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This study aims to present a complete methodology that integrates evaluation and 

optimization to address the entire Safety Instrumented Systems (SIS) lifecycle. A 

comprehensive methodology for SIS evaluation and optimization is proposed, specifically 

targeting a system, called I-1165, responding to a high-high level alarm in a De-ethanizer 

Reflux Drum V-2, which is used to separate ethane and lighter components from heavier 

hydrocarbons. The methodology begins with a comprehensive HAZOP study to identify 

and assess potential risks, which are then estimated using PHAST software. SIL allocation 

is performed using the LOPA method, followed by the determination of Achieved SIL 

through analytical formulas. The Achieved SIL is iteratively validated by comparing it 

with the Required SIL. If the Achieved SIL does not meet the required standards, a genetic 

algorithm (GA) is employed to optimize the SIS design and maintenance strategies. This 

process continues until the target SIL is achieved, or an alternative architecture is 

proposed, ensuring that the SIS performance aligns with safety requirements. Optimization 

results for the I-1165 system reveal a significant improvement in PFDAvg from 2.1E-2 to 

6.10537E-4, meeting and exceeding the required SIL 2 performance. This improvement 

not only enhances system safety and reliability but also ensures compliance with IEC 

61508 standards while reducing lifecycle costs by optimizing the frequency of 

maintenance and testing intervals. 
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1. INTRODUCTION

Safety Instrumented Systems malfunction can cause severe 

effects in the petrochemical industry, where hazardous 

chemicals are handled and processed daily. When abnormal 

conditions are detected, SISs automatically intervene to 

safeguard and prevent catastrophic events like fires, 

explosions, and toxic releases. The design and implementation 

of SISs are crucial for ensuring the safe operation of industrial 

processes and reducing the risks of potentially hazardous 

events. 

The IEC 61508 and IEC 61511 standards in the study [1, 2], 

present SIS requirements for all phases in the SIS lifecycle and 

have become leading standards for SIS specification, design, 

implementation, and operation. IEC 61508 is a generic 

standard common to several industries, whereas IEC 61511 

has been developed especially for the process industry. A SIS 

is a collection of one or more input components (such as 

sensors and transmitters), logic solvers (such as programmable 

logic controllers [PLC]), and one or more end elements (such 

as safety valves). This concept is introduced by the standard 

mentioned above, which serves as a guide for achieving 

functional safety in the design of electrical / electronic / 

programmable electronic safety-related systems. The 

determination of the Safety Integrity Level (SIL) is a key 

requirement in the development of SIS, which specifies the 

target probability of failure-on-demand (PFDAvg) for the 

safety function [1]. To make sure the SIL achieves the 

necessary SIL target, it must be designed, implemented, and 

validated after it has been established [3]. Nonetheless, the 

process of designing and validating SIS can be complex, 

encompassing multiple methodologies like HAZOP, LOPA, 

FTA, Markov chain, and Petri net approaches. 

Traditional approaches to Safety Integrity Level (SIL) 

evaluation have primarily focused on the three fundamental 

steps outlined in the 61508 and IEC 61511 standards. The first 

step involves conducting a comprehensive risk analysis to 

identify potential hazards, assess their severity, and determine 

their likelihood of occurrence. Based on this analysis, the 

required SIL is determined, which specifies the target 

probability of failure on demand for the safety function. The 

second step focuses on designing and implementing a SIS to 

meet the required SIL target. Finally, the third step involves 

verifying whether the realized SIS, referred to as the Real SIL, 

satisfies or exceeds the required SIL level. This verification 

process often employs techniques such as fault tree analysis 
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[2], Markov models [3], or Petri net [4] simulations to quantify 

the probability of failure on demand and ensure compliance 

with specified SIL requirements. 

Following the IEC 61508 standard, Omeiri et al. [5] 

conducted a safety integrity evaluation of a butane tank 

overpressure evacuation system. This evaluation was 

comprised of risk analysis through Fault Tree Analysis (FTA) 

and HAZOP, SIS design utilizing Markov Models and Petri 

Net Simulations, and verification through Layer of Protection 

Analysis (LOPA) and FTA. In other work, Boudjoghra and 

Innal [6] employed a combination of HAZOP, LOPA, and the 

SIL module to verify the safety integrity level of the same 

butane tank system. Zhao et al. [7] focused on using Monte 

Carlo simulation and stochastic Petri nets to evaluate the SIS 

performance. Kaczor et al. [8] conducted a thorough 

investigation into the verification of SIL by applying 

Reliability Block Diagrams (RBD) and Monte Carlo 

simulation. Zennir et al. [9] evaluated the safety instrumented 

system located at the Skikda refinery using a combination of 

HAZOP, LOPA, and FTA techniques to evaluate the 

effectiveness of the existing safety integrity level. Traditional 

approaches to SIS's main goal have been to confirm that the 

real SIL, meets or exceeds the required SIL established during 

the risk analysis stage. While this verification process is 

essential for guaranteeing compliance with functional safety 

regulations, it ignores other critical aspects like system 

availability, reliability, and lifecycle costs. Moreover, the lack 

of integration with optimization techniques limits the potential 

for improving SIS design and maintenance strategies to 

enhance both performance and cost-effectiveness. 

On the other hand, several researchers have focused on the 

optimization side of SIS design and maintenance. The 

optimization of SIS was introduced by Torres-Echeverria et al. 

