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One of the leading causes in DM-blinded individuals is Diabetic retinopathy (DR) which 

should be diagnosed accurately at an initial stage to avoid severe complication. 

Conventional machine learning approaches failed in capturing subtle symptoms of early 

and advanced stages, however a weighted sum ensemble approach with ResNet50 as the 

base model tackles this issue. Our ensemble model significantly improved results from 

moderate with AUC values ranging 0.61 (Mild DR) to the top score of 93 (Moderate DR). 

The No and Severe stages also saw great improvements as both reached respectively an 

excellent level, attaining a maximum value on ROC-AUC equaling. 90 for No-DR and. 99 

in case of severe stage detection capabilities across all severity levels. The results further 

demonstrate that by combining a small number of diverse and complementary models, the 

ensemble method significantly reduces misclassification as well to achieve high accuracy 

in assigning DR stage which would be useful for improving diagnostic measures at clinical 

settings. 
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1. INTRODUCTION

Recently, the breakthrough in healthcare technologies has 

been brought by artificial intelligence (AI) with its application 

and potential to transform medical diagnostics notably 

evolved [1]. The introduction of AI techniques, primarily 

Image analysis using CAD (Computer Aided Diagnosis) has 

revolutionized the improvement in diagnostic specificity and 

efficiency. Considering the burden posed by chronic 

conditions, particularly higher prevalence rates of diabetic 

retinopathy (DR), a leading blinding disease worldwide; this 

is an important step forward. In this regard, the deployment of 

deep learning (DL) models in general and prominent 

architectures such as ResNet50 in particular have been at the 

front line making important contributions to timely diagnosis 

and appropriate control strategies for these diseases [2]. 

Various aspects of healthcare delivery have been 

transformed through AI in medical diagnostics. Despite how it 

may sound, using the traditional approach manual 

interpretation of clinical data for medical diagnostics created a 

host challenge in regards to speed, accuracy and scalability. 

But the rise of AI has sparked a change in mindsets towards 

increased automation and sophistication for analysis [3]. In 

particular, the ability of AI to analyze and interpret great 

volumes of clinical imaging data more accurately has been a 

boon. It is not simply an improvement of the current but a 

reimagining of what medical diagnostics can be. Perhaps, for 

the handling of heavy diagnostic tasks - so complex that few 

specialists are competent in them anywhere on this globe - 

Watson-like tools will do a marvelous job.  

A medical condition like diabetic retinopathy, a common 

complication of diabetes that can lead to blindness if untreated, 

perfectly typifies the kind of diagnosis AI could greatly 

improve. The diabetics population at risk of having DR have 

been reported to subsequently increase significantly in many 

countries and are very high burden among the working aged 

adults who if not detected, do occur visual impairment or 

blindness [4]. Current DR diagnostic pipeline focuses on 

ophthalmologists scrutinizing fundus images to detect signs of 

retinal damage, which represents the traditional approach. This 

approach is not only time-consuming but there are also 

limitations because of the availability of medical professional 

required for these tests and resources. Second, due to the 

subjective nature of manual examination, diagnostic results 

may vary among examiners - less than ideal for diseases that 

often require early detection before irreversible damage is 

done. 

Deep learning is subset of machine learning (also known as 

deep structured) and opulent with complex neural networks 

changes the landscape of medical image analysis specifically 

in detection of diabetic retinopathy. In the family of deep 

learning architectures, ResNet50 has been highlighted as a 

powerful model capable to learn effective features from 

massive datasets called in medical imaging domain and is 

resilient against problems such vanishing gradients for very 

deep networks [5]. How: This architecture uses residual 

learning, a shortcut that makes it easier for the network to train 

deeper nets by enabling training of those additional layers 

without needing them all to be learned on their own. In 

particular ResNet50 has been found to identify early DR better 

than any previous methodology, as it is capable of detecting 

unique and subtle patterns present in the retinal images which 

exist before traditional methods [6] suggested they are able. 

Deep learning models such as ResNet50 have been used for 
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automated classification of retinal images to detect presence 

or absence of microaneurysms, haemorrhages and exudates 

which are the key determinants in diagnosis and grading DR 

[4]. These advancements have greatly improved the diagnostic 

capacity and time required for diagnoses of these models. The 

advantage of the deep learning models is that they can process 

this patient quickly rather than manually screening volume, 

which further helps in bridging a gap between patient 

requirement and medical resources today [4]. 

