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Lung cancer remains a significant health challenge globally. Early detection of lung cancer 

is a critical task. Recent advancements in deep learning (DL) have demonstrated its potential 

in medical imaging for effective lung cancer detection. However, interpreting CT images 

can be challenging due to the variability in appearance. These challenges underscore the 

need for advanced image-processing techniques that can assist clinicians in accurately 

identifying and characterizing lung lesions. This study proposes a novel methodology for 

lung cancer detection in computed tomography (CT) images using the Bilateral U-Net. The 

Bilateral U-Net model integrates both encoding and decoding processes and incorporates a 

Bilateral Attention Module (BAM) along with a Graph Attention Module (GAM). These 

advanced architectural components are designed to improve the accuracy and effectiveness 

of feature extraction in lung cancer detection. Additionally, a Lemur Optimization (LO) 

algorithm is used for robust feature selection. The study further uses a Lemur Optimization-

based Adaboost-Backpropagation Neural Network (LO-ABNN) to achieve optimal 

classification performance. The proposed model was evaluated in the publicly available 

LUNA16 dataset. The experimental results show that the Bilateral U-Net model 

significantly outperforms conventional methodologies in terms of accuracy and efficiency 

in lung cancer detection. The integration of BAM and GAM in the architecture improves the 

model’s ability to capture complex and relevant features. 
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1. INTRODUCTION

Day by day, Lung cancer emerges as a significant global 

health concern in the world and also it represents a substantial 

burden on individual’s life and healthcare systems [1]. Based 

on up-to-date statistics, it is one of the leading causes of 

cancer-related deaths in the universe. Recognizing the 

symptoms early and identifying the lung cancer is crucial for 

timely diagnosis and treatment that significantly impacts 

patient outcomes. 

Lung cancer is classified as non-small cell lung cancer 

(NSCLC) and small cell lung cancer (SCLC). Also, the 

NSCLC includes subtypes namely adenocarcinoma, squamous 

cell carcinoma and large cell carcinoma. These differences are 

based on the specific type of lung cells in which the cancer 

originated and their microscopic appearance [2, 3]. On the 

other hand, cancers are categorized as either benign or 

malignant by their behavior. Benign types are non-cancerous 

and usually grow slowly and do not spread. In contrast, 

malignant types grow aggressively and affect surrounding 

tissues. In medical imaging, computed tomography (CT) plays 

an essential role in evaluating lung cancer [4-6]. The imaging 

techniques are aided in extracting relevant data from a given 

image to diagnose and prognosis the cancer. 

However, DL-based CT imaging is significant for an 

effective early prediction analysis of lung cancer effectively. 

It also distinguished the benign and malignant variants in lung 

cancer clearly and guided appropriate clinical management. A 

few popular DL models particularly neural networks have 

demonstrated remarkable capabilities in identifying patterns 

and abnormalities within medical images such as 

Convolutional Neural Networks (CNNs), ResNet, U-Net and 

so on [7-9]. 

Existing approaches for lung cancer detection and 

classification still face several challenges. One major 

limitation is the inability of many current models to effectively 

distinguish between benign and malignant tumors with high 

accuracy and in early stages. Additionally, most traditional 

methods are time-consuming and require extensive manual 

interpretation which leads to delays in diagnosis and treatment. 

Many current models for lung cancer detection struggle to 

effectively distinguish between benign and malignant tumors 

at early stages with high accuracy. Existing approaches require 

manual interpretation and are time-consuming. It leads to 

delays in diagnosis and treatment. Additionally, traditional 

models lack robust feature extraction methods to handle the 

complexity and variability in lung cancer appearances on CT 

images. 

The primary objective of this study is to develop and assess 

a robust pipeline for lung cancer detection that integrates 
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advanced imaging and classification techniques to enhance 

clinical diagnostic accuracy. The specific aims are: 

1) Enhance Lung Cancer Segmentation: To refine lung 

cancer segmentation by using the Bilateral U-Net 

model, which incorporates Bilateral Attention 

Mechanisms (BAM) and Global Attention 

Mechanisms (GAM). This approach seeks to improve 

the precision of identifying and delineating cancerous 

regions in CT images. 