[10], who focused on policy testing and the use of genetic 

algorithms (GAs) in multi-objective optimization to balance 

performance metrics like lifecycle costs (LCC), spurious trip 

rate (STR), and probability of failure on demand (PFDavg). A 

variety of optimization techniques, such as GA, PSO, and 

stochastic modeling, have been used in other studies to 

optimize SIS architectures, maintenance plans, and 

performance metrics while taking safety, environmental, and 

economic considerations into account. Eddine et al. [11] 

focused on minimizing spurious trip rates in emergency 

shutdown systems installed in combined cycle power plants by 

optimizing Safety SIS using Particle Swarm Optimization 

(PSO). Redutskiy [12] developed a mathematical model for 

SIS design optimization in a generalized form as a multi-

objective problem, intending to achieve the necessary target 

SIL prescribed by safety regulations. Rabah et al. [13] 

optimized SIS maintenance strategies to meet SIL 

requirements, as optimal control problems by investigating the 

financial impact of proof tests, including direct costs (such as 

manpower, equipment, and transportation) and indirect costs 

(such as production losses and gas flaring tax. A mathematical 

optimization model has been proposed by Cheraghi et al. [14] 

to determine Safety Integrity Levels in process facilities, 

balancing cost and reducing risks. Touahar et al. [15] proposed 

a multi-objective genetic algorithm to optimize SIS by 

minimizing PFDavg, STR, and LCCavg, with specific 

maintenance strategies to reduce technical, economic, and 

environmental risks. Zhang et al. [16] focused on optimizing 

maintenance strategies for SISs by modeling the degradation 

of SIS final elements as a stochastic process. Finally, Berrah 

et al. [17] applied the Manta-Ray Foraging Optimization 

(MRFO) algorithm to optimize the design and operation of SIS 

aiming to obtain a balance between safety integrity, 

operational performance, and lifecycle costs. These 

contributions have expanded the scope of SIS optimization. 

however, they exclusively focus just on the optimization 

phase, often assuming that the evaluation processes, such as 

SIL allocation and validation, have already been satisfactorily 

completed. This separation of evaluation and optimization can 

result in suboptimal solutions that fail to address the 

interconnected challenges of safety, reliability, and cost. 

This study aims to employ an innovative, complete 

methodology for the design, evaluation, and optimization of 

SISs within a unified framework. Our approach encompasses 

the entire SIS lifecycle, starting with risk analysis through 

HAZOP study and PHAST software, followed by SIL 

allocation using LOPA. The SIS realization phase employs 

analytical formulas to determine the Real SIL, which is then 

validated against the required SIL in alignment with 

established IEC standards. If the Achieved SILis below the 

required SIL, we optimize the SIS design and maintenance 

strategy using the GA. This integrated approach ensures that 

the SIS meets necessary safety integrity standards and operates 

optimally in terms of cost, performance, and dependability. 

The novelty of the proposed methodology lies in its 

comprehensive integration of evaluation and optimization, 

addressing the full lifecycle of SISs. Unlike traditional 

methods that focus primarily on SIL verification or isolated 

optimization, this approach provides a unified framework that 

ensures both safety compliance and operational efficiency. By 

linking risk assessment, SIL allocation, realization, validation, 

and iterative optimization, it not only guarantees the required 

safety standards but also enhances system performance, 

reliability, and cost-effectiveness across all phases of the SIS 

lifecycle. Another significant contribution of this work is its 

application to a real-world system, the De-ethanizer Reflux 

Drum (30-V-2) located in the RA1k refinery of 

Skikda/Algeria. Unlike theoretical or generalized optimization 

studies, the methodology addresses specific operational 

challenges within an industrial setting. 

The rest of the paper is structured as follows. Section 2 

presents the Hazard Analysis Methods for SISs, detailing 

HAZOP and LOPA used for risk identification and SIL 

allocation. Section 3 describes the methodology for evaluating 

and optimizing the SIS using GA, highlighting the process of 

determining the Achieved SIL and performing iterative 

optimization. Section 4 discusses the optimization process 

results, including identifying a new optimal SIS architecture 

and its impact on system performance. Finally, the conclusions 

from the SIS evaluation and optimization study are presented 

in Section 5. 

2. PROPOSED METHODOLOGY

The proposed methodology for the evaluation and 

optimization of SIS comprises five key steps, as illustrated in 

Figure 1. 

These steps are designed to provide a comprehensive and 

systematic approach to address the critical aspects of risk 

analysis, SIL allocation, SIS realization, validation, and 

optimization. The five main steps of our methodology for SIS 

evaluation and optimization are explained below: 

Step 1: Risk analysis 

The risk analysis stage is essential for locating possible risks 
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and assessing their effects. Several well-known risk analysis 

techniques have been used in this phase, including Fault Tree 

Analysis (FTA), Hazard and Operability (HAZOP), Failure 

Modes, Effects, and Criticality Analysis (FMECA), and 

Preliminary Hazard Analysis (PHA) [18, 19]. Studies on 

HAZOP are widely utilized techniques, especially in the 

petrochemical industry [20]. The study is carried out by a 

multidisciplinary team that divides the plant into streams 

(which represent particular products or utility materials) and 

nodes (which represent strategic equipment and sections). To 

find possible departures from the design intent, the team uses 

a set of guidelines (like no, more, and less) along with process 

parameters (like temperature, flow, and pressure). The team 

looks into the causes, effects, and current safeguards for each 

deviation that is found; it then looks for any gaps and suggests 

adding new safeguards as needed. Potential accident scenarios 

and their effects, such as fires, explosions, or toxic releases, 

are identified through the HAZOP study process [21]. To 

support the risk analysis process, modeling and calculation 

programs like PHAST and ALOHA can be used in addition to 

the HAZOP study [22, 23]. PHAST (Process Hazard Analysis 

Software Tool) is selected to quantitatively model the 

consequences of hazardous scenarios. PHAST, developed by 

DNV, is a comprehensive software tool widely used in the 

industry to simulate the progression of accidental releases, 

such as gas leaks, fires, explosions, and toxic dispersions [24]. 

