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The diagnosis and treatment of epilepsy depend heavily on the identification of epileptic 

seizures from the sample of EEG signal. This paper mainly focuses on the identification of 

Epileptic seizure and classification of EEG signals based on the three important statistical 

features that prioritized the non-stationary characteristics of EEG signals i.e. complexity, 

energy fluctuation, and Autoregressive model to represent the distinctive seizure patterns. 

Three features of Sample Entropy (SE) which measure the complexity, one of Mean Teager 

Energy (MTE) which measures the transitory energy fluctuations related to seizure activity, 

and four of Autoregressive (AR) modeling techniques present a novel method for seizure 

identification. Based on linear correlations, the AR model is used to represent the distinctive 

seizure patterns. For the purpose of training the AR model, the signals were divided into 

pre-ictal (pre-seizure) and inter-ictal (non-seizure) segments. The MTE and SE feature 

samples of the EEG signals were calculated over sliding windows during the detection 

phase, and the AR model was utilized to forecast the following sample. This paper shows 

that the MTE, SE, and AR models together yielded promising seizure detection outcomes. 

This method outperformed existing approaches with excellent sensitivity and specificity in 

identifying seizure and non-seizure parts. The proposed method has the potential to be used 

for real-time seizure detection applications, facilitating prompt diagnosis and treatment for 

epileptic patients. 
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1. INTRODUCTION

Epilepsy is a prevalent neurological disorder affecting 

millions worldwide, characterized by recurrent, unpredictable 

seizures stemming from abnormal brain activity. A 

neurological condition called epilepsy is marked by frequent, 

spontaneous seizures brought on by atypical brain activity. 

This is a long-term, central nervous system disorder that can 

present in different ways and to different degrees. Sudden, 

excessive electrical discharges in the brain's neurons create 

seizures in epilepsy, which momentarily impair normal brain 

function. From minor, transient alterations in awareness or 

feeling to severe convulsions and loss of consciousness, these 

disruptions can result in a wide spectrum of symptoms. In 

order to better understand the complex mechanisms behind 

epileptic seizures, this research will examine the intricacies of 

neuronal hyperexcitability, abnormal synchronisation, and the 

interaction between hereditary and environmental factors that 

influence seizure start and propagation. For the management 

and treatment of epilepsy, early epileptic episode recognition 

is essential. To create effective seizure detection models, a 

number of various ML techniques have recently been applied. 

This introduction focuses on the use of MTE(1) [1], SE(3) [2], 

and AR(4) [3] model features in combination with a number 

of well-known classification algorithms, including the LGBM, 

Decision Tree, Gradient Boost, K-Nearest Neighbours (KNN), 

Random Forest, Logistic Regression, and XGBoost (XGB) 

classifiers. MTE, a component that analyses signal energy 

variations, provides insight into the peculiar energy EEG 

patterns associated with seizures. The detection of seizure 

activity is aided by higher entropy levels, which sample signal 

complexity and irregularity. The AR model [3] describes the 

temporal correlations and patterns in EEG signals related to 

seizures. Machine learning systems can accurately 

discriminate between seizure and non-seizure states by 

combining these traits. Some of the most widely used 

algorithms for classification: (1) LGBM: The gradient-

boosting framework LightGBM is renowned for its 

outstanding accuracy and efficiency. To improve predictive 

performance, it constructs a group of decision trees with 

improved gradient boosting technique. (2) Decision Tree: A 

well-liked classifier, decision trees divide data according to 

feature thresholds. Decision trees can successfully identify 

seizures by learning from the available characteristics and 

building a model that resembles a tree. (3) Gradient Boost: 

Gradient boosting is an ensemble method that combines the 
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decision trees and other weak learners to produce a powerful 

prediction model. It enhances the performance of decision 

trees as a whole, addressing the flaws of individual decision 

trees. (4) K-Nearest Neighbours (KNN) classifies data points 

according to how close they are to nearby points. KNN can 

determine seizure patterns based on their resemblance to 

recognised seizure instances by computing the distances 

between data points in the feature space. (5) Random Forest: 

Using many decision trees to build predictions, Random Forest 

is an ensemble learning technique. By combining the findings 

of different trees, it reduces overfitting and offers reliable 

classification. (6) Logistic Regression: The connection 

between characteristics and the binary outcome (seizure or no 

seizure) is modelled using logistic regression. It calculates the 

probability of being in each class and labels each one 

according to a selected threshold. (7) XGBoost (XGB) is an 

optimised gradient boosting system that makes use of parallel 

processing and tree pruning methods. By supporting weak 

models, it produces quick and precise predictions. These 

algorithms can be taught to accurately categorise incoming 

EEG signals by using labelled data during training, where the 

features derived from EEG signals during seizure and non-

seizure periods are used as input. These algorithms provide a 

comprehensive approach to epileptic seizure identification, 

permitting early intervention and better patient care. They 

combine MTE, SE, and AR model features for classifications. 