2) Optimize Classification Performance: To achieve 

superior classification outcomes by integrating 

Lemur Optimization with Adaboost-

Backpropagation Neural Network methods. This 

combination aims to optimize the detection of 

cancerous lesions and improve early diagnostic 

capabilities. 

Ultimately, this study aims to advance early lung cancer 

detection, which could lead to better patient outcomes through 

more accurate and reliable diagnostic processes. 

 

 

2. RELATED WORKS 

 

Liu et al. [10] developed a DL radiomics model to detect 

Programmed Death-Ligand 1 (PD-L1) in CT images. The 

proposed model integrates the deep-learning signature (DLS) 

attained from a CNN and clinicopathological factors. Lee et al. 

[11] presented lung cancer detection using morphological and 

histopathological features of CT images. 

Thanoon et al. [12] explored DL-based lung cancer 

classification and segmentation. The investigation discussed 

current DL models that have significant potential for accurate 

and actual CT lung cancer screening and diagnosis. Lanjewar 

et al. [13] developed the DenseNet201 model for recognizing 

lung cancer. It is used for Feature extraction and selection with 

different classifiers. 

Varchagall et al. [14] discussed 3D ResNet-based lung 

tumours in CT scans which achieved limited success opacity. 

Rajasekar et al. [15] presented six distinct DL models such as 

CNN, Optimized CNN, VGG-16, VGG-19, Inception V3 and 

Resnet-50 for lung cancer prediction. Jin et al. [16] explored a 

biopsy model based on homeodomain-only protein homeobox 

(HOPX) with CT images. This model aids in predicting the 

expression status and forecasting the probability of lung 

cancer presence. Wahab Sait [17] proposed an autoencoder 

and MobileNet V3-based DL models for cancer identification. 

Nam et al. [18] proposed a preoperative CT-based DL model 

for Lung Adenocarcinoma detection. This model focused on 

multivariable regression analyses that added a semantic CT 

feature for histopathologic associations. Shafi et al. [19] 

explored a support vector machine (SVM) to recognize lung 

cancer using CT images. It identified physical and 

pathological changes in soft tissues that provided a diagnostic 

tool for characteristics between patients with lung cancer and 

control focuses. 

Hou et al. [20] implemented an Asymmetric Convolutional 

Neural Network (ACNN) to predict the survival rate of 

NSCLS patients using CT images. Chen et al. [21] investigated 

a CNN for lung cancer prediction using CT images. This CNN 

series was conducted to enhance the predictive survival model. 

The performance of CNN is evaluated and the result with a 

greater accuracy result and forecast survival curves analysis. 

Jaderberg et al. [22] proposed a U-Net model based on Spatial 

Transformer Networks (STN) for the accurate segmentation of 

medical images. Hong et al. [23] present a weakly supervised 

unmixing network, called WU-Net for medical image 

segmentation. It extracts more discriminate features to 

improve the classification accuracy. Zhou et al. [24] developed 

a modified U-Net, called U-Net++. It consists of multiple 

dense layers in skip connections to extract features deeply. 

Likewise, Siddique et al. [25] analyzes the performance of 

different U-Net models for medical image processing. Siciarz 

and McCurdy [26] integrates the Inception-ResNet-v2 model 

with U-Net for cancer cell segmentation in CT images. 

Siddiqui et al. [27] implemented Gabor filters with an 

enhanced Deep Belief Network for a lung cancer classification. 

Pankaj et al [28] developed an SVM model to identify Lung 

cancer. This method is trained and recognized the lung cancer 

measurement in CT images. 

 

 

3. MATERIALS AND METHODS 

 

The LUNA16 dataset is used in this work and comprises 

CT-scanned images in DICOM format (https://luna16.grand-

challenge.org/). Derived from the publicly accessible 

LIDC/IDRI database, this dataset excludes images with a slice 

thickness exceeding 2.5mm. It encompasses an 888-patient 

sample, where CT images have a resolution of 512×512×Z (Z 

ranging from 100 to 400 for each). Skilled radiologists 

meticulously annotated nodules and non-nodules. A nodule is 

considered a reference standard if at least 3 out of the 4 

radiologists identified it as such, with a recorded size greater 

than 3mm. Each nodule's location in the lung is labelled to 

distinguish its cancerous nature, and the size of each nodule, 

with a total of 1186 annotations, is documented. The entire 

data set is divided into training and test sets with a 3:1 ratio. 