It provides critical outputs, including safety distances, thermal 

radiation contours, overpressure levels, and toxic exposure 

zones. While HAZOP identifies potential deviations, their 

causes, and qualitative consequences, PHAST completes the 

HAZOP analysis by simulating the physical progression of 

identified scenarios, such as vapor cloud dispersion or pool 

fires [25]. This integration allows for a more detailed 

understanding of the potential impacts, supporting the 

prioritization of risks and the design of effective mitigation 

measures. The consequence analysis using the PHAST 

Software involves the following steps: 

Scenario selection: Hazardous events identified in the 

previous phases are selected for consequence modeling. 

Input data preparation: Process parameters, 

environmental conditions, and chemical properties are entered 

into the software. 

Simulation and analysis: PHAST generates consequence 

reports including impact zones and thermal radiation levels. 

Step 2: SIL allocation 

The allocation of a Safety Integrity Level (SIL) is a critical 

step in the design of SIS, ensuring that the system provides a 

quantitative measure of the effectiveness of safety functions in 

controlling risk to an acceptable level. The SIL provides a 

statistical measure of the reliability of SIS when faced with a 

process demand. According to IEC 61508, there are four 

distinct SIL categories, ranging from SIL 1 (lowest) to SIL 4 

(highest). Each of these levels is associated with a specific 

range of values for both the average probability of failure on 

demand (PFDAvg) and the probability of a dangerous failure 

per hour (PFH). These Relationship is illustrated in Table 1. 

The two common methods used for SIL allocation are Risk 

Graph and LOPA. 

Risk Graph is a qualitative technique used to assign SILs 

based on predefined criteria related to consequences severity, 

exposure frequency, hazard avoidance probability, and 

demand rate on safety functions [26, 27]. While the Risk 

Graph method is simpler and easier to apply, it lacks precision 

compared to LOPA as it relies on subjective judgments rather 

than exact probabilities and frequencies [28]. This qualitative 

nature can lead to inconsistencies in SIL determination, 

particularly in complex industrial processes where numerical 

data is more readily available [29]. The method's reliance on 

subjective assessments may introduce uncertainties in SIL 

assignments, highlighting the importance of considering more 

quantitative approaches like LOPA in certain contexts. 

Table 1. Safety integrity level (SIL) according to PFDavg 

and PFH [1] 

Safety Integrity 

Level (SIL) 

Probability of 

Failure on Demand 

(PFDAvg) 

Probability of 

Failure Per Hour 

(PFH) 

4 ≥10-5 to <10-4 ≥10-9 to <10-8 

3 ≥10-4 to <10-3 ≥10-8 to <10-7 

2 ≥10-3 to <10-2 ≥10-7 to <10-6 

1 ≥10-2 to <10-1 ≥10-6 to <10-5 

Figure 1. Proposed methodology for SIS lifecycle 

management 

LOPA is a semi-quantitative method that enables 

determining the minimum SIL necessary to lower the risk 

levels of SISs to acceptable levels [30, 31]. This method bases 

its calculation on the number of independent protection levels 

required to control the risk in each hazardous situation. The 

LOPA technique begins with information gathered during 

hazard identification, typically through a HAZOP study. It 

addresses each identified hazard by documenting both the 

initiating causes and the protective measures that prevent or 

mitigate the hazard. The fundamental approach of LOPA is to 

calculate the frequency of a hazardous event (impact event) by 

quantifying the initiating causes, frequencies, and probability 

of failure on demand for each protective layer [32, 33]. The 

Intermediate event frequency can be formulated as follows: 

𝑓𝑐 = 𝑓𝐼𝐸 ∗∏𝑃𝐹𝐷𝑎𝑣𝑔
𝑖

𝑖

(1) 

𝑓𝑐: occurrence frequency of consequence C

𝑓𝐼𝐸: initiating event frequency
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𝑃𝐹𝐷𝑎𝑣𝑔
𝑖 : Average probability of failure on demand of the

barrier i. 

The required risk reduction allocated to the SIS safety 

function is obtained by comparing 𝑓𝑐  with the maximum

allowable average probability of failure 𝑃𝐹𝐷𝑎𝑣𝑔
𝑆𝐼𝑆  that the SIS

could have, such that the necessary risk reduction is achieved. 

Reading this quantity in Table 1 makes it possible to define the 

corresponding SIL. 

𝑃𝐹𝐷𝑎𝑣𝑔
𝑆𝐼𝑆 ≤

𝑓𝑡
𝑓𝐼𝐸 ∗ ∏ 𝑃𝐹𝐷𝑎𝑣𝑔

𝑖
𝑖

(2) 

Comparing the frequency of the feared event to the safety 

objective (tolerable frequency) yields the assigned risk 

reduction for the SIS safety function. The inequality's right-

hand side quantity represents the SIS's maximum allowable 

average failure probability that would achieve the required risk 

reduction. Consulting Table 1 with this quantity enables the 

determination of the corresponding SIL. 

Step 3: SIS realization 

After assigning the necessary SIL, the SIS must 

demonstrate performance that meets the corresponding 

criteria. Several methodologies have been used to calculate the 

Probability of Failure on Demand (PFDavg) and determine the 

Achieved SIL, such as Markov models [3], Petri nets [3], and 

FTA [3]. However, these techniques may have limitations 

when integrated into optimization frameworks due to their 

computational complexity and difficulty in handling large 

search spaces efficiently. For these computations, we employ 

the generalized analytical equations established by Innal et al. 

[34]. The computed result should not exceed the threshold 

value set during the required SIL stage. This quantitative 

assessment necessitates the evaluation of multiple factors: the 

system's architecture (including the number of components 

used and their voting logic), failure rates, diagnostic coverage, 

intervals between periodic tests, time required for repairs, and 

common cause failures. 