The addition of reference alternatives including deep 

learning models such as ResNet50 into cardiovascular events, 

diabetic retinopathy and many other conditions diagnostic 

assures revolutionary evolution in the implementation status 

of AI across health care. Through the automation of such 

complex medical imaging analyses, these technologies not 

only enhance diagnostic accuracy and efficiency but also make 

crucial services scalable to wider populations. With the ever-

growing shot of diabetes around-the-globe, it is unlikely for AI 

and deep learning not to be included in managing 

complications from this debilitating condition unveiling a 

future where technology and healthcare meet delivering better 

patient outcomes [7-9]. 

While ensemble learning, in combination with deep 

learning has great potential in improving the predictive 

performance especially for complex tasks such as medical 

diagnostics. In this method, we combine various deep learning 

models together and form an ensemble, which usually 

provides more accurate predictions with better generalization 

than any single model can provide alone. To reduce overfitting 

and improve robustness of the predictions, ensemble methods 

combine outputs from different trained models - e.g., diverse 

flavors of convolutional neural networks or architectures like 

ResNet50 [10]. This is especially important in medical image 

analysis as the heterogeneity of data and subtle nature of 

important features necessitate serial diagnostic systems with 

extremely high reliability and precision. It can be thought of 

as a philosophy that combines the best features of different 

learning algorithms together in order to provide us with an 

overall framework which compounds from various biases and 

variances present in individual models. Consequently, not 

only does this union improve diagnostic accuracy but also 

confidence in clinical decision-making which results in better 

patient outcomes for conditions like diabetic retinopathy [11, 

12]. 

 

 

2. LITERATURE SURVEY 

 

Recent research has explored the application of ensemble 

learning strategies for DR detection. One study by Odeh et al. 

implemented an ensemble-based learning strategy to enhance 

DR detection by merging various classification algorithms 

into a sophisticated diagnostic model tested on the Messidor 

dataset. This approach achieved notable accuracies of 70.7% 

and 75.1% on InfoGainEval top 5 and the original dataset, 

respectively. Despite these results, the model's performance 

was limited by the availability of reliable datasets and medical 

records, which impacted its robustness and generalizability 

[13-17]. 

Another study described a novel method for DR diagnosis 

based on gray-level intensity and texture features extracted 

from fundus images using a decision tree-based ensemble 

learning technique. This model achieved a classification 

accuracy of 94.20% with an F-measure of 93.51%, 

demonstrating high reliability and robustness. However, 

similar to the previous study, the reliance on a single dataset 

may limit the model's applicability across different 

populations and conditions [4, 16, 17]. 

Investigators systematically reviewed the different machine 

learning techniques paired with DR detection and presented an 

overview over how differently these methods approach this 

task, identifying key research gaps. This latter observation was 

highlighted in a review of this field, which argued the need for 

standardized datasets and performance benchmarks to push it 

forward [18-20]. 

Similarly, in another work hybrid ensemble learning model 

was designed to facilitate the prediction and classification of 

DR through efficient blend machine learning techniques with 

deep-learning ones. Although their approach showed superior 

detection performance and generalization capabilities over a 

broad range of datasets, the resource-intensive nature also 

limits its applicability for low-resource settings [21, 22]. 

Other major contributions involved domain adaptation 

approaches to eschew dataset bias and knowledge distillation 

with reduced-order models for fast-paced DR classification on 

mobile devices. Even though these studies help in towards 

developing strong and readily available DR changed systems, 

they have not been thoroughly fine-tuned to increase overall 

performance of real time application [23-25]. 

Despite these advances, a number of knowledge gaps are 

present. Comprehensive pipelines that incorporate all 

intermediate steps of DR detection, from image pre-processing 

to an overall label/classification for the same are required. 

Secondly, other studies need to focus on the fusion of multiple 

classifiers for better performance. Generalization across 

diverse datasets and real-time, mobile applications are other 

key areas for future investigation. These gaps may be 

addressed to provide more dependable and accurate solutions 

for the early detection as well as treatment of DR, thereby 

ameliorating global burden associated with this condition. 
 

 

3. METHODOLOGY  
 

3.1 General algorithm 
 

It is concluded that an efficient approach has been 

developed for preprocessing and grading of retinal images 

aiming at improving image quality to make it suitable a more 

accurate classification. This starts with Image Enhancement to 

enhance the visual characteristics and remove noise from the 

retinal images. This step uses a intensity of Gaussian Blur and 

Image Resizing with Blending algorithms. The image is first 

scaled to a set size, in order to maintain same dimensions 

across all the images. Upon resizing, a Guassian blur is used 

to soften the image reducing noise while still protecting 

important signifiant information. The blurred image is then 

added to the original image using certain weights that 

emphasize important patterns while reducing noise and make 

it ready for subsequent analysis. 