In this preprocessing, the images are resized to a uniform 

resolution of 512×512 pixels. Additionally, the dataset is 

divided into 10 subsets for 10-fold cross-validation. Figure 1 

shows the proposed segmentation model of Bilateral U-Net is 

characterized by encoding and decoding. The encoding uses a 

basic residual block that comprises two repeated convolutional 

layers with identical padding. The batch normalization (BN) 

and ReLU nonlinear layers are processed for each 

convolutional layer. A down-sampling is used as a 2×2 max-

pooling operation in every basic residual block, with repetition 

of the feature channels at every step with 32 channels. Also, 

the Bilateral U-Net is integrated with two main modules 

namely Bilateral Attention Module (BAM) and Graph 

Attention Module (GAM) respectively. The BAM module 

integrates both the Channel Attention Layer and Positioning 

Attention Layer to capture global information that is used to 

serve as a key component in the encoder. 

The GAM is situated at the bottom to review global data and 

generate the encoder output. Consistently, an up-sampling is 

executed in the decoding to reestablish the spatial size of the 

segmented output. The feature channels are processed by 

every up-sampling which involves 2×2 transposed 

convolutions. In the decoding process, features from an 

encoder are transferred using skip to the decoder after passing 

through the BAM. Here the residual blocks have two 

convolutional layers, BN and ReLU activation for feature 

extraction. That is benefitted from a reduction of training 

parameters and actual long-range residual connections for an 

enhanced training model. Furthermore, short skip connections 

adopt a residual structure to enhance network optimization, 

expedite model convergence and elevate accuracy by 
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increasing the depth of the model. The balanced combination 

of long and short connections enables feature extraction at 

different levels to improve expressive capability while 

concurrently complementing high-level semantic data and 

refined segmentation frameworks at lower levels. 

3.1 BAM 

 

The BAM is a significant module in the Bilateral U-Net 

which integrates both Positioning Attention and Channel 

Attention modules as shown in Figure 2. 

 

 
 

Figure 1. Proposed Bilateral U-Net 

 

 
(a) Position attention modules 

 
(b) Channel attention module 

 

Figure 2. BAM architecture 
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3.2 Position attention module 

 

This Module enabled the encoding of a broader range of 

relative data into local features to ensure a more robust 

representation. To combine a spatial framework, the local 

feature A∈ℝC×H×W is fed into convolution layers to generate 

feature maps B and C, where B, C∈ℝC×H×W and redesigned to 

ℝC×N where N indicates the total pixels (N=H×W). 

Subsequently, transpose of C and B performed a matrix 

multiplication that is followed by the SoftMax layer to 

evaluate spatial attention S∈ℝN×N. 

Therefore, the process, the influence of the i-th position on 

the j-th position is measured by 𝑆𝑗𝑖 , reflecting the impact of 

feature representations' similarity between the two positions is 

expressed in Eq. (1): 

 

𝑆𝑗𝑖 =
exp(𝐵𝑖 . 𝐶𝑗)

∑ exp(𝐵𝑖 . 𝐶𝑗)
𝑁
𝑖=1

 (1) 

 

A similarity based on a higher degree enhances the 

correlation among these positions. At the same time, the local 

feature A is processed through a convolution layer are used to 

generate another feature map D∈ℝC×H×W. The ℝC×N is followed 

by a matrix multiplication among D and the previously 

transposed evaluated spatial attention map S and reshaped to 

ℝC×H×W. At last, this result is scaled by a parameter α and 

experiences an element-wise summation with the original 

features A that yields a final output E∈ℝC×H×W. 

 

𝐸𝑗 =∝∑(𝑆𝑗𝑖𝐷𝑖) + 𝐴𝑗

𝑁

𝑖=1

 (2) 

 

where, α is set as 0 for gradual learning to allocate growing 

weight and E denotes a computed feature at every position. As 

training progresses, α increases to give more weight to the 

attention-adjusted features. This process aggregates contextual 

information across all spatial positions and provides a global 

view of the feature map. 

