𝑔
𝑠  and 𝐹𝑚𝑎𝑥

𝑠  along the channel 

dimension to form a spatial descriptor and performing a 

convolution with 7×7 kernel size, more contextual information 

is captured, resulting in a spatial importance map 𝑀𝑠. Channel 

attention map is then obtained using Eq. (6), following the 

approach of SENet [27], where the core process involves 1×1 

convolutions for channel compression and expansion, which 

adjusts the weight coefficients of each channel, thereby 

enhancing feature representation capabilities. 

Additionally, residual connections address the vanishing 

gradient issue by incorporating the previous input feature F 

directly into later layers. By fusing 𝑀𝑐  and 𝑀𝑠  through 

element-wise summation, the semantic content of the input 

feature F serves as a guiding signal to derive the final channel-

wise spatial importance map, ensuring alignment with the 

original feature structure. Finally, the fused features 𝐹′  are 

computed using Eq. (7). This fusion approach achieves a dual 

contribution: it dynamically generates distinct spatial 

importance map per channel to prioritize critical regions, while 

simultaneously retaining fine-grained details from shallow 

layers and semantic context from deeper layers. The synergy 
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of these properties ensures precise segmentation of anatomical 

structures in medical imaging by balancing semantic and 

detailed features. 

 

𝑀𝑠 = 𝐶𝑜𝑛𝑣7×7[𝐹𝑎𝑣𝑔
𝑠 , 𝐹𝑚𝑎𝑥

𝑠 ] (5) 

 

𝑀𝑐 = 𝐶𝑜𝑛𝑣1×1 (𝛿 (𝐶𝑜𝑛𝑣1×1(𝐹𝑎𝑣𝑔
𝑐 ))) (6) 

 

𝐹′ = 𝐹 ⨀ 𝜎(𝐷𝐶𝑜𝑛𝑣7×7([𝐹, (𝑀𝑠 + 𝑀𝑐)])) (7) 

 

δ is the ReLU activation function, while 𝐶𝑜𝑛𝑣𝑘×𝑘 

represents a convolution with a k×k kernel, [·] represents 

channel-wise concatenation. To optimize computational 

efficiency and minimize model complexity, the architecture 

employs a bottleneck design (Eq. (6)), a 𝐶𝑜𝑛𝑣1×1  first 

compresses the channel dimension and a subsequent 𝐶𝑜𝑛𝑣1×1 

restores the channel dimension from C/r to C. In this paper, r 

is empirically set to 8. 𝐷𝐶𝑜𝑛𝑣7×7 denotes a 7×7 depth-wise 

convolution to capture spatial dependencies. ⨀ denotes the 

Hadamard (element-wise) product, and σ represents the 

Sigmoid activation function. 

 

2.2.4 Feature selection block 

After features pass through Pre-Fusion block and Feature 

Fusion Block, they are forwarded to two standard convolution 

layers with a 3×3 kernel. Subsequently, a convolutional 

modulation (ConvMod) is employed to enhance spatial 

encoding efficiency within the Transformer U-Net framework. 

ConvMod is achieved by utilizing large kernels (≥7×7) within 

depth-wise convolutional layers [25, 28, 29], demonstrated in 

Eqs. (10)-(12). It facilitates task-relevant feature selection and 

attenuates redundant low-frequency information from the 

feature map 𝐹′. 

Self-attention [9] takes a 𝑋 ∈ ℝ𝑁×𝐶, where N=H×W denotes 

the flattened spatial dimensions (height H, width W), and C 

represents the channel depth. The feature map X is first 

mapped through three learnable linear transformations to 

derive the key (K), query (Q), and value (V) matrices, each 

with dimensions ℝ𝑁×𝐶. The self-attention output is calculated 

as a weighted sum of the value matrix V, with the weights are 

determined by a normalized similarity score matrix A. This 

score matrix A is derived from the pairwise interactions 

between Q and K, capturing long-range dependencies across 

the input sequence. 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝐴 ∙ 𝑉 (8) 

 

𝐴 =
Softmax(QKT)

√𝑑
 (9) 

 

where, d is the dimension of Q and K vectors, serving as a 

scaling factor. The Softmax function normalizes the similarity 

scores into a probability distribution across the input sequence. 