Then the process moves on to Histogram Equalization, 

particularly using Contrast Limited Adaptive Histogram 

Equalization (CLAHE). Cellular image processing is an 

optional step used to increase the contrast and dynamic range 

of the figure. CLAHE rescales intensity values in the image to 

use a full dynamic range, improving both appearance and 

analysis. We strive to retain the black appearance of retinal 

features in images, and this is key for depicting these findings 

adequately. 
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The proposed methodology follows a systematic four-phase 

approach as illustrated in Figure 1. The process begins with 

image pre-processing to standardize the input, followed by 

enhancement techniques to improve image quality. The third 

phase incorporates deep learning for feature extraction and 

initial classification, culminating in the final phase of 

ensemble learning to combine multiple model predictions for 

improved accuracy. This structured pipeline ensures thorough 

processing of retinal images before making diagnostic 

predictions.  

 

 
 

Figure 1. The four-phase approach for advanced medical 

diagnostics  

 

3.2 Image enhancement 

 

GaussianBlur and Image Resizing with Blending is a 

commonly used computer vision algorithm in the image 

processing to alter images. Algorithm 1 includes several steps 

such as resizing the image, blurring to the resized image with 

Gaussian blur and blending blurred because of original images. 

This algorithm is use to decrease the noise pixels available in 

an image along with preservation of vital features. This 

algorithm starts by entering an image and measuring this 

height, width. To the end of this, it measures both parameters: 

how tall or wide is the figure and accordingly resizes. After 

having found the target size dimensions, this is what it does 

behind the scenes to make sure these are exact sizes: This is 

done by generate a new image of the target dimension, and 

using interpolation algorithm to substitute pixels. The 

resulting image is then Gaussian blurred in the next step of the 

algorithm This operation smooths the image, decreasing noise 

and simplifying identification of useful features. The 

algorithm uses a kernel of given size and sigma for applying 

Gaussian blur. sigma: Value, Sigma modulates amount of 

smoothing to do in the image (Smaller value gives fewer 

smooth images). Finally, these weights are used to blend the 

blurred image with its corresponding original. These weights 

control what percentage of each image is to be included in the 

final blended image. The gamma is a fixed weight that is added 

to all the pixels in image, and alpha & beta weights determines 

how original (alpha=1) or smoothed (out of focus looks like 

labels9(alpha=0.5)) are linearly combined from source image 

+ blurred version respectively 

For example, we can use the algorithm to diagnose and 

treatment diabetic retinopathy from analyzing retina images. It 

can be applied to image preprocessing before doing 

lesion/abnormality matching etc. Use of Gaussian blur 

operation to smoothen the image and reduce noise so that 

required features for diagnostic purposes stand out. 

 

Algorithm 1. Image enhancement using Gaussian Blur 

Input:  

• sourceImage: The original image to be modified. 

• sigmaValue: The sigma value of the Gaussian blur 

operation.  

• gammaValue: A static weight that will be added to all 

pixels of the image.  

• alphaValue: The weight of the original image in the final 

blended image.  

• betaValue: The weight of the Gaussian blurred image in 

the final blended image.  

• inputDimensions: The dimensions of the image that the 

model accepts as input.  

• kernelSize: The size of the kernel to apply the Gaussian 

blur. 

Output:  

• blurredImage: The Gaussian blurred image.  

• resizedImage: The dynamically resized image.  

• blendedImage: The final blended image. 

Start the algorithm. 

Get the height and width of the sourceImage. 

Calculate the heightToWidthRatio as the integer division of 

height by width. 

Calculate the newHeight as the height of the 

inputDimensions. 

Calculate the newWidth as newHeight multiplied by 

heightToWidthRatio. 

Create a new resizedImage with dimensions (newHeight, 

newWidth). 

Apply Gaussian blur on resizedImage with a kernel of size 

kernelSize and sigma value sigmaValue to obtain 

blurredImage. 

Blend the sourceImage and blurredImage using the 

alphaValue and betaValue weights, and add gammaValue 

to the result to obtain blendedImage. 

End the algorithm 
 

In the image enhancement phase, the selection of Gaussian 

blur parameters was crucial for optimizing feature extraction. 