 

3.3 Channel attention module 

 

Each channel in the feature map is considered to represent 

a different class or semantic feature. The channel attention 

module focuses on these inter-channel relationships to refine 

the feature representation. Consider X∈ℝC×C of channel map is 

evaluated from a feature A∈ℝC×H×W. The matrix multiplication 

is performed among A and transposes A to provide features A 

to R C×N. Finally, a SoftMax layer is used to evaluate a feature 

X∈ℝC×C. Thus, the attention map X is influenced by i-th and j-

th channels given in Eq. (3): 

 

𝑋𝑖𝑗 =
exp(𝐴𝑗 . 𝐴𝑖)

∑ exp(𝐴𝑖 . 𝐴𝑗)
𝐶
𝑖=1

 (3) 

 

From the above Equation, the feature is reshaped as ℝC×H×W 

and it is scaled by a parameter β and provided a result of 

feature E∈ℝC×H×W given in the below Eq. (4): 

 

𝐸𝑗 = 𝛽∑(𝑥𝑖𝑗𝐴𝑖) + 𝐴𝑗

𝐶

𝑖=1

 (4) 

 

Based on Eq. (4), the long series semantic improves the 

feature discriminability to enhance the performance. 

It's worth noting that, in the channel relationships using 

global pooling or encoding layers, the convolution layers are 

refrained from implanting features in it. This decision allows 

for the preservation of relationships between different channel 

maps. By leveraging spatial data at all positions efficiently 

model channel correlations. 

 

3.4 Graph attention module (GAM) 

 

The GAM module is integrated into the proposed Bilateral 

U-Net to effectively use global structural details across a stack 

of medical images. It is transcending the utilization of non-

local detail data within individual images. The vertices in the 

graph are derived a down sampling features by applying a fully 

convolutional layer. The for each vertex si are collectively 

regulated as considered Vertex (V) with character expressions 

(Si) i.e., V={s1, s2, ..., sN} with vi∈ℝQ , where Q indicates the 

character expression dimension, N denotes slices quantity in 

the stack respectively. 

The enhancement and diversification involve projecting the 

features into a higher-dimensional space which facilitates 

better differentiation and learning of the structural details 

across the image stack. To enhance and diversify, vi∈ℝQ with 

a new dimensionality Q, a linear deformation W∈ℝQ×Q is 

applied to vi and its neighboring vertices vj. The attention 

coefficients (eij) measured the features vertex j to i by using 

the attention coefficient (α) with the function of 𝑊𝑠𝑖  and 𝑊𝑠𝑗 . 

𝑊𝑠𝑖  represents the linear transformation matrix applied to the 

feature vector of the i-th vertex in the graph. It maps the 

original feature space of vertex iii into a higher-dimensional 

space Q. Similarly, 𝑊𝑠𝑗  represents the linear transformation 

matrix applied to the feature vector of the j-th vertex in the 

graph. This module enables every vertex to use its structural 

data detail. To build a computation efficiency, the i-th node 

with the k-nearest neighbour (Ni) is evaluated with a 

significant portion eij. Whereas the i-th k slices are chosen 

from {si−k/2, ..., si−1, si+1, ..., si+k/2} with k set to 4. Next, the α 

undergoes normalization as given in Eq. (5): 

 

𝛼𝑖𝑗 =
exp(𝜎 (𝑎𝑇 [𝑊𝑠𝑖| |𝑊𝑠𝑗]))

∑ exp(𝜎 (𝑎𝑇[𝑊𝑠𝑖||𝑊𝑠𝑘]))𝑘𝜖𝑁𝑖

 (5) 

 

where, || denotes concatenation, σ indicates LeakyReLU 

activation. By using Eq. (5), the new feature (𝑆𝑖
′) is derived as: 

 

𝑆𝑖
′ = 𝜎(∑ 𝛼𝑖𝑗𝑊𝑆𝑗

𝑗𝜖𝑁𝑖

) (6) 

 

where, 𝑆𝑗 as linear features with global structural data. 

 

3.5 Feature optimization 

 

Feature optimization or feature selection involves selecting 

the most effective subset of features from the original feature 

vector to enhance accuracy and decrease computational time. 