Step 4: SIS validation 

In this step, a comparison between the determined required 

and Achieved SILs is made. The SIS is considered to meet its 

requirements if the Achieved SIL is equal to or greater than 

the required SIL. This indicates that the SIS can provide the 

necessary risk reduction assigned to it, thus fulfilling the 

security objective. It is crucial to record the comparison 

results, including the methodologies used to calculate the 

actual SIL, data origins, assumptions, and any conducted 

verification tests. This documentation acts as proof of 

adherence to relevant safety standards, such as IEC 61508 and 

IEC 61511. However, if the Achieved SIL is lower than the 

required SIL, the SIS must be enhanced to ensure the actual 

SIL meets or surpasses the required level. 

Step 5: SIS optimization 

If the realized SIS does not meet the required Safety 

Integrity Level (SIL), the methodology advances into the 

optimization phase. In this step, the SIS architecture is 

iteratively modified and enhanced until the required SIL is 

achieved. The optimization process explores various 

architectural configurations by considering parameters such as 

the number of elements used and their voting logic, failure 

rates, diagnostic coverage, periodic test intervals, repair time, 

and common cause failures. This iterative process continues 

until a solution is identified that meets the SIL requirements. 

In this step, the GA was selected as the most suitable 

optimization method due to its efficiency in handling complex, 

non-linear problems, particularly those involving single-

objective functions like minimizing the Probability of Failure 

on Demand (PFDavg) [34]. The optimization of PFDavg 

involves exploring a vast search space defined by various 

decision variables, including the number of components in 

each subsystem (sensors, logic solvers, and final elements), 

their voting logic configurations (e.g., KooN), and proof-test 

intervals [35]. This non-linear problem is characterized by 

interactions among these variables, which influence the 

PFDavg in complex ways. The use of GAs in SIS optimization 

facilitates the discovery of architectural configurations that 

satisfy the required SIL while optimizing other critical 

parameters. Readers can consult research by Sohail [36], Gen 

[37], and Katoch at al. [38] for a thorough examination of GAs 

and their uses. 

3. CASE STUDY DESCRIPTION

The De-ethanizer Reflux Drum (30-V-2) plays a pivotal role 

in the separation process of lighter hydrocarbons (C1 and C2) 

from LPG. Operating at a pressure of 33.4 kg/cm²g and a 

temperature of 68℃, this drum serves as an accumulator for 

the condensed vapors from the overhead of the De-ethanizer 

Column (30-C-51). The column itself, designed with 25 trays, 

operates at a top pressure and temperature of 29.6 kg/cm²g and 

61℃ and a bottom pressure and temperature of 29.9 kg/cm²g 

and 118℃, respectively. The column separates lighter 

hydrocarbons from heavier components through fractional 

distillation. The vapors from the column's overhead are 

condensed in the De-ethanizer Overhead Condensers (30-E-9 

and 30-E-54), where their temperature is reduced from 53℃ 

to 38℃ using cooling water as the medium. 

The condensed vapors are collected in the reflux drum (30-

V-2), which not only provides liquid reflux to the column but

also facilitates pressure stabilization and ensures that

downstream processing receives a consistent flow of LPG.

Pressure within the reflux drum is maintained by a split-range

controller (30-PIC-9), which modulates the discharge through

two control valves, 30-PV-9A and 30-PV-9B. These valves

regulate the flow to the fuel gas header and blow-down header,

respectively, ensuring the system's safety and operational

efficiency. The overhead vapor flow rate is measured by flow

indicator 30-FI-14, which provides crucial data for monitoring

and control.

The liquid collected in the drum is pumped back to the De-

ethanizer Column (30-C-51) using one of the two pumps, 30-

P-52 A or B, depending on availability. The temperature of the

liquid is monitored by temperature indicator 30-TI-15, and the

flow is regulated by the flow controller 30-FIC-5, which

adjusts the automatic control valve in the reflux line. The

liquid is then distributed onto the 25th tray of the column,

enabling efficient separation.

The level in the reflux drum is a critical parameter for safe 

and stable operation. It is monitored and controlled by level 

controller 30-LIC-5, which operates in cascade with 30-FIC-5 

to ensure precise flow adjustments. In the event of abnormal 

level fluctuations, high and low-level alarms (30-LAH-5 and 

30-LAL-5) send signals to the control room for immediate

attention. The corresponding level flow diagram for the De-

ethanizer Reflux Drum (30-V-2) is depicted in Figure 2.
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3.1 Safety instrumented safety of De-ethanizer Reflux 

Drum (30-V-2) 

The majority of the process control operations are handled 

by the BPCS, which acts as a second automated line of defense 

in the case of failure of the BPCS or due to any other condition 

that prevents the BPCS from controlling on its own. In our 

case, this action is ensured by the activation of interlock I-

1165. The components of our SIS are presented in Table 2. 

Figure 2. Process flow diagram for De-ethanizer Reflux Drum (V-2) and associated control systems 

I-1165 is a Safety Instrumented System that responds to the

critical high-high level alarm in the reflux drum, and its role is 

to automatically close the overhead line valve UV-1165 as a 

protective safety action to mitigate the overfill or overpressure 

risk in the drum. The level transmitter LT 1153 continuously 

measures the level in the reflux drum 30-V-2, and the level 

indicator LI 1153 displays this level for monitoring purposes. 

If the level in the drum exceeds a critical high-high setpoint, 

the logic solver LAHH 1153 is triggered. When LAHH 1153 

is triggered, it activates the interlock system I-1165, which in 

turn closes the valve UV 1165 on the overhead line of the 

reflux drum. Closing UV 1165 prevents further vapors from 

entering the drum, mitigating the risk of overfilling. 

4. APPLICATION OF THE PROPOSED 

METHODOLOGY

In what follows, the study approach will be applied to the 

reflux drum 30-V-2 described in the previous section. 