The attention mechanism computes the output as context-

aware aggregation of the V matrix, where the aggregation 

weights are determined by A. These weights encode pairwise 

affinities between Q and K, enabling the model to prioritize 

semantically relevant regions of the input. 

Within ConvMod module, instead of computing the self-

attention similarity matrix A as in traditional ViTs, self-

attention is approximated by replacing matrix multiplications 

with the Hadamard product combined with depth-wise 

convolution operations to compute the output. To be specific, 

given 𝑋 ∈ ℝ𝐻×𝑊×𝐶 , the ConvMod module applies a simple 

depth-wise convolution with a K×K kernel to capture spatial 

patterns. An element-wise Hadamard product operation is 

subsequently performed to compute the output Z. The process 

is formally expressed as follows: 

 

𝑍 = 𝐴 ⊙ V (10) 

 

𝐴 = 𝐷𝐶𝑜𝑛𝑣𝑘×𝑘(𝑊1𝑋) (11) 

 

𝑉 = 𝑊2𝑋 (12) 

 

In those equations, ⊙ represents the Hadamard product. 𝑊1 

and 𝑊2 denote the weight matrices of two linear layers, while 

𝐷𝐶𝑜𝑛𝑣𝑘×𝑘  refers to a depthwise convolution with a K×K 

kernel. This formulation allows each spatial location (h, w) to 

capture correlations with all pixels in its surrounding K×K 

receptive field, ensuring effective local and global feature 

interactions. 

Specifically, the Feature Selection block in MSF-

TransUNet employs ConvMod with a 7×7 kernel size 

following the deepest skip connection, while the Feature 

Selection Blocks at other stages utilize a 11×11 kernel size. 

ConvMod streamlines feature selection by replacing the 

computationally expensive self-attention mechanism with a 

combination of depth-wise convolutions and the Hadamard 

product, significantly reducing computational overhead while 

preserving spatial dependencies.  

As shown in Table 1, the computational complexity of 

ConvMod is O(N·C), whereas the complexity of self-attention 

is O(N2∙C). This quadratic complexity in self-attention 

becomes prohibitive when processing high-resolution medical 

images. In contrast, ConvMod provides a more scalable and 

efficient alternative, ensuring computational feasibility 

without sacrificing performance. By leveraging large kernels 

in a computationally efficient manner, ConvMod improves the 

extraction of features at various scales, rendering it especially 

effective for medical image segmentation tasks. 

 

Table 1. Complexity of self-attention and ConvMod 

 
Layer Type Complexity 

Self-Attention O(N2·C) 

ConvMod O(N·C) 

 

2.3 Dataset and evaluation 

 

This paper utilized the Synapse [30] and ACDC [31] 

datasets. The Synapse dataset comprises 30 CT-enhanced 

abdominal scans, each containing a varying number of slices. 

This dataset includes eight abdominal organs with 

corresponding labels. The Synapse dataset could be accessed 

through 

https://www.synapse.org/Synapse:syn3193805/wiki/217789. 

The ACDC dataset consists of cardiac MRI scans from 100 

patients, with labels for the left ventricle (LV), right ventricle 

(RV), and myocardium (MYO). The data splitting for both 

datasets follow the approach outlined in study [32]. The 

ACDC dataset could be accessed through 

https://www.creatis.insa-lyon.fr/Challenge/acdc/. 

For the evaluation of our approach’s segmentation results, 

this paper employed DSC [33] and HD [34]. The 

corresponding equations are presented in Eq. (13) and Eq. (14): 

535



 

𝐷𝑆𝐶(𝑀, 𝑁) = 2
|𝑀 ∩ 𝑁|

|𝑀| + |𝑁|
 (13) 

 

𝐻𝐷(𝑀, 𝑁) = max(ℎ(𝑀, 𝑁), ℎ(𝑁, 𝑀)) (14) 

 

Here, M and N represent the point sets corresponding to the 

Ground Truth and the predicted values, respectively. The term 

h(M,N) refers to the supremum of the minimum distances from 

all points in set M to set N, as shown in Eq. (15). This metric 

quantifies the largest deviation between the two sets. 