This work uses the Lemur Optimization (LO) algorithm for 

feature selection. Compared to other algorithms, this optimizer 

achieves better results in terms of convergence rate and 

escaping from local minima issues [29, 30]. The LO model is 

grounded in the locomotor behaviors of lemurs specifically 
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"leap up" and "dance hub" each representing a distinct stage: 

exploration and exploitation. In the exploration stage, a leap-

up behavior is employed to pinpoint the optimal lemur location 

within the search space. In the exploitation stage, a dance-hub 

behavior is utilized to identify the best nearby location in a 

specified direction. 

The LO model is then mathematically formulated based on 

these behavioral concepts. Each lemur solution is represented 

by an individual vector with specific coordinates for each 

lemur. The determination of the best location for each lemur is 

achieved through the fitness function evaluation. Accordingly, 

the lemurs adjust their position vectors. The best nearby lemur 

is identified through a dance hub, while the best global lemur 

is pinpointed through a leap-up. Initialize the random 

population matrix given in Eq. (7): 

 

𝑇 =

[
 
 
 
𝑙1
1 𝑙1

2 … 𝑙1
𝑑

𝑙2
1 𝑙2

2 … 𝑙2
𝑑

⋮ ⋮ ⋮ ⋮
𝑙𝑆
1 𝑙𝑆

2 … 𝑙𝑆
𝑑]
 
 
 

 (7) 

 

The is randomly generated as follows: 

 

𝑙𝑖
𝑗
= 𝑟𝑎𝑛𝑑() × (𝑢𝑏𝑗 − 𝑙𝑏𝑗) + 𝑙𝑏)∀𝑖

∈ (1,2, … , 𝑛)⋀∀𝑖 ∈ (1,2, … , 𝑑) 
(8) 

 

where, 𝑙𝑖
𝑗
 indicates the j-th dimension value of the ith lemur's 

position vector. The random distribution used for initialization 

is a uniform distribution. The discrete lower bound limits of j 

as lbj and the upper bound limit of j is ubj. The best location 

of the lemur is expressed as the following equation:  

 

𝐿𝑖
𝑗
=

{
 
 

 
 𝑙(𝑖, 𝑗) + 𝑎𝑏𝑠(𝑙(𝑖, 𝑗) − 𝑙(𝑏𝑛𝑙, 𝑗))

∗ (𝑟𝑎𝑛𝑑 − 0.5) ∗ 2; 𝑟𝑎𝑛𝑑 < 𝐹𝑅𝑅,

𝑙(𝑖, 𝑗) + 𝑎𝑏𝑠(𝑙(𝑖, 𝑗) − 𝑙(𝑔𝑛𝑙, 𝑗))

∗ (𝑟𝑎𝑛𝑑 − 0.5) ∗ 2; 𝑟𝑎𝑛𝑑 > 𝐹𝑅𝑅,

 (9) 

 

where, bnl is the Position of the best nearest lemur in the j-th 

dimension. gnl is the Position of the global best lemur in the j-

th dimension. FRR is the Fitness Reduction Ratio. From Eq. 

(9), the direction variable (𝐿𝑖
𝑗
) performed for global best lemur 

selection and best nearest lemur selection. 

The pseudocode for the LO model, presented in Algorithm 

1, outlines the procedural steps involved. 

 

Algorithm 1: LO based Feature selection 

Initialize population matrix T with size [num_lemurs, 

dim] 

For each lemur i in range(num_lemurs) 

    For each feature j in range(dim): 

        T[i][j]=rand()*(ub[j]-lb[j])+lb[j] 

For each lemur i in range(num_lemurs) 

    Fitness[i]=EvaluateFitness(T[i]) 

GlobalBestIndex=ArgMax(Fitness) 

GlobalBest=T[GlobalBestIndex] 

GlobalBestFitness=Fitness[GlobalBestIndex] 

For iter in range(max_iter) 

    For each lemur i in range(num_lemurs): 

        # Select Best Nearest Lemur 

        BestNearestLemur=SelectBestNearestLemur(T[i]) 

                # Update Direction Variable L 

        For each feature j in range(dim) 

            rand_val=rand() 

            if rand_val<FRR: 