4.1 Risk analysis 

The first step involves thorough risk analysis to identify the 

potential risks associated with the industrial process under 

consideration. The HAZOP method is applied in this step 

concerning the deviation ‘‘High Level inside 30-V-2’’ which 

is given in Table 3. 

The corresponding frequency table is presented in Tables 4 

and 5, respectively. The risk matrix is a tool to classify and 

visualize risk by defining categories of consequences and 

occurrence frequency. 

A risk matrix is a tool used to classify and visualize risks by 

combining qualitative assessments of consequence severity 

and occurrence frequency shown in Tables 4 and 5, 

respectively. These categories are then applied to the risk 

matrix in Table 6, which determines the overall risk level. For 

the analyzed risk (overpressure), the severity is classified as 

"Catastrophic S4." According to the RA1K risk acceptance 

criteria, the risk is tolerable only if its frequency falls within 

the "Very Low P2" category. From Table 6, the corresponding 

maximum tolerable frequency for this risk level is:  

FT = 1E-5/year. 

To estimate the severity level, we use the PHAST Software 

to simulate threat zones. Figure 3 shows the distance 

downwind (in meters) against the distance traveled (in meters) 

for three different overpressure categories (Category 1.5/F, 

Category 1.5/D, and Category 5/D), while Figure 4 shows the 

maximum radii of the blast waves for the same three 

overpressure categories mentioned above. 

Table 2. Components of I-1165 
Element Type Process Function 

LT 1153 Level transmitter Detecting High Level in V-2 

LS 1165 Logic solver Collects information from LT 1153 and transmits it to UV 1165 

UV 1165 Control valve To close 
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Table 3. Application of the HAZOP method for “High Level” deviation 

Deviation 
Causes Consequences Safeguards 

Criticality 

Parameter Guide Word S P 

Level High 

Cascading control loops BPCS 9 of 

level and BPCS 9 of flow failure: 

LT 5 failures 

LIC 5 failures 

FIC 5 failures 

FV 5 failures (does not open) 

Pumps P-52A/B fail to suck and 

reflux the accumulated liquid to the 

overhead of column 30-C-51. 

Loss of containment, leading to the 

release of LPG into the atmosphere 

(Leak) 

Overpressure 

Vapor cloud explosion (VCE) 

Flash fire/ Pool fire 

LAH on LIC 5 

FAH on FIC 5 

Interlock 1165 

(close UV 1165) 

4 2 

Table 4. RA1K Severity scale [39] 

Severity 
Zone Related to Significant Lethal 

Effects 

Zone Related to First Lethal 

Effects 
Zone Related to Irreversible Effects 

Minor No exposed person At most 1 exposed person Less than 10 exposed persons 

Serious At most 1 exposed person At most 10 exposed persons Between 10 and 100 exposed persons 

Important 
Important Between 1 and 10 exposed 

persons 

Between 10 and 100 exposed 

persons 

Between 100 and 1000 exposed 

persons 

Catastrophic Between 10 and 100 exposed persons 
Between 10 and 100 exposed 

persons 

Between 1000 and 10.000 exposed 

persons 

Disastrous More than 100 exposed persons More than 100 exposed persons More than 10000 exposed persons 

Table 5. RA1K occurrence frequency scale [39] 

Scale 1 2 3 4 5 

Qualitative ranking Possible but extremely unlikely Very low low Moderate High 

Frequency/year F<10E-5 10E-4>F≥10E-5 10E-3>F≥10E-4 10E-2>F≥10E-3 F≥10E-2 

Table 6. Risk acceptance matrix for RA1K [39] 

Severity 
Frequency 

P1 P2 P3 P4 P5 

S5 M H H H H 

S4 M M H H H 

S3 M M M H H 

S2 L L M M H 

S1 L L L L M 

The simulation results for the Reflux Drum V-2 equipment 

under the "Leak" scenario are summarized in Table 7. It lists 

the overpressure levels (in bar) and the corresponding 

maximum distances (in meters) and diameters (in meters) for 

each overpressure category and weather condition (Category 

1.5/F, Category 1.5/D, and Category 5/D). The consequence 

analysis of the De-ethanizer Reflux Drum V-2 leak scenario, 

conducted using PHAST software, reveals potentially severe 

outcomes. The model predicts irreversible effects extending 

up to 849 meters and lethal effects up to 423 meters from the 

source, with impact zones varying significantly based on 

atmospheric conditions. 

Figure 3. Predicted downwind distance vs. leak dispersion for different overpressure categories 
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Figure 4. Maximum blast wave radii for various overpressure thresholds 

Table 7. Overpressure levels and the corresponding maximum distances and diameters of the leak scenario in V-2 

Path Scenario Weather Effect threshold 
Overpressure level 

[bar] 

Maximum 

distance [m] 

Diameter 

[m] 

Study\Reflux Drum 

V-2
Leak 

Category 

1.5/F 

Irreversible Effects 

Threshold (IET) 
0.02068 819.228 1178.46 

Lethal effects threshold 

(LET 1%) 

0.1379 
344.52 229.041 

Lethal effects threshold 

(LET 5%) 

0.2068 
315.863 171.726 

Category 

1.5/D 

Irreversible Effects 

Threshold (IET) 
0.02068 838.726 1097.45 

Lethal effects threshold 

(LET 1%) 
0.1379 402.045 204.09 

Lethal effects threshold 

(LET 5%) 
0.2068 376.509 153.019 

Category 

5/D 

Irreversible Effects 

Threshold (IET) 
0.02068 849.704 1059.41 

Lethal effects threshold 

(LET 1%) 
0.1379 422.951 205.903 

Lethal effects threshold 

(LET 5%) 
0.2068 397.189 154.378 

These findings underscore the critical necessity for a robust 

safety instrumented system and comprehensive emergency 

response protocols. 

