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As a common algorithm in the field of image denoising, convolutional sparse self-coding 

has the defect of weak adaptability to images with different noise levels. Aiming at the 

difference of image noise le vel and the existing noise level estimation algorithms, an image 

denoising algorithm is proposed, which combines noise estimation and convolution sparse 

self-coding. This algorithm first estimates the noise level of the noise image, and then 

designs a prior estimation subnet for the noise level. In the subnet, a set of weights are 

obtained by nonlinear transformation of the noise level using a fully connected neural 

network, and the noise prior feature map is obtained by multiplying the weights by the 

components of image wavelet transform. Finally, the noise picture and the noise prior feature 

map are fused by channels, and then the sparse convolutional self-coding network is used 

for noise reduction, so as to effectively improve the noise reduction effect of the 

convolutional sparse self-coding noise reduction network. 
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1. INTRODUCTION

Image denoising means a series of conversion operations on 

the noisy image, and the details of the image are restored as 

much as possible on the basis of removing the image noise. 

Image denoising is a basic task of computer vision, which can 

be effectively used in high-order tasks such as image 

segmentation, target detection and tracking in computer 

vision. In the process of noise reduction, two operations need 

to be completed, that is, removing noise and restoring details. 

However, these two operations are opposite to each other to 

some extent, that is, excessive noise removal tends to make the 

image too smooth and lose detail information, and retaining 

details mainly often leaves a lot of noise. Therefore, image 

denoising has received extensive attention from the industry 

because of its complexity. 

The design of image denoising algorithm has mainly gone 

through three stages [1], namely, filter-based denoising 

algorithm, model-based generative denoising algorithm and 

discriminant denoising algorithm based on deep learning. 

Early image denoising mainly used filter-based denoising 

algorithm, that is, using a global filter to convolution the image 

and filtering the noise by weighting. Common filters include 

median filter [2], Gaussian filter [3] and bilateral filter [4]. The 

noise reduction algorithm based on filter is simple in design 

and fast in noise reduction, but the noise reduction effect is 

relatively poor. Model-based denoising algorithms are 

generally modeled according to some prior characteristics of 

images. Typical model-based denoising algorithms include 

BM3D algorithm [5] and WNNM algorithm [6]. Among them, 

BM3D algorithm takes the spatial similarity of images as a 

priori and uses block verification to model; WNNM algorithm 

takes the low rank of the image as a prior, maps the image to 

a low rank subspace by using dictionary modeling, and then 

experiments the image denoising. The model-based denoising 

algorithm is generally stronger than the filter-based denoising 

algorithm, and has strong robustness, but it takes a long time 

to denoise. The image denoising algorithm based on deep 

learning generally adopts discriminant modeling, that is, a 

large number of noise and real pictures are trained by neural 

network, and the parameters are updated by error back 

propagation, and then the corresponding denoising model is 

obtained. With the deepening of the research on deep learning 

algorithms, some research results in the field of deep learning 

have been applied to the task of image denoising. IRCNN [7] 

combines stacked convolution layers and introduces adaptive 

mechanism to deal with image restoration with diverse scales 

and complexity. The model dynamically adjusts the weight 

according to the pixel context, which improves the flexibility 

and accuracy of processing. Ducknn [8] mainly adopts the 

methods of residual learning [9] and batch normalization to 

improve the denoising ability and training speed of the model. 

FFDNet [10] adopts U-Net architecture with adaptive weight 

module, and combines nonparametric mean variance 

estimation to accurately predict pixel-level noise. Through 

batch normalization and batch training, FFDNet realizes real-

time performance of single GPU. CBDNet [11] adopts real 

noise model, which integrates Poisson-Gaussian distribution, 

signal-dependent noise and ISP influence. Asymmetric loss 

function is used to improve the generalization ability of the 
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network, and synthesis and real noise image training are 

combined to adapt to the real scene. RIDNet [12] introduces 

residual learning on the basis of residual network structure, 

and uses two residual connection methods, local connection 

(LC) and long skip connection (LSC), to dynamically adjust 

the weight of feature map. The core innovation of NBNet [13] 