 

ℎ(𝑀, 𝑁) = max
𝑚∈𝑀

min
𝑛∈𝑁

‖𝑚 − 𝑛‖ (15) 

 

2.4 Loss function 

 

To optimize the effectiveness of the segmentation approach, 

a composite loss function which incorporates both Cross-

Entropy Loss and Dice Loss is implemented. The formulation 

is as follows: 

 

𝐿𝑜𝑠𝑠 = 0.4 × 𝐶𝑟𝑜𝑠𝑠‐ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝐿𝑜𝑠𝑠
+ 0.6 × 𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 

(16) 

 

𝐶𝑟𝑜𝑠𝑠‐ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝐿𝑜𝑠𝑠 = − ∑ 𝑦𝑖

𝑛

𝑖=1
𝑙𝑜𝑔 𝑝𝑖 (17) 

 

𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 = 1 −
2|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 (18) 

 

Here, n represents the total amount of pixels from an input 

image, 𝑦𝑖  denotes the ground-truth for the i-th pixel and 𝑝𝑖  is 

the predicted probability for the same pixel. The sets A and B 

are the point sets for the Ground Truth and the predicted 

segmentation, correspondingly. 

The designed composite loss function integrates the merits 

of both loss functions. Cross-Entropy Loss has a good 

performance in classifying each pixel independently, and 

therefore the predicted probabilities closely match the actual 

class labels. Dice Loss, on the other hand, focuses on where 

the ground truth and the expected segmentations overlap, 

which is particularly beneficial for addressing class imbalance 

and improving boundary precision of segmentation. By 

employing these two loss functions, the model strikes a 

compromise between accurate pixel classification and well-

defined boundaries and therefore attains better overall 

segmentation performance. 

 

2.5 Implementation details 

 

The MSF-TransUNet model was implemented using 

Python 3.9, PyTorch 2.0.0, and CUDA 11.8 with an NVIDIA 

GeForce 4090 GPU. The images were pre-resized to 224×224 

pixel. The model parameters were initialized by the pre-trained  

 

"R50-ViT" model. For the models trained with the SGD 

optimizer, a weight decay of 0.0001 was applied, and training 

was conducted for 150 epochs. The momentum was set to 0.9, 

and an initial learning rate of 0.01. The learning rate had a 

dynamic decay schedule, which was set as: 

 

𝑙𝑟 = 𝑏𝑎𝑠𝑒𝑙𝑟 × (1.0 −
𝑖𝑡𝑒𝑟_𝑛𝑢𝑚

𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
)0.9 (19) 

 

where, iter_num denotes the current iteration, max_iterations 

represents the total number of iterations and 𝑏𝑎𝑠𝑒𝑙𝑟  is the 

initial learning rate. This decay schedule enables a gradual 

reduction of the learning rate, which helps stabilize the 

optimization and promotes convergence. 

MSF-TransUNet uses techniques for data enhancement 

commonly employed in TransUNet, such as random rotation, 

horizontal and vertical flipping, and spatial rescaling to the 

desired resolution, to increase the model's generalizability. 

The augmentations allow the model to support diversity in 

medical images and enhance the model's cross-dataset 

robustness. 
 

 

3. RESULTS 

 

3.1 Experiment results on Synapse dataset 

 

This paper presents a comparison of MSF-TransUNet on 

Synapse dataset. Table 2 presents a comprehensive 

comparison of the segmentation accuracy of various methods, 

measured by average DSC in percentage and average HD in 

millimeters. The proposed MSF-TransUNet is highlighted 

with the highest average DSC of 80.78% and the lowest HD 

of 22.40 mm among all models provided in Table 2. It 

indicates that MSF-TransUNet produces the best overall 

segmentation outcome with the most precise boundaries. 

Compared with the baseline model (TransUNet), MSF-

TransUNet shows a 3.46% improvement in DSC and a 

decrease of 8.23 mm in HD. 