4.2 Allocation of the required SIL for SIS 

The next step is to assign a suitable SIL to the SIS based on 

the risks that have been identified in the first step. The LOPA 

method is used for this allocation. It calculates the required 

SIL by assessing the risk reduction offered by different 

independent protection layers (IPLs). 

The chosen impact event is Lighters C1/C2 release to the 

atmosphere from V-2 De-ethanizer Reflux Drum (Leak) due 

to failure of Basic Process Control Systems of level and flow 

level, which leads to a VCE if it is not mitigated. According to 

the severity levels in Table 4, the tolerable frequency 

corresponding to a hazardous event with severity 4 is set to 

1E-5/year. The initiating cause of the undesired event is the 

pumps P-52A/B failing to suck and reflux the accumulated 

liquid inside V-2, which has a frequency value of 1E-1/year. 

The probabilities of failure on demand (PFDavg) of IPL that 

intervene to prevent the development of this impact event 

(Leak) are shown in Table 8 [40]. The obtained results during 

the application of the LOPA method are summarized in Table 

9. 

According to the LOPA analysis results, the required SIL 

for our SIS is SIL 2 with a minimum PFDAvg of 5E-3. 

Table 8. IPLs and their PFDs [40] 

IPL PFD 

LAH-5+operator action 2E-1 

FAH-5 +operator action 2E-1 

PSV 1151 A/B 1E-1 
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Table 9. LOPA related to the impact event lighters C1/C2 released to the atmosphere 

1 2 3 4 5 6 7 8 9 10 11 

Impact Event 

Description 

Severity 

Level 

Initiating 

cause 

description 

Initiating 

Likelihood 

(Freq Per 

Year) 

Protection Layers (Probability of Failure) Intermediate 

event 

likelihood 

(freq per 

year) 

PFDAvg 

required

(and 

SIL) 

Tolerable 

mitigate 

event 

likelihood 

General 

Design 

Alarms & 

Operator 

Action 

Other 

Protection 

Devices 

Other 

Mitigation 

Measures 

Lighters 
C1/C2 release 

to atmosphere 

from V-2 De-
ethanizer 

Reflux Drum 

(Leak) 

4 
P-52 A/B 

Failure 
1E-1 1 2E-1 1E-1 1 

2E-3 
5E-3 

(SIL 
02) 

1E-5 

4.3 Realization of the SIS (real SIL) 

To calculate the Achieved SIL, we employ the analytical 

formula for calculating the PFDavg as developed by Cheraghi 

and Taghipour [14] and Touahar et al. [15] which are detailed 

in the study of Zhao et al. [7] (see Eq. (3)). 

𝑃𝐹𝐷𝐾𝑂𝑂𝑁 = 𝐴𝑁
𝑁−𝐾+1 ∗ 𝜆𝐷𝑖𝑛𝑑

𝑁−𝐾+1 ∗ ∏ 𝑀𝐷𝑇100𝑖

𝑁−𝑘+1

𝑖=1

+𝜆𝐷𝑈
𝑐𝑐𝑓

(
𝑇1
2
+ 𝑀𝑅𝑇) + 𝜆𝐷𝐷

𝑐𝑐𝑓
∗ 𝑀𝑇𝑇𝑅 

(3) 

where: 

𝑀𝐷𝑇100𝑖 =
𝜆𝐷𝐷
𝜆𝐷

∗ 𝑀𝑇𝑇𝑅 +
𝜆𝐷𝑈
𝜆𝐷

∗ (
𝑇1
𝑖 + 1

+ 𝑀𝑅𝑇) (4) 

𝐴𝑁
𝑁−𝐾+1 =

𝑁!

(𝐾 − 1)!
(5) 

{
λDD = λD ∗ DC

λDU = λD ∗ (1 − DC)
(6) 

The PFDKOON formula takes into account the dangerous 

failure rates (λD), mean time to repair (MTTR), and diagnostic 

coverage (DC) for each SIS component, including sensor LT 

1153, logic solver LS 1165, and final element UV 1165. The 

λD parameter is further broken down into λDD (the detected 

dangerous failure rate) and λDU (the undetected dangerous 

failure rate), enabling a comprehensive assessment of the 

system's reliability performance (see Eq. (4)). The different 

reliability data used are shown in Table 10 [41]. 

Table 10. Reliability data of the SIS [41] 

Components 
𝝀𝑫

(h-1) 

DC 

(%) 
MTTR=MRT(h) 

T1 

(h) 

LT 1153 1.4E-06 60 8 8760 

LS 1165 3E-08 0 12 8760 

UV 1165 3E-06 30 8 17520 

Table 11. PFDavg of the SIS using Eq. (3) and FTA 

Subsystem/System 
PFDavg using Eq. 

(01) 

PFDavg using 

FTA 

Sensor (S) 2.464E-3 6.116E-3 

Logic solver (LS) 1.3167E-4 1.3168E-4 

Final element (FE) 1.84E-2 2.33E-2 

SIS  2.1E-2 2.94E-2 

Figure 5. PFDavg and SIL graph of the SIS 

Table 11 presents the calculated PFDavg values for the 

various subsystems and the overall SIS. A comparison with 

FTA results is provided to validate those obtained by Eq (3). 

Some slight differences are also present for the subsystems, 

which look insignificant for the whole SIS. Finally, the 

PFDavg of the SIS and the associated SIL graph are modeled 

using the Tree module of the GRIF software (Graphical 

interface for reliability forecasting) as shown in Figure 5. 

4.4 Validation of SIS 

In this step, we compare the Achieved SIL with the required 

SIL target determined by the LOPA method. The Achieved 

SILis quantified by calculating the PFDavg using the 

analytical formulas, while the required SIL corresponds to the 

minimum acceptable PFDavg value identified during the 

LOPA analysis. In our case study, the obtained PFDavg value 

for the current SIS design is 2.1E-2, corresponding to a 

Achieved SIL of 1. However, the LOPA results indicate that 

the minimum required PFDavg should be at least 5E-3, 

aligning with a target SIL 2. Since the Achieved SIL1 does not 

meet or exceed the required SIL 2, the risk associated with the 

current SIS design is unacceptable. 