is to propose a noise-based learning method, and skillfully use 

subspace projection technology and self-attention mechanism 

[14] to separate and remove image noise. Unlike traditional 

denoising methods that rely on complex network structures, 

NBNet focuses on deeply understanding and utilizing the 

inherent characteristics of noise. DeamNet [15] introduces 

nonlinear filter operator, reliability matrix, sparse self-coding 

[16] and high-dimensional feature transformation function to 

construct adaptive consistency prior. This prior is good at 

dealing with complex noise patterns, dynamically adjusting 

the filter strength, and mining more useful information from 

multiple scales and angles, effectively preserving the image 

structure and accurately removing noise. FADNet [17] is 

based on the improvement of two-dimensional convolution of 

encoder-decoder architecture, which integrates residual 

structure and point-by-point correlation convolution to 

enhance the ability of feature extraction and expression. Multi-

scale residual learning strategy and weighted loss method are 

adopted to realize model training from coarse to fine. The 

above-mentioned image denoising algorithm based on deep 

learning has made some achievements in image denoising, but 

there are still some aspects that can be improved. First of all, 

the current mainstream noise reduction algorithms generally 

use sparse convolutional self-coding network as the main 

framework of noise reduction network, which can 

conveniently realize the end-to-end mapping of image noise 

reduction, but the use of noise information is relatively limited. 

Secondly, the image noise level can clearly reflect the degree 

of image damage, and help the noise reduction network to use 

parameters reasonably to preserve the image details as much 

as possible, thus effectively improving and reducing the over-

fitting degree of the noise reduction network. Although some 

of these algorithms try to use noise subnet to estimate the noise 

subgraph of the image, they do not effectively use the key 

index of image noise level. In order to solve the problem of 

using noise information by sparse self-coding as the 

mainstream framework of image denoising, noise level can be 

actively integrated into sparse self-coding network as noise 

prior information to improve network performance. For the 

estimation of image noise level, Chen et al. [18] proposed a 

nonparametric noise level estimation algorithm based on 

principal component analysis, and achieved accurate 

prediction results in Gaussian additive noise images. 

However, how to effectively convert the noise level of a single 

numerical value into the prior information of image noise and 

how to effectively integrate the prior information with the 

noise reduction network has become a research difficulty. In 

order to solve the problem of effective integration of noise 

level and noise reduction network, this paper proposes a noise 

prior extraction network for noise level, and integrates noise 

prior information into noise reduction network to make full use 

of noise level information. The main contributions include the 

following points: 

1) A fully connected network is used to map the estimated 

noise level into four noise weights, and at the same time, the 

image is decomposed into four components by HAAR wavelet 

transform. After multiplying the weights, the noise prior 

feature map of the image related to its own noise level is 

obtained by inverse transformation. 

2) The image information and the noise prior feature map 

are effectively fused by the way of channel cascade, and a 

sparse convolutional encoder is designed to train the fused 

result for noise reduction, so as to obtain a noise reduction 

model. 

3) The effectiveness of the test algorithm is verified on 

Gaussian additive data set and real noise data set respectively. 

The experimental results show that compared with the original 

image input, the input fused with prior features can effectively 

improve the noise reduction effect, and the best results can be 

obtained in comparison with the noise reduction effect of the 

current mainstream noise reduction algorithms. 

 

 

2. RELATED WORK 

 

2.1 Noise level estimation algorithm 

 

Gaussian noise estimation algorithm based on principal 

component analysis uses the low rank characteristics of noise-

free blocks to model. For a picture x ∈ 𝑅𝐶×𝐻×𝑊 , where C 

represents the number of channels of the picture, H represents 

the width of the picture, and W represents the height of the 

picture. In this algorithm, the picture is divided into 8×8 sizes 

and then spliced into a picture block matrix 𝑦 ∈ 𝑅𝑀×𝑁, where 

𝑀 = 𝐶 × 8 × 8. The picture blocks are converted into a one-

dimensional vector, and 𝑁 = (𝐻 − 8 + 1)(𝑊 − 8 + 1) 
represents the number of cut picture blocks. Then the 

covariance matrix of the picture block is decomposed into 

eigenvalues to obtain an eigenvalue vector, and the calculation 

method is shown in Eq. (1): 