                L[i][j]=T[i][j]+abs(T[i][j]-

BestNearestLemur[j]) *(rand_val-0.5)*2 

            else 

                L[i][j]=T[i][j]+abs(T[i][j]-GlobalBest[j])* 

(rand_val - 0.5)*2 

                # Update Lemur Position 

        T[i]=T[i]+L[i] 

        # Ensure boundaries 

        T[i]=Clip(T[i], lb, ub) 

                # Evaluate Fitness 

        Fitness[i]=EvaluateFitness(T[i]) 

                # Update Global Best 

        If Fitness[i]>GlobalBestFitness: 

            GlobalBestFitness=Fitness[i] 

            GlobalBest=T[i] 

Return GlobalBest, GlobalBestFitness 

 

The algorithm takes input parameters such as the number of 

iterations, dimensions, solutions, and bounds. In each iteration, 

the algorithm determines the objective function, evaluates the 

free risk rate, and generates the Global Best Lemur. For each 

lemur, the Best Nearest Lemur is assessed, and decision 

variables are updated based on randomization and the Jumping 

Rate parameter. This process iterates till the specified number 

of iterations is gotten by returning the Global Best (Best 

features). Following feature selection, the chosen features are 

applied in a classification task, showcasing the adaptability 

and efficacy of the Lemur Optimizer for optimizing feature 

sets and enhancing subsequent classification outcomes. 

 

3.6 Classifier 

 

In this work, the AdaBoost-BPNN model uses a BPNN as 

the base weak classifier. The outputs of multiple BPNN 

models are iteratively refined during the training process. 

AdaBoost is then applied to combine these weak classifiers 

into a stronger more robust classifier. Figure 3 illustrates the 

AdaBoost-BPNN classifier, which integrates multiple 

instances of the BPNN to achieve effective classification. The 

hidden layer uses the hyperbolic tangent sigmoid function 

("tanh"). The output layer uses a linear function ("identity") to 

map predictions. 

 

 
 

Figure 3. AdaBoost-BPNN classifier 

 

 

4 RESULTS 

 

The proposed method's validity and repeatability were 

assessed through ten-fold cross-validation experiments on a 

gathered dataset. The segmentation is validated with the 

metrics Pearson Correlation Coefficient (PCC), Mean 

Intersection over Union (MIOU) and Mean Dice Score (MDS). 

MIOU quantifies the overlap among the predicted and ground 
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truth segmentation for multiple classes that are given in Eq. 

(11): 

 

IOU =
AreaofOverlap

AreaofUnion
 (10) 

 

MeanIOU =
1

𝑁
∑

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖

𝑁

𝑖=1

 (11) 

 

where, N denotes the total classes, TPi is the True Positive 

which indicates the number of pixels correctly predicted as 

belonging to class i. FPi is the False Positive which denotes 

the number of pixels incorrectly predicted as belonging to 

class i. FN is the False Negative which denotes the count of 

pixels that belong to class i in the ground truth but were not 

predicted as such. 

The Dice Score has a similarity overlap among predicted 

and ground truth segmentations that is given as follows: 

 

DiceScore =
2 × AreaofOverlap

AreaofPredicted + AreaofGroundTruth
 (12) 

 

The MDS is computed as follows: 

 

MDS =
1

𝑁
∑

2 × 𝑇𝑃𝑖
2 × 𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖

𝑁

𝑖=1

 (13) 

 

The PCC quantifies the linear correlation among predicted 

and ground truth pixel values that is given as follows: 

 

PCC =
∑(𝑥 − 𝑥′) + (𝑦 − 𝑦′)

√∑(𝑥 − 𝑥′)2 × √∑(𝑦 − 𝑦′)2
 (14) 

 

where, x is a predicted value and y is a ground truth with their 

respective means x and y. 

The performance analysis of various segmentation models, 

detailed in Table 1 highlighted the efficacy of the proposed 

segmentation method in comparison to several established 

models. The proposed model achieves remarkable results with 

an MIOU of 97.54%, signifying a high degree of overlap 

between predicted and ground truth segmentations. The MDS 

an indicator of segmentation similarity, is equally impressive 

at 93.35%. Moreover, the PCC of 0.9812 demonstrates a 

strong linear correlation between the predicted and actual pixel 

values. In contrast, other models, such as U-Net with STN, 

InceptionResNetV2, and Attention U-Net, exhibit lower 

performance across these metrics. The proposed segmentation 

approach outperforms its counterparts, emphasizing its 

superiority in accurately delineating segmented regions and 

establishing a robust correlation with ground truth data. 