The Gaussian blur kernel size and sigma values were 

determined through systematic experimentation, considering 

their impact on both noise reduction and preservation of DR-

relevant features. 

Based on this analysis, we selected a 3×3 kernel with σ=1.0 
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as optimal parameters. As shown in Table 1, this combination 

provides an effective balance between noise reduction and 

feature preservation, particularly crucial for early DR 

detection. The 3×3 kernel preserves fine vessel structures 

while the sigma value of 1.0 ensures sufficient smoothing 

without excessive loss of small lesions characteristic of early 

DR stages. 
 

3.2.1 Histogram equalization 

Histogram equalization is a technique used in digital image 

processing to improve the contrast and dynamic range of an 

image. The technique works by adjusting the intensity values 

of the image to span the full range of possible values, which 

can help to make the image more visually appealing and easier 

to analyze. The basic idea behind histogram equalization is to 

transform the image's intensity histogram into a more uniform 

distribution. The intensity histogram is a plot of the number of 

pixels in the image at each intensity value. In an ideal case, a 

histogram that is uniformly distributed would indicate that the 

image has a good contrast and all intensities are well 

represented.  

 

Table 1. Effect of Gaussian blur parameters on feature preservation and noise reduction in DR images 

 
Kernel Size Sigma Value Feature Preservation Noise Reduction Impact on DR Features 

3×3 0.5 High Minimal Preserves fine vessels but limited noise reduction 

3×3 1.0 Moderate-High Moderate Good balance for early DR signs 

5×5 1.0 Moderate High Suitable for moderate/severe DR features 

5×5 1.5 Low-Moderate Very High Excessive smoothing of small lesions 

7×7 1.0 Low Extreme Loss of critical diagnostic features 

 

Table 2. Impact of CLAHE parameters on image enhancement across DR severity levels 

 
Grid Size Clip Limit No DR Mild DR Moderate/Severe DR Selected 

2×2 2.0 Over-enhancement of normal vessels Good microaneurysm visibility Excessive contrast in lesions No 

4×4 2.0 Balanced vessel enhancement Optimal microaneurysm detection Clear hemorrhage visualization No 

8×8 2.0 Best vessel-background contrast Excellent lesion differentiation Optimal pathological feature detection Yes 

8×8 3.0 Noise amplification Artifact introduction Over-enhancement of lesions No 

16×16 2.0 Loss of fine vessel detail Reduced sensitivity to small lesions Blurred lesion boundaries No 

 

For example, we can use the algorithm to diagnose and 

treatment diabetic retinopathy from analysing retina images. 

For example, it can be applied to image preprocessing before 

doing lesion/abnormality matching etc. Use of Gaussian blur 

operation to smoothen the image and reduce noise so that 

required features for diagnostic purposes stand out. 

 

 
 

Figure 2. Example of histogram equalization 

 

CLAHE what stands for Contrast Limited Adaptive 

Histogram Equalization is a powerful digital image processing 

now which to tell the truth needs some pieces of work to take 

full advantages of. This is an extended version of the 

traditional histogram equalization which tends to over-amplify 

different parts of the image and thus it enhances contrast 

within regions but also increases their noise. Histogram 

equalization - CLAHE is a variant of histogram equalization, 

that constrains the contrast enhancement locally to prevent 

from amplification of noise. As the black background can 

affect the results of CLAHE, this algorithm checks for pixels 

in which there is at least one pixel with a black color and keeps 

it that way on the processed image.  

Figure 2 demonstrates the effectiveness of histogram 

equalization in enhancing image contrast. The comparison 

shows both the visual effect on a sample image and the 

corresponding histogram distributions before and after 

equalization. The right histogram (old) shows an uneven 

distribution of pixel intensities, while the left histogram (new) 

displays a more balanced distribution across the available 

range, resulting in improved contrast and feature visibility. 

This enhancement step is crucial for highlighting subtle 

features that may be indicative of different stages of diabetic 

retinopathy. We then present the pseudocode of CLAHE in 

Algorithm 2. 