 

𝑒 = 𝛾(𝛷(𝑦 − 𝑢)(𝑦 − 𝑢)𝑇) (1) 

 

where, 𝑢 =
1

𝑛
∑ 𝑦𝑖
𝑁
𝑖=1  is the mean vector of 𝑦. 𝛷 represents the 

eigenvalue decomposition function, which returns the 

eigenvalue of a square matrix. γ represents a sorting function, 

that is, sorting the eigenvalues in order from largest to 

smallest. Noise estimation is to find a suitable value from e. 

Two lemmas are given for this algorithm. First, for a group of 

random variables {𝑛𝑡[𝑖]𝑡=1
𝑠 }, if each element follow standard 

normal distribution independently and identically, the 

estimated noise level �̃�2 =
1

𝑠
∑ 𝑛𝑡[𝑖]

2𝑆
𝑡=1  converges to 

𝑁(𝜎2,
2𝜎4

𝑠
) when s is large. Secondly, for a vector 𝑥𝑡 ∈ 𝑋𝑠 in 

M-dimensional space, suppose that M satisfies the following 

conditions: 
 

𝑚 < 𝑟 −
(1 − 2𝛼)𝛿(𝛽) + 𝛼

1 − 𝛿(𝛽)
 (2) 

 

𝛿(𝛽) = 𝛷((1 +
1

𝛽
)𝛷−1(0.5 +

𝛽

2
)) (3) 

 

where, 𝛽 =
𝑚

𝑟
, the mean value of the set is approximately 

equal to the median value when m is 0 or there is no large 

outlier in the set. Finally, the algorithm calculates the 

eigenvalue vector, and continuously removes large 

eigenvalues from the eigenvalue vector until the average value 

of the eigenvalue vector is equal to the median position. The 

square root of the median in this set is the noise level of the 

picture. 
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2.2 Convolutional sparse self-coding 

 

Convolutional sparse self-coding is often used in image 

reconstruction tasks, such as image denoising, image 

defogging and super-resolution tasks. Convolution sparse self-

coding is to replace the fully connected layer of the original 

sparse self-coding with 2D convolution layer on the basis of 

sparse self-coding. The general structure of convolutional 

sparse self-coding for image denoising is shown in Figure 1. 

 

 
 

Figure 1. Image denoising convolution sparse self-coding 

general network structure 

 

According to Figure 1, convolutional sparse self-coding 

generally consists of an encoder and a corresponding decoder. 

Image data is encoded by a group of coding layers consisting 

of a convolutional layer and an activation layer, and each 

coding layer is compressed by spatial pooling of the picture. 

Common pooling methods include maximum pooling, average 

pooling and using a convolutional layer with a step size greater 

than 1. This compression method is similar to reducing the 

number of hidden layers in sparse self-coding to obtain 

bottleneck features. The feature map after multiple encoding 

layers will be decoded through a series of decoding layers. The 

decoding layer is the reverse operation of the corresponding 

coding layer, and its network structure is similar to that of the 

coding layer. The difference is that compared with the coding 

layer's scaling of the spatial level of the feature map, the 

decoding layer needs to restore the spatial level of the feature 

map, and generally uses bilinear interpolation or 

deconvolution layer with a step size greater than 1 to operate. 

Each coding layer and the corresponding decoding layer are 

generally connected by residual method to ensure the effective 

transmission of feature map information and prevent the 

gradient from disappearing during network training. 