It is important to note that the properties of the dataset, the 

necessary computations, and the desired performance all 

influence the choice of an algorithm. Researchers and medical 

professionals should evaluate and compare the effectiveness 

of several algorithms to choose the best strategy for their 

particular application. The two main research objectives of this 

paper are: (1) Development of a model based on the extraction 

of features from MTE, SE, and AR. (2) EEG signal 

classification and epileptic seizure detection. This EEG 

database was obtained by Andrzejak et al. [4] and is publicly 

accessible through the University of Bonn. It consists of the 

five datasets A, B, C, D, and E. There are 4097 samples total 

across each of the 100 single-channel EEG segments in each 

dataset, each lasting 23.6 seconds. Section I describes the 

introduction of the proposed method and dataset description 

and preprocessing. Section II is related to the work on the 

detection of Epileptic Seizures using various classification 

techniques. Section III consists of the proposed work based on 

the extraction of MTE(1), SE(3), and AR(4) features. Sections 

IV and V are based on comparative analysis and results, 

respectively. 

 

1.1 Dataset description and preprocessing 

 

The datasets consist of five sets (denoted as A-E) provided 

by University of Bonn, each containing 100 single-channel 

EEG segments of 23.6 seconds. The details of each set are as 

follows: 

Set A (marked as O): EEG segments recorded from five 

healthy volunteers with eyes open. 

Set B (marked as Z): EEG segments recorded from the 

same healthy volunteers with eyes closed. 

Set C (marked as N): EEG segments recorded from 

seizure-free intervals in the hippocampal formation of 

patients. 

Set D (marked as F): EEG segments recorded during 

seizure-free intervals from the epileptogenic zone. 

Set E (marked as S): EEG segments recorded during 

seizure activity from the epileptogenic zone. 

Preprocessing the EEG datasets required two steps. A band-

pass filtering (0.5-50Hz) was first used to get rid of high-

frequency noise and low-frequency drifts. After that, 

automated methods were employed to eliminate artefacts such 

as muscular contractions and eye blinks. 

 

 

2. RELATED WORK 

 

Related research work on epileptic seizure detection using 

SE, MTE, and AR model based statistical features broadly 

depends on decomposition and pattern recognition of 

abnormal EEG signal. A wavelet-based feature extraction 

techniques in conjunction with expert models for the 

classification of EEG signals, including the detection of 

epileptic seizures, was examined by Subasi [5] work which 

underlined the importance of feature selection and 

classification strategies for effectively detecting seizures from 

the sample of EEG signal. The Teager energy operator and 

empirical mode decomposition (EMD) were studied by 

Kaleem et al. [6] as seizure detection approaches to increase 

the precision and effectiveness of seizure diagnosis in EEG 

data. A sparse representation-based automatic identification 

method for epileptic seizures from sample EEG signals was 

presented in a publication by Sheykhivand et al. [7]. The work 

extracted discriminative features using sparse coding 

techniques and an AR model, achieving excellent seizure 

detection accuracy. Determining the epileptogenic zones is a 

crucial and significant step in treating patients with 

pharmacoresistant focal epilepsy, according to Sriraam and 

Raghu [8]. EEG testing is a crucial part of the routine 

diagnostic procedure for assessing patients with epilepsy. This 

study looks at the use of numerous characteristics feature 

produced from different channels of EEG signal to distinguish 

between focal and non-focal epileptic seizures that were 

obtained from patients with pharmacoresistant focal epilepsy 

in the Barcelona database. An article by Subasi and Gursoy [9] 

explored the application of PCA, ICA, LDA and SVM for 

EEG signal classification, including the identification of 

epileptic seizures. This study highlighted the value of feature 

extraction and classification methods for raising seizure 

detection performance. Adeli et al. [10] discusses the wavelet 

decomposition of the EEG data. Transient qualities are finely 

localised within a time- and frequency-context. It is 

demonstrated that this mathematical microscope's capacity to 

examine many neural rhythm scales makes it a valuable 

resource for researching minuscule oscillations in brain 

signals. The research conducted by Cao et al. [11] suggests the 

use of KPCA, PCA and ICA. The original inputs are linearly 

transformed into new, uncorrelated features by PCA. A 

nonlinear PCA called KPCA was constructed using the kernel 

technique. The original inputs are linearly transformed into 

features in ICA that are statistically different from each other. 