In the segmentation results, MSF-TransUNet outperforms 

TransUNet across various organs: 0.67% for the aorta, 10.11% 

for the gallbladder, 0.68% for the left kidney, 2.46% for the 

right kidney, 0.43% for the liver, 4.74% for the pancreas, 4.4% 

for the spleen, and 4.19% for the stomach. Overall, both the 

average DSC and the DSC for all eight organs were 

significantly higher than the baseline model, indicating 

enhanced segmentation performance by MSF-TransUNet 

 

Table 2. Segmentation accuracy of different methods on Synapse dataset 

 
Model DSC HD Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach 

U-Net [2] 75.43 37.72 87.07 60.01 78.53 73.11 92.73 56.23 85.77 69.99 

U-Net++(resnet-50) [3] 76.13 32.16 85.95 58.63 79.26 73.81 93.77 57.35 85.10 75.16 

TransUNet [16] 77.32 30.63 87.44 61.22 81.33 76.66 94.40 57.23 84.68 75.61 

UCTransNet [35] 77.54 33.93 87.86 63.99 83.12 77.15 93.54 54.49 85.24 74.96 

Swin-UNet [13] 76.04 26.49 83.27 64.06 79.54 73.42 93.12 55.76 86.05 73.13 

VA-TransUNet [32] 79.21 28.32 87.72 66.96 82.22 74.54 94.45 60.34 88.37 79.03 

DA-TransUNet[17] 79.85 23.72 86.57 61.30 83.73 80.84 94.59 59.86 89.60 82.35 

MSF-TransUNet 80.78 22.40 88.11 71.33 82.01 79.12 94.83 61.97 89.08 79.80 
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Figure 3 illustrates the visualization of the segmentation 

results. The hybrid Transformer and CNN architecture, 

combined with the FFA-Block and CB module, facilitates 

learning dense spatial interactions and capturing useful 

information more adequately, which enables MSF-TransUNet 

to extract image features more effectively, resulting in 

enhanced segmentation performance. 

 

Ground Truth MSF-TransUNet DA-TransUNet TransUNet Swin-UNet U-Net 

      

      

      

 

 Aorta  Gallbladder  Kidney(L)  Kidney(R)  Liver  Pancreas  Spleen  Stomach 

 

Figure 3. Qualitative comparison of various methods through visualization. From left to right: (a) Ground Truth, (b) MSF-

TransUNet, (c)DA-TransUNet (d)TransUNet, (e) Swin-UNet, (f) U-Net. MSF-TransUNet produces fewer false positives and 

preserves finer details 

 

3.2 Experiment results on ACDC dataset 

 

Likewise, MSF-TransUNet was employed on the ACDC 

dataset, with performance measured by the average DSC in 

percentage for RV, MYO, and LV. The results are presented 

in Table 3. MSF-TransUNet demonstrates the best overall 

performance with an average DSC of 91.52%. It achieves the 

highest DSC for RV at 90.25% and LV at 96.59%, along with 

a strong performance for MYO at 87.72%, which surpasses 

most state-of-the-art segmentation approaches. 

 

Table 3. Segmentation accuracy of different methods on 

ACDC dataset 

 
Model Year DSC RV MYO LV 

U-net [2] 2015 89.18 85.71 86.01 95.83 

U-Net++(resnet-50) 

[3] 
2018 89.61 88.36 84.84 95.64 

TransUNet [16] 2021 90.08 88.27 85.86 96.10 

UCTransNet [35]  2022 89.72 87.52 85.71 95.94 

Swin-UNet [13] 2022 88.65 86.73 83.77 95.46 

VA-TransUNet [32] 2022 91.00 88.88 87.78 96.35 

HiFormer-B [36] 2023 89.06 87.28 84.52 95.37 

DA-TransUNet [17] 2024 91.09 89.16 87.69 96.43 

MSF-TransUNet 2025 91.52 90.25 87.72 96.59 

 

These impressive results highlight MSF-TransUNet's 

ability to accurately segment different cardiac structures, 

showcasing its robustness and effectiveness. For the RV, 

MSF-TransUNet's 90.25% DSC indicates that it performs 

particularly well at identifying the structural details and 

boundaries, much better than previous models. Similarly, its 

highest DSC for LV at 96.59% indicates superb accuracy in 

delineating the LV, which is critical to making accurate 

cardiac studies and interventions. The strong performance in 

MYO segmentation, with a DSC of 87.72%, also signifies the 

capacity of the model to deal with the complexity of 

myocardial tissue, which is generally difficult due to its 

variable and complex nature. 