 

 

3. IMAGE DENOISING NETWORK BASED ON PRIOR 

ESTIMATION OF NOISE 

 

3.1 Main structure of self-coding network integrating noise 

prior and convolution sparse 

 

After the prior information of noise is extracted, it will be 

further integrated into the information of the noise picture 

itself, and then the sparse convolutional self-coding network is 

used to reduce noise. The main structure of the noise reduction 

network is shown in Figure 2. The network mainly consists of 

two parts: the noise prior estimation subnet and the noise 

reduction network. The input noise picture first passes through 

the noise prior subnet to obtain the noise prior feature map, 

and then it will be further fused with the noise image. Because 

the prior feature map does not fuse the images of each channel 

in the extraction process, the fusion between the prior feature 

map and the noise image still uses the fusion method for each 

channel. The fusion mode is that the prior feature image and 

the noise image are respectively spliced according to each 

channel and then spliced at the same place, and then the depth-

separable convolution layer [19] is used for fusion, and the 

fusion among channels is realized by setting the number of 

convolution groups equal to the number of channels. 

 

 
 

Figure 2. Main structure of noise reduction network 

 

The noise reduction network is based on convolutional 

sparse self-coding, and the algorithm in this paper uses four 

coding layers and four decoding layers. Residual connection is 

used between each coding layer and the corresponding 
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decoding layer to prevent gradient disappearance during 

training. The encoder includes a series of 3× 3 convolution 

layers and Relu layers for feature extraction, and a 1× 1 

convolution layer is connected with the residual to scale the 

features. The pooling layer uses a convolution layer with a step 

size of 2. The decoder first uses a deconvolution layer [20] 

with a step size of 2 to expand the image, and then uses a series 

of 1× 1 convolution layers and Relu layers to extract features 

and connect a 1× 1 convolution layer to output. In the network 

training process, the mean square error is used as the loss 

function of the noise reduction network, and the calculation 

method of the mean square error is shown in Eq. (4). 

 

𝐿(𝜃) =
1

𝐻 ×𝑊 × 𝐶
∑∑∑[𝛩(𝑥)𝑖𝑗𝑘 − 𝑦𝑖𝑗𝑘]

𝐶

𝑘=1

𝑊

𝑗=1

𝐻

𝑖=1

 (4) 

 

where, 𝑥 ∈ 𝑅𝐶×𝐻×𝑊  represents the noise image, 𝑦 ∈
𝑅𝐶×𝐻×𝑊 represents the real image and Θ(𝑥)  represents the 

output of the noise reduction network. 

 

3.2 Noise prior estimation subnet 

 

In order to effectively fuse the noise level and noise image 

information, this paper proposes a noise prior estimation sub-

network, which is the Prior Subnet module in Figure 2. The 

network structure is shown in Figure 3. 

 

 
 

Figure 3. Subnet structure of noise prior estimation 

 

The noise prior estimation subnet first calculates the noise 

variance of the noise image using the noise level estimation 

algorithm [18] to obtain the noise level represented by a single 

floating point number. Then the noise level is nonlinear 

transformed by a series of fully connected layers and Relu 

activation layers, and then output by Sigmoid function, which 

is mapped into four weight values. At the same time, the noise 

image is transformed by Haar wavelet to obtain four 

components of the image, and the weight values obtained by 

noise level are multiplied by these four components 

respectively, so as to realize the fusion of noise level and 

image. Finally, the fused image is transformed by Haar 

wavelet to obtain the noise prior feature map. The noise prior 

used in this paper is the noise level, and the noise level has 

been mapped by the fully connected network and changed into 

a prior weight. The product of this weight and wavelet 

components means that the prior information is integrated into 

wavelet components, and the inverse wavelet transform means 

that these wavelet components integrated with the prior 

information are converted into a prior feature map consistent 

with the size of the input image. 

For noisy pictures 𝑥 ∈ 𝑅𝐶×𝐻×𝑊, where c is the number of 

image channels, and h and w are the height and width of the 

image respectively, the calculation method of noise prior 

feature map is shown in Eq. (5). 