The effectiveness of CLAHE in enhancing DR images 

heavily depends on two key parameters: grid size and contrast 

limit threshold. Based on extensive testing, as shown in Table 

2, we selected an 8x8 grid size with a clip limit of 2.0, which 

provided optimal results across all DR severity levels. The 8x8 

grid size offers sufficient local contrast enhancement for subtle 

DR features while preserving global image structure and 

maintaining balanced enhancement across different image 

regions. Additionally, the clip limit of 2.0 ensures controlled 

histogram equalization, prevents over-enhancement in high-

contrast regions, and reduces noise amplification while 

maintaining lesion visibility. Smaller grid sizes (2x2, 4x4) led 

to over-enhancement of normal vessels and excessive contrast 

in lesions, while larger sizes (16x16) resulted in loss of fine 

vessel detail and reduced sensitivity to small lesions. Similarly, 

higher clip limits (3.0) introduced artifacts and over-enhanced 

lesions, particularly in moderate and severe DR cases. 
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Algorithm 2. Pseudocode of Contrast Limited Adaptive 

Histogram Equalization (CLAHE) 

Input: 

(1) GaussianImage  

(2) ClipLimit  

(3) GridSize  

(4) DynamicResizedImage  

(5) colorBlack  

Output:  

Resulted Image  

start algorithm  

CLAHE←CreateCLAHE(ClipLimit,GridSize) 

for each w in len(ProcessedImage.width) do  

    for each h in len(ProcessedImage.height) do 

       if DynamicResizedImage[w][h]=colorBlack then  

          ProcessedImage[w][h] ← DynamicResizedImage[w][h]  

       end if  

     end for  

end for  

end  
 

3.2.2 Class imbalance mitigation 

To address the class imbalance inherent in DR datasets. in 

Table 3, we implemented class weighting during model 

training. The weight for each class was calculated using the 

formula: 𝑐𝑙𝑎𝑠𝑠𝑤𝑒𝑖𝑔ℎ𝑡 =
𝑡𝑜𝑡𝑎𝑙𝑠𝑎𝑚𝑝𝑙𝑒𝑠

(𝑛𝑢𝑚𝑐𝑙𝑎𝑠𝑠𝑒𝑠∗ 𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑝𝑒𝑟𝑐𝑙𝑎𝑠𝑠
)

. This 

approach assigns higher weights to underrepresented classes 

(Severe and Proliferative DR) and lower weights to 

overrepresented classes (No DR and Mild DR) during the loss 

calculation phase, effectively balancing the model's learning 

process across all DR severity grades.As shown in Table 3, 

higher weights were assigned to underrepresented classes such 

as Proliferative DR (5.71) and Severe DR (2.94), while lower 

weights were given to overrepresented classes like No DR 

(0.37) and Mild DR (0.81). This weighting scheme effectively 

balanced the model's learning process across all DR severity 

grades during the loss calculation phase. 

 

Table 3. Calculated class weights for addressing class 

imbalance in DR grade classification 

 

DR Grade Dataset Distribution (%) 
Calculated 

Weight 

No DR 53.7 0.37 

Mild DR 24.8 0.81 

Moderate DR 11.2 1.78 

Severe DR 6.8 2.94 

Proliferative DR 3.5 5.71 

 

Algorithm 3. Pseudocode of weighted sum-based ensemble 

for diabetes retinopathy classification 

Input:  

training feature vectors  

testing feature vectors  

classes: number of classes in the problem set  

Output:   

final predictions after the weighted sum approach 

Algorithm: 

1. Initialize an empty array weights of size classes 

with all elements set to zero. 

2. Initialize an empty array final_predictions. 

3. For each classifier in classifiers do the following:  

a. Train the classifier on the training feature vectors. 

b. Initialize weights_matrix[num_classifiers] with equal 

weights (1/num_classifiers) 

c. For each classifier in classifiers:  

   1. Evaluate performance on validation_set 

   2. Calculate classification accuracy per class  

   3. Update weights based on per-class performance: 

  4.weight[i]=classifier_accuracy[i] / 

sum(all_classifier_accuracies) d. Store optimized weights in 

weights_matrix 

b. Obtain the predicted probabilities for each class for the 

testing feature vectors using the classifier.  

c. Save the predicted probabilities in an array prediction. 

4. For each testing feature vector do the following:  

a. Initialize the array weights with all elements set to zero.  

 b. For each predicted probability in the corresponding 

predictions array do the following: 

           i. Add the predicted probability to the corresponding 

weight in the weights array. 

 c. Find the index of the class with the highest weight. 

 d. Append the corresponding class label to the 

final_predictions array. 

5. Return the final_predictions array. 

 

3.2.3 Ensemble based classification 

Algorithm 3 uses a weighted sum approach to predict class 

labels for a set of testing feature vectors, based on the predicted 

probabilities of each class obtained from a set of classifiers. 