Yentes et al. [12] evaluated the repeatability or predictability 

of a time series data by using mathematical methodologies 

such as SE (SampEn) and approximate entropy (ApEn). In the 

case of tiny data sets, SampEn appears to be more reliable. 

SampEn shown less susceptibility to changes in the length of 

the data and less trouble preserving relative consistency. The 

Molina-Picó et al. [13] research attempts to provide a better 

understanding of ApEn and SampEn performance in light of 

biological signal analysis and the impact of spikes on 

Abnormal EEG pattern and detection. Song et al. [14] 
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suggested detection of epileptic seizures using sample 

entropy-extreme learning machine framework. This approach 

accomplishes both a high detection accuracy and a quick 

computation time. In order to discriminate between interictal 

and ictal EEG data, the study by Yuan et al. [15] estimated the 

Hurst exponent, Approximate Entropy, and scaling exponent 

nonlinear EEG measures to analyze this work. The Hurst 

exponent, Approximate Entropy and scaling exponent 

obtained with DFA can be used to extract the nonlinear and 

non-stationary characteristics of EEG time series data. 

Diambra et al. [16] identify epileptic seizure activity using the 

approximate entropy (ApEn) technique. ApEn, a freshly 

created statistical number, is used to measure complexity and 

regularity in time series data. These related works provide 

valuable insights into the application of MTE, SE, and AR 

model features for epileptic seizure identification. Related 

research demonstrates the efficacy of these features in 

accurately identifying seizure events and distinguishing them 

from normal brain activity, thereby contributing to the 

development of reliable seizure detection systems that 

introduces a novel combination of SE, MTE, and AR models 

for seizure detection for their unique contributions to 

analyzing EEG signals and their complementary strengths in 

capturing different aspects of seizure activity. 

 

 

3. PROPOSED WORK 

 

The proposed work is divided into three subsections, as 

Figure 1 illustrates. (i) Energy, randomness, and pattern 

recognition are employed to recover features; (ii) significant 

features are chosen; and (iii) features are used to identify 

epileptic episodes. The extracted features are classified into 

general categories such as MTE, SE, and AR models, The 

Block diagram of the proposed work includes: 

EEG Samples Block: EEG Samples are extracted from 500 

EEG signals, i.e., Z, O, N, F, S. 

Extraction Block: Extraction of EEG features related to 

Energy, randomness, and pattern recognition includes: MTE, 

SE, and AR models. 

Classification Block: Classification Block to identify 

epileptic episodes from EEG samples based on the 

characteristics of extracted features. 

 

 
 

Figure 1. Proposed work 

 

3.1 Feature extraction and selection 

 

In this section, MTE, SE, and AR models are used to extract 

features from EEG signals. AR models examine temporal 

dependencies, SE quantifies signal complexity, and MTE 

records abrupt changes in signal energy. This step is required 

to describe various elements of EEG dynamics connected to 

seizure activity. After that PCA for feature selection is used to 

minimize dimensionality and preserve the most informative 

features. Furthermore, cross-validation and statistical analysis 

aid in determining the most discriminative characteristics 

needed to create a seizure detection model. 

 

3.2 MTE 

 

A feature for signal analysis is the MTE, a measure of signal 

energy that catches sudden shifts. The following mathematical 

formula can be used to get the MTE of a signal ×1(n) at time 

index n: 

 

MTE=(1/N)× ∑ (𝑥1(𝑛)2 − 𝑥1(𝑛 − 1) × 1(𝑛 + 1))𝑁−1
𝑛=1  (1) 

 

N represents the length of the signal ×1(n). A single value 

was calculated for each channel from a total of 100 channels. 

The higher value of MTE represents Epileptic Seizure. 

3.3 SE 

 

The conditional likelihood that two sequences that are 

similar at point 'm' will stay similar at point 'N' is represented 

by the negative logarithm SampEn(m,r,N), where self-matches 

are not included in the probability measure. 