 

𝑦 = 𝜔−1(𝜓(𝜎) ⊙ 𝜔(𝑥)) (5) 

 

where, 𝜔(𝑥) ∈ 𝑅4×𝐶×
𝐻

2
×
𝑊

2  is the result of wavelet 

transformation of noise map, 𝜔−1  represents the inverse 

wavelet transformation, and 𝜓(𝜎) ∈ 𝑅4×1×1×1 is the result of 

nonlinear transformation of noise level σ , ⨀  represents the 

product of matrix element by element. Finally, the size of the 

noise prior feature map 𝑦 ∈ 𝑅𝐶×𝐻×𝑊  is consistent with the 

noise picture x. Haar wavelet transform can decompose the 

picture signal into sub-signals with different frequencies, and 

the sub-signals between different noisy pictures have certain 

differences. Aiming at the differences between sub-signals and 

noise levels, the goal of noise prior estimation network is to 

balance these differences by using weights. By performing a 

series of linear transformations on the noise level and mapping 

it into four different weights, the representation of different 

components of wavelet transform under different noise levels 

is controlled to balance. Because Haar wavelet transform itself 

is reversible, using inverse transform after weighting will get 

a feature map with the same size of the original picture, which 

can fuse the picture information and noise level information. 

 

 

4. EXPERIMENTAL ANALYSIS 

 

4.1 Experimental data set and evaluation index 

 

4.1.1 Experimental data set 

The experiment mainly includes two parts: training and 

testing of image denoising network. The training part includes 

waterloo exploration database [21] and SIDD-medium [22] 

data sets. The Waterloo Exploration Database data set contains 

4744 real pictures. In order to unify the training size, these 

4744 pictures are randomly cropped, that is, the fixed-size 

picture blocks are cut from any position in the original picture, 

the cropping size is set to 128×128, and the cropping number 

is 80000. Then Gaussian noise with noise level evenly 

distributed in [5,75] is added to these picture blocks to form a 

true and noisy picture pair. For the original picture 𝑥 ∈
𝑅3×𝐻×𝑊, where h and w are the height and width of the image. 

The noise picture synthesis mode can be expressed by Eq. (6). 

 

𝑦 = 𝑥 + 𝑛 (6) 

 

where, 𝑦 ∈ 𝑅3×𝐻×𝑊  is the image after adding noise, 𝑛 ∈
𝑅3×𝐻×𝑊 is Gaussian white noise, and its standard deviation is 

noise level. SIDD-medium data set contains 320 real noise and 

corresponding original picture pairs, from which 300 pictures 

will be randomly cropped to get 20,000 128×128 picture 

patchs. Gaussian noise image pairs and real noise image pairs 

are fused to obtain a training set, which contains 100,000 

image pairs in total. On the basis of Gaussian noise, real noise 

is further integrated for training to improve the robustness of 

the model to different types of noise. The data sets used in the 

test set of the experiment mainly include BSDS200 [23], 

Manga109 [24] and T91 [25]. Among them, BSD200 contains 
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200 pictures in JPG format, Manga109 contains 109 comic 

cover pictures in PNG format, and T91 contains 91 pictures in 

PNG format. The pictures in the above three data sets are all 

original real pictures. The test set data adds a certain level of 

Gaussian noise to these data sets. Experiments will verify the 

noise reduction effect of the algorithm when the noise level is 

25 and 50 respectively. In order to further verify the denoising 

effect of the algorithm proposed in this paper on real noise 

pictures, the remaining 20 real noise pictures in the SIDD-

medium data set and RNI15 data set [26] were selected as the 

data sets for testing real noise. Among them, RNI15 contains 

15 pictures with real noise. Because there is no corresponding 

original real picture, the experimental results will be presented 

with visual noise reduction effect. 

 

4.1.2 Implementation scheme 

The number of dense layer nodes from front to back in the 

noise prior feature extraction network is set to 10, 10 and 4 

respectively. The number of channels output by the four 

coding layers of the noise reduction network is set to 64, 128, 

256 and 512 respectively, in which the scaling ratio of the 

pooling layer is 1/2, and the number of channels output by the 

four decoding layers is set to 256, 128, 64 and 32 respectively, 

and the expansion ratio of the deconvolution layer is 2. The 

batch size of network training is set to 16, the number of 

iterations is set to 80000, and the initial learning rate is set to 

0.001. During the training process, the learning rate is updated 

to 0.0001 when the loss does not decrease any more, and 

ADAM algorithm [27] is used for optimization.  