The algorithm initializes an empty array of weights and an 

empty array of final predictions. The weights for each 

classifier in the ensemble are determined through a 

performance-based optimization process on a validation 

dataset. Initially, each classifier is assigned equal weights (1/N, 

where N is the number of classifiers). These weights are then 

refined based on each classifier's performance on the 

validation set, specifically their accuracy in detecting different 

DR stages. For each classifier, a weight is calculated as the 

ratio of its classification accuracy for a particular class to the 

sum of all classifiers' accuracies for that class 

(weight[i]=classifier_accuracy[i] / 

sum(all_classifier_accuracies)). This creates a weight matrix 

where better-performing classifiers for specific DR stages 

receive higher weights, effectively allowing the ensemble to 

leverage the strengths of individual classifiers. The weighted 

probabilities are then combined during prediction to produce 

the final classification, with the weights dynamically adjusting 

the contribution of each classifier based on their demonstrated 

reliability for different DR severity levels. 

For each classifier, the algorithm trains the classifier on the 

training feature vectors, uses the trained classifier to obtain the 

predicted probabilities for each class for the testing feature 

vectors, and saves the predicted probabilities in an array called 

predictions. For each testing feature vector, the algorithm 

initializes the array of weights with all elements set to zero and 

calculates the weights for each class based on the predicted 

probabilities obtained from the classifiers. The algorithm then 

finds the index of the class with the highest weight and 

appends the corresponding class label to the final predictions 

array. The output of the algorithm is an array of final 

predictions for the class labels of the testing feature vectors. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS  

 

Figure 3 presents retinal image exhibits the intricate 

vascular structure characteristic of a healthy eye, with a clear 
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view of the optic disc and blood vessels radiating outward. The 

absence of hemorrhages, exudates, or significant vascular 

abnormalities suggests this is a normal fundus, making it an 

essential baseline for comparison in diabetic retinopathy 

detection algorithms. 

 

 
 

Figure 3. Fundoscopic image of a healthy retina serving as a 

control reference in diabetic retinopathy dataset analysis 

 

4.1 Qualitative results  

 

The qualitative results presented in Figure 4 demonstrate a 

comprehensive analysis of retinal images processed through 

various filters, representing different stages of diabetic 

retinopathy (DR) severity. Each row showcases a progression 

of image processing, displaying the original image alongside 

its processed versions using Gaussian blur, CLAHE, and a 

combined CLAHE-Gaussian approach. 

For Class 0 (No DR), the original images display healthy 

retinal characteristics, including a clear fundus and distinct 

blood vessel patterns radiating from the optic disc. When 

Gaussian filtering is applied, while it effectively reduces noise, 

it also introduces a degree of blurring that could potentially 

mask subtle vascular details crucial for early detection. The 

CLAHE processing significantly enhances image contrast, 

revealing previously subtle features and potentially aiding in 

early DR detection. The combined CLAHE-Gaussian 

approach attempts to balance noise reduction and contrast 

enhancement, though some fine details may be compromised 

in the process. 

The progression from Class 1 through Class 5 demonstrates 

increasingly severe DR manifestations, characterized by the 

presence of microaneurysms, hemorrhages, and 

neovascularization. In these classes, the Gaussian blur, while 

reducing noise, poses challenges for identifying mild-to-

moderate DR features. CLAHE processing proves particularly 

effective in enhancing the visibility of pathological changes 

through histogram equalization, making disease features more 

prominent. The combined CLAHE-Gaussian approach offers 

a balanced solution, though maintaining complete detail 

preservation remains challenging. 

Analysis of both Kaggle and Messidor datasets reveals the 

significant impact of these processing techniques on model 

training and validation. The preprocessing steps demonstrate 

varying effectiveness across different DR stages, with CLAHE 

showing particular strength in highlighting lesions and 

abnormalities in advanced stages, while Gaussian blurring 

contributes to noise reduction but may affect the detection of 

subtle early-stage indicators. 

The implementation of these image processing techniques 

presents important trade-offs in diagnostic algorithm 

development. Gaussian blurring significantly impacts the 

detection sensitivity of early-stage DR while potentially 

maintaining effectiveness for advanced stages. Conversely, 

CLAHE enhances sensitivity across all stages but particularly 

benefits advanced disease detection. The optimal processing 

approach depends largely on the specific diagnostic 

requirements and the need to minimize bias across different 

DR stages. 

The effects of different processing techniques on both 

normal and pathological retinal features across DR severity 

classes are summarized in Table 4, showing how each method 

impacts the visibility of key diagnostic features. 