 

3.3 Ablation study 

 

3.3.1 Effect of CB module  

In order to evaluate the performance of the CB module, we 

made experiments by removing the CB module from the MLP 

layers of Transformers of MSF-TransUNet and adding the CB 

module to the baseline model of TransUNet for comparison. 

Experimental results on Synapse dataset are presented in Table 

4. The DSC% values are superior for methods with CB module, 

indicating that the CB module broadcasts contextual 

information well. 

 

3.3.2 Effect of FFA-block 

To validate the efficacy of FFA-Block, we conducted an 

ablation study by removing it from MSF-TransUNet and 

adding FFA Block into the baseline model of TransUNet for 

comparison, the results are showed in Table 4. We observed a 

distinct enhancement in both experiment with FFA block, 

which indicated that FFA block excel at fusing multi-scale 

features and capturing useful information from them.  
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Table 4. Ablation study on the impact of CB and FFA module (%) 

 
Method DSC HD FLOPs (G) Params (M) Aorta Gallbladder Kidney (L) Kidney (R) Liver Pancreas Spleen Stomach 

Baseline (TransUNet) 77.32 30.63 24.728 93.232 87.44 61.22 81.33 76.66 94.40 57.23 84.68 75.61 

Baseline+FFA 78.37 29.92 33.614 98.701 88.04 66.19 80.10 75.26 94.31 61.02 87.04 75.03 

Baseline+CB 78.18 28.67 24.728 93.232 87.45 63.93 81.52 75.39 94.05 57.83 87.78 77.49 

Baseline+FFA+CB 80.78 22.40 33.614 98.701 88.11 71.33 82.01 79.12 94.83 61.97 89.08 79.80 

 

 

4. DISCUSSIONS 

 

4.1 Discussions on synapse dataset 

 

This paper provides a comprehensive comparison 

performance of MSF-TransUNet, TransUNet, DA-TransUNet, 

Swin-UNet, and U-Net on the Synapse dataset with qualitative 

comparison illustrated in Figure 3 and quantitative comparison 

showed in Table 2. The results, illustrated in Figure 3, lead to 

several important conclusions. (1) Compared to other 

Transformer-based and hybrid models, models based entirely 

on CNNs tend to produce more mis-segmentation issues. 

Specifically, as shown in the third row of Figure 3, U-Net 

misclassifies the spleen, while in the first row, it produces false 

positives for the pancreas. This indicates that other 

Transformer-based and hybrid models have stronger global 

context encoding and semantic differentiation capabilities. (2) 

The results in the third row of Figure 3 indicate that MSF-

TransUNet preserves the overall shape of the organs more 

precisely compared to other approaches and effectively 

reducing mis-segmentation. In contrast, U-Net, TransUNet, 

and DA-TransUNet exhibit varying levels of misclassification 

in the spleen segmentation, while Swin-UNet shows coarse 

segmentation boundaries and false-positive regions. These 

results reflect that MSF-TransUNet achieves superior 

accuracy and robustness in segmentation. 

Experiments show that MSF-TransUNet performs better in 

segmentation tasks, preserving shape information and 

effectively representing global context as well as fine-grained 

information. This is evidenced by the observation that MSF-

TransUNet performs better in most organs with the highest 

DSC values for the aorta (88.11%), gallbladder (71.33%), liver 

(94.83%), and pancreas (61.97%), and its performance on the 

kidneys and spleen remain stable. To ensure the statistical 

significance of the enhanced performance, the baseline model 

and MSF-TransUNet were compared through a paired t-test on 

the Synapse datasets. The results confirmed a statistically 

significant improvement in Dice score across the Synapse 

dataset (t = 3.031, p = 0.0191). This overall improvement 

reflects the success of MSF-TransUNet in effectively 

integrating global and local feature, making it especially 

robust for challenging segmentation tasks of medical imaging. 