 

4.1.3 Evaluation indicators 

In this paper, Peak Signal-to-Noise Ratio (PSNR) and 

Structural similarity (SSIM) are used as evaluation indexes of 

network noise reduction effect, and the calculation method of 

PSNR is shown in Eq. (7). 

 

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10(
𝑀𝐴𝑋𝑦

2

𝑀𝑆𝐸
) (7) 

 

where, 𝑀𝐴𝑋𝑦
2  represents the square of the maximum pixel 

value of the real image y, and MSE is the mean square error, 

and the calculation method is shown in Eq. (8). 

 

SSIM(𝑥, 𝑦) =
(2𝑢𝑥𝑢𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝑢𝑥
2 + 𝑢𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
 (8) 

 

where, 𝑢𝑥 and 𝑢𝑦 respectively represent the mean value of the 

sum of the compared images x and y, 𝜎𝑥 and 𝜎𝑦 represent the 

variances of x and y respectively, and 𝜎𝑥𝑦  represents the 

covariance between them. 

 

4.2 Analysis of experimental results 

 

4.2.1 Comparison of noise reduction effects of gaussian 

additive noise 

The PSNR and SSIM values of noise reduction effects of 

BSDS200, Manga109 and T91 are shown in Table 1, where σ 

represents noise level, Params represent the number of 

network parameters in millions, and Infer Time represents the 

inference time of the network for a single picture with a size 

320×320. Ours indicates that according to Table 1, CBM3D 

algorithm, as a model-based noise reduction algorithm, has a 

weak overall noise reduction effect. The other algorithms are 

the current mainstream noise reduction algorithms based on 

deep learning, and the overall noise reduction effect is 

relatively good. Among them, the algorithm proposed in this 

paper has achieved the best results in PSNR and SSIM indexes 

compared with many mainstream algorithms. The parameters 

of IRCNN, DnCNN, FFDNet and RIDNet are relatively few 

and the noise reduction takes relatively short time. DeamNet 

involves several sparse self-encoder iterations, while NBNet 

involves a large number of projection modules, with a 

relatively large number of parameters and a relatively long 

time-consuming noise reduction. FADNet, CBDNet and the 

algorithm proposed in this paper have relatively moderate 

parameters, and the noise reduction takes relatively short time. 

The noise reduction time of this algorithm is about 0.96s, in 

which the noise estimation time is about 0.71s and the network 

reasoning time is about 0.25s. 

 

Table 1. Noise reduction effects of various algorithms on BSDS200, Manga109 and T91 data sets 

 

Method 

𝛔 = 𝟐𝟓 𝛔 = 𝟓𝟎 Net 

Params 

(M) 

Time 

Cost 

(s) 
BSD200 Manga109 T91 BSD200 Manga109 T91 

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM 

CBM3D [5] 30.83/0.875 30.96/0.876 29.88/0.852 27.53/0.775 27.63/0.775 26.58/0.741 - 4.17 

IRCNN [7] 31.70/0.880 31.89/0.883 30.81/0.857 27.78/0.782 27.89/0.786 27.08/0.752 0.45 0.96 

DnCNN [8] 31.77/0.885 31.88/0.885 30.91/0.869 27.78/0.782 27.96/0.783 27.05/0.756 0.56 0.75 

FFDNet [10] 31.85/0.881 31.96/0.882 31.03/0.865 27.85/0.785 28.12/0.785 27.17/0.768 0.48 0.89 

CBDNet [11] 32.12/0.883 32.12/0.887 31.27/0.885 28.12/0.798 28.28/0.797 27.32/0.771 4.34 1.13 

RIDNet [12] 32.18/0.885 32.45/0.901 31.33/0.892 28.18/0.795 28.33/0.795 27.98/0.805 1.49 0.95 

DeamNet [15] 32.35/0.887 32.63/0.902 31.65/0.905 28.28/0.807 28.39/0.810 28.27/0.810 11.12 1.85 