Table 2 presents a comprehensive performance analysis of 

the proposed classifier. To prove the classification efficiency 

of the proposed classifier which is compared against well well-

known SVM classifier. To show the effect of integrating LO 

in a classifier, the performance of the classifier is compared 

without the LO algorithm. 

The proposed classifier shows better with an impressive 

accuracy of 98.3%, proving its capability to correctly classify 

instances. This superior accuracy is complemented by high 

values in other metrics, including specificity (95.2%), 

precision (97.1%), and recall (96.7%). These metrics 

collectively signify the robustness and reliability of the 

Proposed classifier in achieving accurate classifications. 

The performance metrics are calculated using ten-fold 

cross-validation and the standard deviation for each metric is 

computed to assess the variability of the results. The proposed 

model achieved a standard deviation of 0.89% for MIOU, 

1.12% for MDS, and 0.005 for PCC as given in Table 1. These 

low values demonstrate that the proposed model maintains 

stable and reliable performance across different data splits. 

The Analysis of Variance (ANOVA) is conducted on the 

classification to determine whether there were significant 

differences between the models. The p-values from the 

ANOVA are all below 0.05 which rejects the null hypothesis 

that the models perform equally well. 

 

Table 1. Performance analysis of the segmentation model 

 

Model 
MIOU-% 

(std) 

MDS-% 

(std) 
PCC (std) 

Proposed 97.54 (0.89) 93.35 (1.12) 
0.9812 

(0.005) 

U-Net with STN [22] 93.5 (1.12) 89.7 (1.45) 
0.9112 

(0.008) 

InceptionResNetV2 

[26] 
82.7 (2.34) 85.22 (2.67) 

0.8852 

(0.010) 

Attention U-Net [21] 81.2 (2.01) 83.16 (2.34) 
0.8732 

(0.012) 

SAR-U-Net [25] 78.86 (1.98) 80.62 (2.12) 
0.8624 

(0.015) 

WU-Net [23] 77.5 (2.23) 78.38 (2.45) 
0.8563 

(0.018) 

U-Net++ [24] 74.92 (2.78) 71.25 (3.12) 
0.8456 

(0.020) 

 

Table 2. Performance analysis of the classification model 

 

Metric 
Proposed 

Classifier with LO 

Proposed Classifier 

Without LO 

SVM 

[19] 

Accuracy 98.3% 96.0% 95.5% 

Specificity 95.2% 94.5% 93.6% 

Precision 97.1% 95.6% 94.3% 

Recall 96.7% 94.0% 92.8% 

 

The integration of advanced image processing techniques 

into clinical practice requires a careful balance between 

automation and clinical oversight. The automated 

segmentation and classification methods presented in this 

study offer significant advantages in terms of speed and 

consistency. The proposed segmentation model achieved an 

MIOU of 97.54%, an MDS of 93.35%, and a PCC of 0.9812. 

These metrics indicate a high level of accuracy and correlation 

between the predicted and ground truth segmentations. 

The proposed classifier shows outstanding performance 

when integrated with a LO. It achieves the accuracy of 98.3%. 

The addition of LO not only enhanced the accuracy but also 

improved other critical metrics such as specificity (95.2%), 

precision (97.1%), and recall (96.7%). In summary, the 

proposed segmentation and classification approaches show 

significant advancements in both accuracy and reliability for 

lung cancer detection. 

 

 

5. CONCLUSION 

 

This study presents a novel approach to lung cancer 

segmentation and classification using CT images, specifically 

designed for clinical application. The method's high accuracy, 
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combined with its ease of use, makes it a promising tool for 

assisting in the early detection and accurate diagnosis of lung 

cancer. By integrating advanced image processing techniques 

with clinical oversight, this approach has the potential to 

enhance patient care and improve outcomes in the treatment of 

lung cancer. 
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