To address this issue and reduce the risk to an acceptable 

level, the SIS architecture needs to be optimized to achieve an 

Achieved SIL that meets or exceeds the required SIL target. 

Our proposed solution is to employ a Genetic Algorithm (GA) 

optimization technique to search for an optimal SIS 

architecture that minimizes the PFDavg while considering 

other performance metrics and constraints. The GA will 

explore various combinations of SIS component 
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configurations, redundancy levels, and diagnostic coverage to 

identify architectures that can satisfy the required SIL while 

optimizing factors such as reliability, availability, and 

lifecycle costs. 

4.5 Optimization of SIS design using GA 

The objective of this optimization step is to minimize the 

average Probability of Failure on Demand (PFDavg) for our 

SIS, subject to the following constraints: 

•PFDavg must be less than or equal to 5E-3 to ensure

compliance with SIL 2 requirements. 

•The total acquisition cost 𝐶𝑃
𝑆𝐼𝑆 must not exceed 32,000

units. 

•The total proof-test cost 𝐶𝑇
𝑆𝐼𝑆 must not exceed 18,000 units.

These constraints are evaluated over a mission time (MT)

of 20 years, ensuring that both safety and cost performance are 

optimized within the specified cost limits. 

The fitness function used to evaluate potential solutions is 

defined by Eq. (3), which calculates the PFDavg using the 

KooN voting formula. The decision variables include the 

number of elements in each subsystem (N), the number of 

elements required for operation (K), the acquisition and proof-

test costs (CP and CT), and the proof-test intervals (T). To 

achieve this, we set up a GA optimization problem in 

MATLAB, where the objective function calculates the 

PFDavg using the KooN formula for each subsystem, and the 

constraint function checks if the PFDavg satisfies the given 

limit. 

To find an optimal solution using the GA, it is necessary to 

represent potential solutions as coded expressions called 

chromosomes. In our SIS configuration, a chromosome 

consists of 12 genes (as shown in Table 12). These genes 

correspond to the decision variables of the optimization 

problem. After establishing the encoding, an initial population 

(generation) of potential solutions (individuals, each defined 

by a chromosome) is randomly created across the solution 

space. The decision variables are constrained within 

predetermined limits. The encoding for each subsystem 

includes the number of components and their operational 

specifications as follows: 

N1, N2, and N3 represent the total number of components 

in the sensor, logic solver, and final element subsystems, 

respectively. 

•K1, K2, and K3 represent the minimum number of

components required to remain operational in each subsystem. 

•TS, TLS, and TFE represent the proof-test intervals for each

subsystem. 

•𝐶𝑃
𝑆, 𝐶𝑃

𝐿𝑆, 𝐶𝑃
𝐹𝐸 represent the acquisition costs for the sensor,

logic solver, and final element subsystems. 

•𝐶𝑇
𝑆, 𝐶𝑇

𝐿𝑆, 𝐶𝑇
𝐹𝐸 represent the proof-test costs for the sensor,

logic solver, and final element subsystems. 

The GA progressively enhances the makeup of the 

population across subsequent generations. As the generations 

advance, the population's adaptability, as measured by the 

objective function (fitness function), should typically show 

improvement. The creation of a new population from its 

predecessor occurs in two phases: selection and reproduction. 

The used data in the SIS optimization is presented in Table 13. 

It is noteworthy that the SIS operates in a low-demand mode. 

•The positions of the GA take variable values between the

lower bound: LB: [1 1 1 1 1 1 1 1 1 1 1], and the upper bound:  

UB: [3 3 3 4 1 1 3 3 4 4 3 4]. 

•The used parameters are population size (150), Maximum

Number of Iterations (200), and the maximum size of the 
archive (100). 

Table 12. Encoding of the SIS solutions: SIS chromosomes 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 

N1 K1 ST 
𝐶𝑃
𝑆

𝐶𝑇
𝑆 N2 K2 LST 

𝐶𝑃
𝐿𝑆

𝐶𝑇
𝐿𝑆 N3 K3 FET 

𝐶𝑃
𝐹𝐸

𝐶𝑇
𝐹𝐸

Table 13. SIS optimization data 

Components 

β= βS=2 βD =2 βSD 

MTTR= MRT=MRTPST 

Sensor (S) Nmax=5 Logic solver (LS) Nmax=3 Final element (FE) Nmax=4 

𝝀𝑫 (h-1) 1.4E-06 3E-08 3E-06 

DC (%) 60 0 30 

β 0.15 0.1 0.12 

MTTR 8 12 8 

T1 

4380 

8760 

13140 

17520 

8760 

13140 

17520 

2190 

3285 

4380 

8760 

𝑪𝑷

4844 

2306 

500 

4000 

2800 

2000 

6940 

6500 

6000 

𝑪𝑻

60 

30 

20 

70 

50 

40 

90 

70 

60 

To solve the SIS optimization problem using GA, we use 

the Optimization Toolbox" of the MATLAB environment. Our 

strategy involves minimizing the PFDavg (the considered 

objective). Therefore, the objective problem with constraints 

takes the form: 
{

Y = F(X) = (PFDavg(X))

PFDavg ≤ 5E − 3

𝐶𝑃
𝑆𝐼𝑆 ≤ 𝐶𝑃

𝑚𝑎𝑥; 𝐶𝑇
𝑆𝐼𝑆 ≤ 𝐶𝑇

𝑚𝑎𝑥

K1 ≤ N1; K2 ≤ N2; K3 ≤ N3

(7) 
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The achievement of the objective related to safety integrity 

requires the study of four (04) design choices and therefore 

represents an optimization problem that can be summarized as 

follows: 

1. How many elements in each subsystem (S, LS, FE) are

required: NS ∈ {1, ..., NSmax}, NLS ∈ {1, ..., NLSmax}, NFE ∈ 

{1, ..., NFEmax}? 