NBNet [13] 32.43/0.892 32.54/0.901 31.62/0.902 28.28/0.812 28.38/0.808 28.24/0.805 13.3 1.75 

FADNet [17] 32.44/0.895 32.62/0.908 31.67/0.910 28.30/0.811 28.39/0.808 28.31/0.811 2.59 0.73 

Ours 32.51/0.901 32.71/0.917 31.70/0.912 28.33/0.815 28.43/0.812 28.35/0.828 6.87 0.96 

 

Figure 4 shows the visual effect of current mainstream 

denoising algorithms on image denoising in BSDS200, 

Manga109 and T91 data sets. Where Noisy stands for noise 

picture, and the noise levels is 25 and 50, respectively. GT 

stands for the original real picture. Ours represents the 

algorithm proposed in this paper. The values above all kinds 

of algorithms are PSNR values of noise and noise-reduced 

pictures and real pictures. 

According to Figure 4, there is obvious distortion in the 

noise reduction image of FFNDNet algorithm, and the effect 

of preserving the details of the image is slightly weak. The 

other algorithms can effectively remove noise while 

preserving the details of the picture. Compared with other 

algorithms, the algorithm proposed in this paper can better 

preserve the details of pictures. For example, in the 

comparison of Figure 4(a), the algorithm proposed in this 
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paper can better reflect the details of insect leg joints, and the 

PSNR values obtained by this algorithm are the highest. 

Because the training set used by the algorithm proposed in this 

paper takes the pictures in Waterloo Exploration Database and 

SIDD-medium data set as training labels, and Gaussian noise 

is added as input, the algorithm can achieve good results in 

noise reduction of additive Gaussian noise, and can also adapt 

to the noise reduction of real noise. However, for other noises, 

such as underwater channel multiplicative noise, salt and 

pepper noise and other noises which are quite different from 

Gaussian noise, the algorithm proposed in this paper may have 

certain limitations. Therefore, we will consider designing a 

noise reduction algorithm that can adapt to various types of 

noise in the future. It can effectively identify and achieve 

better noise reduction effect for different types of noise. 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 4. Visualization effect of mainstream denoising algorithm on image denoising in BSDS200, Manga109 and T91 data sets; 

(a) BSDS200 data set; (b) Manga109 data set; (c) T91 data set 

62



4.2.2 Comparison of noise reduction effects of real noise 

In the experiment, 20 pairs of real noise and original image 

were reserved for the SIDD-medium data set to verify the 

denoising effect of real noise. The PSNR and SSIM values of 

noise reduction effects of various mainstream algorithms on 

this test set are shown in Table 2. According to Table 2, 

compared with various mainstream algorithms, the algorithm 

proposed in this paper has achieved the best results for PSNR 

and SSIM in the comparison of real noise data sets. Compared 

with the suboptimal FADNet algorithm, the algorithm 

proposed in this paper has improved PSNR and SSIM by 

0.03dB and 0.005 respectively. 

 

Table 2. Noise reduction effects of various mainstream algorithms in SIDD data sets 

 

Method 
CBM3D 

[5] 

IRCNN 

[7] 

DnCNN 

[8] 

FFDNet 

[10] 

CBDNet 

[11] 

RIDNet 

[12] DeamNet 
NBNet 

[15] 

FADNet 

[17] Ours 

PSNR 31.65 38.58 38.56 38.61 38.78 38.71 39.85 39.82 39.96 39.99 

SSIM 0.875 0.902 0.901 0.902 0.905 0.905 0.912 0.908 0.915 0.920 

 

The visual comparison of noise reduction between SSID 

and RNI15 data sets is shown in Figure 5. According to Figure 

5(a), all kinds of algorithms can obviously improve the PSNR 

value in the aspect of noise reduction effect. Among them, the 

noise reduction result of FFDNet is too smooth and the noise 

reduction effect is relatively weak. Other algorithms can 

suppress noise on the basis of preserving the details of the 

picture, and the PSNR of this algorithm is relatively high. The 

noise reduction effects of various mainstream algorithms in 

RNI15 real noise data set are shown in Figure 5(b). RNI15 data 

set only has noise images, so it only gives a visual comparison 

of noise reduction. Among them, the noise reduction effect of 

FFDNet algorithm is slightly weak, and the other algorithms 

can restore the details of the picture well, among which the 

algorithm in this paper has the most delicate effect on the 

details of the feathers in the picture. 