 

SampEn(m,r,N)=-ln(
𝑩𝒎 (𝒓)

𝑨𝒎 (𝒓)
) (2) 

 

N denotes data point in a time series EEG data as 

x1(n)=x1(1), x1(2), x1(3)...x1(N), and Bm(r) reflects the 

likelihood that two sequences will match for m+1 points, 

whereas Am(r) represents the likelihood that two sequences 

will match for m points. Take the m vector defined as: 

 

xm1(i)=[x1(i).x1(i+1)………x1(i+m-1)], for 1≤i≤N-

m+1 
(3) 

 

Beginning with the ith sample, these vectors reflect m 

subsequent ×1 values. Three variables affect SE: (1) the pattern 

length parameter (m); (2) the threshold parameter (r); and (3) 

the number of sampling points (N; N=500). 

Steps for the calculation of SE 

In the proposed work the value of SE is determined in the 

81



 

following steps as shown in Figure 2: 

(1) Taking the number of sampling points (N=500). 

(2) Initialize the value of m from 6 to 7 and i from 1 to N-

m+1. 

(3) Calculate Conditional Probability Bm (r) and Am (r) for 

m=7 and m=6 respectively according to the value of threshold 

parameter(r). 

(4) Calculate SE [2] as: 
 

SampEn(6,r,500)=-ln(
𝐵𝑚 (𝑟)

𝐴𝑚 (𝑟)
) (4) 

 
 

Figure 2. Steps for calculation of SE 

 

3.4 AR model 

 

The procedure for estimating the AR parameters of a set of 

N data points using Burg's technique is as follows: 

(1) Initialize: 

a. Select a desirable value for the AR model's p order. 

b. To hold the AR parameters, a, make an array of length 

p+1. 

(2) Calculate the autocorrelation coefficients: 

a. Determine the data sequence's autocorrelation 

coefficients, or r, for lags 0 to p. 

b. The variance of the data sequence is the sole component 

of the autocorrelation coefficient at lag 0. 

(3) Initialize the forward and backward prediction 

errors: 

a. Make two arrays, E and A, each of length p+1, to hold the 

forward and backward prediction errors, respectively. 

b. Assign the values E(0) and A(0) to r(0). 

(4) Iterate using Burg's algorithm: 

a. For m=1 to p, in order: Utilizing the following equation, 

determine the reflection coefficient, k(m) as Eq. (5): 

 

k(m)=(r(m)-∑ (𝐚(𝐢) × 𝐫(𝐦 − 𝐢)))/𝐄(𝐦 − 𝟏)𝒎−𝟏
𝒊=𝟏  (5) 

 

b. Using the reflection coefficient, update the AR 

parameters as (6): 

 

a(m)=k(m)–∑ (𝐚(𝐢) ∗ 𝐤(𝐦 − 𝐢))𝒎−𝟏
𝒊=𝟏  (6) 

 

c. The forward and backward prediction errors should be 

updated as Eq. (7) and Eq. (8): 

 

E(m)=E(m-1)*(1-𝒌(𝒎)𝟐) (7) 

 

A(m)=A(m-1)*(1-𝒌(𝒎)𝟐) (8) 

 

d. The estimated coefficients of the AR model are 

represented by the resulting AR parameters, a(1), a(2), ... , and 

a(p). 

The AR parameters and prediction errors are updated 

together with the reflection coefficients iteratively by Burg's 

algorithm until convergence or the desired degree of accuracy 

is reached. Depending on the specific application or 

implementation, the initiation and convergence criteria may 

change. 

Table 1 lists a total of eight features. For seizure detection, 

MTE, SE (SE1, SE2, and SE3), and the AR model (AR1, AR2, 

AR3, and AR4) are utilized as inputs for the classifiers NB, 

DT, RF, Extra Tree, KNN, Logistic Regression, Ada-Boost, 

Gradient-Boost, XGB, and LGBM. According to the 

performance criteria presented in Table 2, significant features 

might be chosen. As seen in Figure 3, it is depicted as a 

heatmap. Table 3 lists the amount of EEG sample properties 

and some of its fundamental characteristics. 