 

 
Class 0 

 
Class 1 

 
Class 2 

 
Class 3 

 
Class 4 

 

Figure 4. Series of retinal images depicting various stages of 

diabetic retinopathy, processed through Gaussian CLAHE
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Table 4. Qualitative analysis of retinal image processing techniques and their effects on DR detection across severity classes 

 
DR Class Processing Technique Visual Characteristics Processing Effects 

Class 0 (No DR) 

Original Image 

Clear, bright fundus 

Well-defined blood vessels 

Clear optic disc 

Baseline reference 

Natural feature presentation 

Original noise levels present 

Gaussian Blur 

Notable blurriness 

Reduced noise 

Obscured fine vascular details 

Noise reduction achieved 

Loss of fine vessel definition 

Smoothing of tissue boundaries 

CLAHE 

Increased contrast 

Enhanced faint features 

Better vessel visibility 

Enhanced local contrast - Improved feature 

differentiation 

Better visualization of subtle structures 

CLAHE + Gaussian 

Balanced noise reduction 

Moderate contrast enhancement 

Some loss of fine details 

Combined noise reduction and contrast enhancement 

Preservation of major structures 

Balanced detail retention 

Class1-5 

(Increasing 

Severity) 

Original Image 

Progressive appearance of: 

Micro aneurysms 

Hemorrhages 

Neovascularization 

Natural presentation of pathology 

Variable contrast of lesions 

Original image artifacts present 

Gaussian Blur 

Blurred pathological features 

Harder to identify mild 

moderate stages 

Loss of subtle details 

Reduced noise in lesion areas 

Potential loss of early DR markers 

Smoothing of lesion boundaries 

CLAHE 

Enhanced disease feature visibility 

Improved histogram equalization 

Better pathological change visualization 

Increased lesion contrast 

Enhanced pathological feature detection 

Improved visualization of vascular changes 

CLAHE + Gaussian 

Good balance of noise redacts 

All details maintains 

Enhance major pathological features 

Optimized noise 

Contrast balance 

Preserved significant pathological features 

Moderate detail preservation in lesion area 

 

4.2 Quantitative results  

 

The experimental design focused on evaluating our 

weighted sum ensemble approach using the ResNetV2 

architecture for DR classification. The architecture was 

implemented with five additional layers, including 

GlobalAveragePooling, two Dropout layers (0.5 rate), a Dense 

layer (2048 neurons), and a Softmax layer for classification. 

As shown in Table 5, the model was trained using carefully 

selected hyperparameters: 8 epochs and a batch size of 8 to 

handle high-resolution images, with a learning rate of 1e-4 

using Adam optimization and cross-entropy loss function. The 

input images were standardized to 640×640 pixels to maintain 

consistent spatial dimensions during training. 

As shown in Table 5, we maintained uniform 

hyperparameter settings across all base models while using the 

same core architecture. 

 

Table 5. Model training configuration parameters 

 
Parameter Value Description 

Epochs 8 
Number of complete passes through 

the training dataset 

Batch Size 8 
Number of training examples 

processed in one iteration 

Learning 

Rate 
1e-4 

Initial learning rate for gradient 

descent 

Optimization 

Algorithm 
Adam 

Adaptive optimization algorithm for 

training 

Loss 

Function 

Cross-

entropy 

Function used to measure prediction 

errors 

Input Image 

Dimensions 
640×640 

Width and height of input images in 

pixels 

 

4.2.1 Kaggle dataset 

(1) Without ensemble 

The model performance can be analyzed through several 

metrics as shown in Figures 5-7. As illustrated in Figure 5 

(Training and validation accuracy curves for ResNet50 model 

without ensemble over epochs), the training demonstrated 

substantial improvement in accuracy, reaching 0.82 by the 8th 

epoch, with validation accuracy similarly improving to 0.81. 