 

 
(a) 

 

 
(b) 

 

Figure 5. Noise reduction effect of real noise data sets of various mainstream algorithms; (a) SSID data set; (b) RNI15 data set 

 

 
 

Figure 6. Haar wavelet transform results and weights of feature maps of each component of wavelet transform; (a) the original 

drawing; (b) wavelet transform feature map; (c) the weight of each feature map 
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4.3 Ablation analysis 

 

Figure 6 shows the results of Haar wavelet transform and 

the Weights of the image prior extraction network to the 

feature maps of each component of Haar wavelet transform 

under various Noise Levels, where the noise level in Figure 

6(c) represents the noise level between 5 and 75, and the 

weights represent the corresponding weights. According to 

Figure 6(c), the weights of each feature map of Haar wavelet 

transform are different to some extent. For component 1-1, 

which contains a lot of original image information, the weight 

value is relatively low and stable under different noise levels. 

For other components 1-2, 2-1 and 2-2 containing a lot of noise 

information, the weight value is relatively high and has an 

obvious growth trend with the increase of noise level. This 

shows that the noise prior estimation network proposed in this 

paper can properly distinguish noise information from real 

image information, and is sensitive to different noise levels. 

In order to further verify the influence of image noise prior 

on noise reduction effect, the experiment will compare the 

noise reduction effect of only using convolutional sparse self-

coding network (BaseLine) and noise reduction algorithm 

(Baseline_Pro) with noise prior, and the PSNR and SSIM 

values of Gaussian additive noise with noise levels of 25 and 

50 for BSDS200, Manga109 and T91 and SIDD real noise 

after noise reduction are shown in Table 3. 

According to Table 3, for Gaussian noise reduction, the 

noise reduction algorithm with noise prior can effectively 

improve the noise reduction effect on the basis of 

convolutional sparse self-coding, which shows that the feature 

map extracted by the noise prior network proposed in this 

paper can effectively fuse noise pictures and contribute to the 

improvement of noise reduction effect. At the same time, for 

real noise reduction, compared with convolutional sparse self-

coding noise reduction network, noise prior can also 

effectively improve the noise reduction effect. The visual 

results of noise reduction effects of BaseLine and BaseLine_Pr 

are shown in Figure 7. According to the PSNR value in Figure 

7, the noise reduction effect can be effectively improved after 

incorporating the prior characteristics of noise. 

 

Table 3. Noise reduction effects of Baseline and Baseline_Pr on BSDS200, Manga109, T91 and SIDD 

 

Method 
𝛔 = 𝟐𝟓 𝛔 = 𝟓𝟎 

SIDD 
BSD200 Manga109 T91 BSD200 Manga109 T91 

BaseLine 32.42/0.891 32.63/0.902 32.61/0.905 28.24/0.810 28.35/0.803 29.28/0.819 39.92/0.914 

BaseLine_Pr 32.51/0.901 32.71/0.917 31.70/0.912 28.33/0.815 28.43/0.812 28.35/0.828 39.99/0.920 

 

 
(a) 

 

 
(b) 

 

Figure 7. Comparison of noise reduction effects of BSDS200 

and SIDD real data sets with baseline and BaseLine_pr at 

noise level 50; (a) BSDS200 data set; (b) SIDD data set 

 

 

5. CONCLUSION 

 

In this paper, a noise reduction network based on noise prior 

is designed. The network can effectively integrate the 

estimated noise level into the noise reduction network, which 

improves the adaptability of the network to images with 

different noise levels. The effectiveness of the algorithm in 

this paper is verified by experiments. In the future, the real 

noise will be modeled and analyzed, trying to find a suitable 

prior representation of noise and design the corresponding 

noise reduction algorithm to further improve the noise 

reduction effect of real noise. 
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