2. How many elements within each subsystem whose

operation is required, the following conditions must be met: 

KS ≤ NS, KLS ≤ NLS, KFE ≤ NFE? 

3. What is the proof-test interval (T) for each subsystem?

4. What are the acquisition and proof-test costs for the SIS

components, considering the given mission time (MT = 20 

years): 𝐶𝑃
𝑆𝐼𝑆 ≤ 𝐶𝑃

𝑚𝑎𝑥;  𝐶𝑇
𝑆𝐼𝑆 ≤ 𝐶𝑇

𝑚𝑎𝑥 ?

Figure 6. Best fitness value PFDavg through generations 

The evolution of the best value of the objective function 

through generations is given in Figure 6. We note that it 

reaches a stationary value from the second generation. The GA 

explored various combinations of subsystem architectures and 

proof-test intervals, converging on an optimal solution within 

the first few generations. The resulting optimized SIS 

architecture consists of: 

Sensors (LT 1153): 1oo3 configuration tested every 8760 

hours (each year). 

Logic solver (LS 1165): 1oo1 configuration tested every 

13140 hours (18 months).  

Final element (UV 1165): 1oo3 configuration tested every 

2190 hours (each 03 months).    

The corresponding values for PFDavg, 𝐶𝑃
𝑆𝐼𝑆  and 𝐶𝑇

𝑆𝐼𝑆 are

respectively: 6.10537E-4 (SIL 3), 21500 u, and 5600 u. This 

new design achieved a significantly improved PFDavg of 

6.10537E-4, which meets the required SIL 2 performance.  

The optimization of our SIS architecture achieved a 

significant reduction in PFDavg, from an initial value of 2.1E-

2 to 6.10537E-4. This reduction represents a significant 

improvement in the safety integrity, positioning the SIS below 

the required PFDavg of 5E-3, thereby achieving compliance 

with SIL 2, which mitigates the risk of hazardous events, and 

ensures a safer operational environment for the De-ethanizer 

reflux drum V-2. In addition to enhancing safety, the 

optimized design also delivers substantial cost efficiency. The 

total acquisition cost was reduced to 21500 units, whereas the 

total proof-test cost was minimized to 5600 units. ensuring that 

the SIS delivers superior safety performance without 

exceeding budgetary constraints. 

Annual testing of the sensors ensures early detection of 

potential failures, while the more frequent testing of the final 

element addresses its higher likelihood of failure. This 

strategic balance between testing intervals and component 

criticality maximizes system availability, minimizes 

downtime, and reduces maintenance costs over the system's 

lifecycle. 

The performance of the GA in this optimization task 

underscores its robustness and effectiveness in solving 

complex, multi-variable, and constrained optimization 

problems. The rapid convergence to a stable solution, coupled 

with the consistent improvement in the objective function, 

highlights the algorithm’s capability to navigate intricate 

solution spaces efficiently. Sensitivity analysis further 

validated the robustness of the solution, demonstrating 

minimal deviations in the optimal PFDavg across different GA 

parameter settings, such as population size, mutation rate, and 

crossover rate. This stability indicates that the optimized 

solution is not only effective but also resilient to variations in 

optimization parameters. 

After optimizing the architecture of both the level 

transmitter and the isolated valve from 1001 to 1003, we will 

use the Fault Tree to illustrate the new design of our SIS as 

shown in Figure 7. 

Figure 7. Fault Tree related to the proposed architecture of the SIS 
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5. CONCLUSIONS

This study presents a comprehensive methodology for 

evaluating and optimizing the Safety Instrumented System 

(SIS) in the petrochemical industry, specifically focusing on 

the De-ethanizer Reflux Drum V-2 (I-1165). Through an 

integrated approach combining risk analysis, SIL allocation, 

system realization, validation, and optimization, the 

methodology ensures robust regulatory compliance, enhanced 

safety, and operational efficiency. 

The initial risk evaluation, conducted using the HAZOP 

study, LOPA method, and PHAST software, highlighted the 

potentially severe consequences of a leak scenario, 

emphasizing the critical necessity of an effective SIS. The 

LOPA analysis determined a required SIL 2 with a minimum 

PFDavg of 5E-3, while the initial SIS realization phase 

resulted in a PFDavg of 2.1E-2, corresponding to SIL 1. This 

discrepancy necessitated optimization, which was achieved 

using a Genetic Algorithm (GA). The optimized design 

achieved a 1oo3 architecture for sensors and final elements, 

significantly improving the PFDavg to 6.10537E-4, exceeding 

SIL 2 requirements. 

Beyond the technical enhancements, the optimization 

yielded considerable cost benefits. The lifecycle costs, 

including acquisition and proof-test expenses, were reduced to 

21,500 and 5,600 units, respectively. By strategically 

balancing the proof-test intervals and component 

redundancies, the new design minimized maintenance costs 

and downtime, ensuring an economically sustainable safety 

solution. 

Future research can expand this methodology by exploring 

its applicability to emerging SIS technologies, such as those 

involving machine learning-based predictive maintenance or 

advanced diagnostic algorithms. Additionally, adapting this 

approach to other high-risk sectors, including nuclear energy, 

aviation, or healthcare, can establish domain-specific best 

practices. Furthermore, integrating real-time risk monitoring 

systems with optimized SIS architectures could provide 

dynamic safety solutions that adapt to operational changes, 

enhancing resilience and responsiveness. 
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