 

Table 1. Number of features 

 
S.No. Name of Feature No of Features 

1 Mean Teager Energy 1 

2 SE 3 

3 Autoregressive Model 4 

 

Table 2. Important features 

 
S.No. Feature Name (%) Utilization 

1 MTE 0.9147 

2 SE2 0.0456 

3 SE3 0.0396 

4 AR1 0 

5 AR2 0 

6 AR3 0 

7 AR4 0 

8 SE1 0 

 

 
 

Figure 3. Number of parameters
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Table 3. Features and its basic characteristics 

 

Index Mean Teager Energy AR1 AR2 AR3 AR4 SE1 SE2 SE3 

Count 300 300 300 300 300 300 300 300 

Mean 9619.20682 -1.66554 0.662442 0.242011 -0.19696 0.008337 0.006019 0.628485 

Std 23828.39951 0.263071 0.524442 0.362158 0.121779 0.011406 0.009697 0.337591 

Min 23.3432 -2.745 -0.0661 -1.6042 -0.4052 0 0 0.0745 

25% 164.138975 -1.76258 0.3574 0.227075 -0.26778 0.001075 0.0004 0.371675 

50% 446.54235 -1.64855 0.55225 0.33905 -0.22545 0.0046 0.002632 0.55635 

75% 4648.275 -1.51453 0.787025 0.435825 -0.16628 0.011425 0.0081 0.8478 

Max 171190 -1.1169 2.9568 0.6032 0.3713 0.1034 0.096 2.704 

 

 

4. PERFORMANCE ANALYSIS 

 

Accuracy, Precision, and F1 score are the performance 

parameters that assess the suitability of the prediction model. 

 

4.1 Accuracy, precision, and F1 score of the model 

 

It specifies, out of a possible four classes, which particular 

MRI image is correct. It measures how true values compare to 

total values. 

 

Accuracy =
TrN + TrP

(TrN + TrP + FaN + FaP)
 (6) 

 

Precision=
TrP

(TrP+FaP)
 (7) 

  

Recall=
TrP

(TrP+FaN)
 (8) 

 

F1=
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
 (9) 

 

where, TrP stands for "True Positive," TrN for "True 

Negative," FaP for "False Positive," and FaN for "False 

Negative." 

 

4.2 Performance parameter using another classifier 

 

Performance parameters using Extra Trees, KNN, Logistic 

Regression, AdaBoost, GradientBoost, XGB, LGBM, NB, RF, 

and DT classifiers are shown in Table 4 and Figure 4. 

 

4.3 Comparison in terms of sensitivity, specificity, and 

accuracy with other existing state-of-art methods 

 

Detailed comparative analysis with other state-of –art-

methods shown in Table 5 in terms of performance metrics 

sensitivity, specificity, and accuracy. 

Table 4. Performance parameters using various classifiers 

 

S.No. Type of Classifier Accuracy (%) Precision F1 Score 

1 Naive Bayes [17] 96.66 1 0.97 

2 Decision Tree [18] 99.8 1 1 

3 Random Forest [19] 98.57 1 1 

4 Extra Trees [20] 82.22 0.86 0.81 

5 KNN [21] 86.66 0.88 0.86 

6 Logistic Regression [22] 93.33 0.88 0.86 

7 AdaBoost [23] 95.55 0.96 0.96 

8 GradientBoost [24] 98.09 0.96 0.96 

9 XGB [25] 99.9 1 1 

10 LGBM [26] 98.88 0.99 0.99 

 

 
 

Figure 4. Accuracy, precision and F1 score for various types of classifiers 
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Table 5. Comparison in terms of sensitivity, specificity, and 

accuracy with other existing state-of-art methods 

 

Method 
Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Proposed 

(SE+MTE+AR) 
92.5 93 92.8 

Discrete Wavelet 

Transform (DWT) 
89.1 88.5 88.8 

Support Vector 

Machine (SVM) 
87.3 86.7 87 

Artificial Neural 

Networks (ANN) 
90.4 89.9 90.1 

Long Short-Term 

Memory (LSTM) 
91 90.2 90.6 

 

 

5. CONCLUSION 

 

The main goal of this work is to identify epileptic seizures 

by means of basic indicators like SE, MTE, and 

Autoregressive models. These are the statistical traits that are 

predicated on quick and simple categorization. The precise 

identification and classification of EEG signals is 

accomplished via a total of 8 characteristics, including 1 MTE, 

3 S.E., and 4 AR, combined with 10 distinct classifiers. The 

accuracy, sensitivity, and F1 score performance model clearly 

show a good outcome when using an effective classifier such 

as XGB (99.9%). This study primarily focuses on three types 

of EEG data, but with the help of these features, it can be 

expanded upon and its classification accuracy enhanced in the 

future. ANN classifiers can reduce detection and classification 

computation times. 
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