 

4.2 Discussions on ACDC dataset 

 

MSF-TransUNet was applied to the segmentation task on 

ACDC dataset with performance measured using average DSC 

in percentage for RV, MYO, and LV. The experimental results, 

as shown in Table 3, indicate that MSF-TransUNet performs 

the best with an average DSC of 91.52%, surpassing other 

models like DA-TransUNet with 91.09% and TransUNet with 

90.08%. It achieves the highest DSC for RV at 90.25% and 

LV at 96.59%, and demonstrates strong performance for MYO 

with 87.72%, which is better than the performance of most 

existing segmentation methods. 

These results prove the effectiveness and strength of MSF-

TransUNet in accurately segmenting different cardiac 

structures. In the case of the RV, the DSC of 90.25%, 

outperforming other models like VA-TransUNet (88.88%) 

and TransUNet (88.27%), indicates that MSF-TransUNet 

excels in identifying the structural edges and details of the RV, 

much better than the previous models. Similarly, the highest 

DSC for the LV also demonstrates excellent accuracy in 

delineating the LV, which is crucial for accurate cardiac 

assessments and treatments. The high performance in MYO 

segmentation also reflects the model’s ability to deal with the 

complexities of myocardial tissue, which is typically difficult 

to segment due to its complicated and highly variable nature. 

 

4.3 Further work 

 

The outstanding performance of MSF-TransUNet on the 

Synapse and ACDC datasets can be attributed to its hybrid 

Transformer and CNN structure. The structure effectively 

integrates global context with local feature. The incorporation 

of FFA-block and CB module allows the model to learn dense 

spatial interactions and extract key information more 

effectively, leading to more accurate and robust segmentation 

results. 

Despite these advantages are observed, MSF-TransUNet 

faces some challenges. Firstly, the addition of FFA-blocks 

comes with a computational cost. Nevertheless, this increase 

in complexity is mitigated by the use of convolutional 

modulation (ConvMod) instead of self-attention, which 

effectively limits the overall computational burden. Further 

optimizations are still needed for real-time applications, 

particularly in low-resource environments. Future research 

will explore techniques such as model pruning and lightweight 

attention mechanisms to further reduce computational costs 

while preserving segmentation accuracy. Additionally, this 

present work addresses two-dimensional medical image 

segmentation, but most medical imaging modalities like CT 

and MRI provide three-dimensional volumetric data. In order 

to fill this gap, future work will focus on extending MSF-

TransUNet to volumetric 3D medical image segmentation, 

assessing its effectiveness in volumetric scenarios. Moreover, 

future efforts will aim to optimize the model for real-time 

applications as well as further enhance its capabilities to three-

dimensional medical image segmentation to leverage its full 

potential in clinical practice. 

 

 

5. CONCLUSIONS 

 

This paper introduces MSF-TransUNet, a TransUNet-based 

neural network, to enhance the accuracy of medical image 

segmentation. Extensive experiments on multi-organ 

segmentation (Synapse) and cardiac segmentation (ACDC) 

tasks indicate that MSF-TransUNet outperforms state-of-the-

art approaches in both performance and generalizability, 

efficiently enhancing the segmentation accuracy. 

With relatively low extra computational cost, the inclusion 
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of the CB module provides the dense interactions required by 

the model, further boosting its performance. The proposed 

FFA-Block effectively mitigates semantic gaps in the encoder-

decoder framework. By generating channel-specific spatial 

weight in the Feature Fusion Block and extracting useful 

information through ConvMod in the Feature Selection Block, 

the FFA-Block is capable of focusing on large-scale global 

targets as well as localized fine-grained detail. This improves 

the model's accuracy as well as its capacity for generalization 

across various medical imaging segmentation tasks. In 

summary, MSF-TransUNet achieves state-of-the-art 

performance in medical image segmentation by combining the 

low-complexity CB module and the FFA module, which 

effectively leverages multi-scale features information. Future 

work will extend this architecture to 3D medical image 

analysis, exploring volumetric extensions of CB and FFA 

modules to tackle challenges in multi-modal 3D segmentation, 

and evaluating scalability on large-scale clinical datasets. 
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