This training curve indicates effective learning progression 

and good generalization capabilities on new images. The 

confusion matrix presented in Figure 6 (Confusion matrix 

showing classification performance across different DR stages 

for non-ensemble model) reveals the classification distribution 

across different stages. When examining the AUC values 

shown in Figure 7 (Receiver Operating Characteristic (ROC) 

curves and corresponding Area Under Curve (AUC) values for 

different DR stages using non-ensemble model), the model 

performed notably well in detecting Moderate and Severe DR 

stages, achieving an AUC value of 0.93. These stages typically 

present clearer and more easily recognizable lesions, which the 

preprocessing techniques helped amplify. However, Mild DR 

detection proved more challenging with an AUC of 0.61, 

likely due to the subtle nature of symptoms at this stage, which 

may not be well-emphasized through the employed 

preprocessing techniques. The model showed varying 

sensitivity across stages, with NPDR achieving an AUC of 

0.65 and Proliferative DR (the most advanced stage) reaching 

an AUC of 0.60. The relatively lower performance in 

Proliferative DR classification can be attributed to the 

complexity and variability of symptoms at this advanced stage, 

which poses challenges for the ResNet50 architecture under 

standard training conditions. 

(2) With ensemble  

After evaluating individual model performance, we 

implemented a weighted sum ensemble method to combine 

outputs from multiple models for improved prediction 

accuracy. As shown in Figures 8 and 9, this ensemble 

approach significantly enhanced detection rates across all DR 

stages. Most notably, the AUC for Proliferative DR increased 
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from 0.60 to 0.74. 

The confusion matrix presented in Figure 8 demonstrates 

the improved classification accuracy achieved through 

ensembling across all DR stages. Of particular note is the high 

classification accuracy for 'No DR' cases, with a marked 

reduction in false positive rates. The enhanced detection 

capabilities for Moderate and Severe stages, as visualized in 

the confusion matrix, provide strong evidence that our 

ensemble method improves performance in identifying 

symptomatic DR cases. 

 

 
 

Figure 5. Training and validation accuracy curves for 

ResNet50 model without ensemble, showing convergence at 

0.82 and 0.81 respectively 

 

 
 

Figure 6. Confusion matrix of classification performance 

across different DR stages for non-ensemble model 

 

 
 

Figure 7. ROC curves and AUC values for different DR 

stages using non-ensemble model (AUC range: 0.61-0.93) 

 
 

Figure 8. Confusion matrix for ensemble model of improved 

classification accuracy across DR stages, particularly for 'No 

DR' cases 

 

 
 

Figure 9. ROC curves and AUC values for different DR 

stages using ensemble model, showing improved detection 

(Proliferative DR: 0.60 to 0.74) 

 

The ROC curves displayed in Figure 9 further validate the 

effectiveness of the ensemble approach. The curves for most 

DR stages show significant elevation above the random 

guessing line (diagonal), indicating robust predictive 

performance. The variability in AUC values across different 

DR stages highlights the model's varying capabilities, in 

conjunction with preprocessing techniques, in handling the 

diverse spectrum of DR symptoms. While the ensemble model 

shows excellent performance in clear-cut cases, it still faces 

challenges in detecting subtle features characteristic of milder 

stages and the complex presentations of highly advanced 

stages. 

 

4.2.2 Messidor dataset 

The Messidor dataset experiments followed a systematic 

division and validation strategy to ensure reproducibility. We 

employed a stratified split approach to maintain class 

distribution across all subsets. From the total of 1200 retinal 

images in the Messidor dataset, we implemented a 70-15-15 

split ratio: 840 images for training, 180 for validation, and 180 

for testing. 

 

(1) Without ensemble  

The model's performance across different stages of DR can 

be analyzed through the ROC curves and confusion matrix 

shown in Figures 10 and 11. As demonstrated in Figure 10, the 

model achieved varying levels of success in detecting different 

DR stages. The detection performance was notably better for 
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No DR and Moderate DR cases, with AUC values reaching 

0.87 and 0.93 respectively. However, the model struggled with 

Mild and Proliferative DR stages, achieving substantially 

lower AUC values of 0.61 and 0.60 respectively.  

The confusion matrix presented in Figure 11 reveals 

significant challenges in classification accuracy, particularly 

when distinguishing between adjacent severity levels. This is 

especially evident in the misclassification patterns between 

Mild and Moderate DR stages, where the model shows 

considerable difficulty in making accurate distinctions 

between these closely related severity levels. 

 

 
 

Figure 10. ROC curves and AUC values on Messidor dataset 

using non-ensemble model (No DR: 0.87, Moderate: 0.93, 

Mild: 0.61, Proliferative: 0.60) 

 

 
 

Figure 11. Confusion matrix for non-ensemble model on 

Messidor dataset, showing misclassification patterns between 

adjacent DR stages 

 

(2) With ensemble 

The ensemble model's improved performance is clearly 

demonstrated in Figures 12 and 13. As shown in Figure 12, the 

ROC curves indicate substantial improvements in accuracy 

across all DR stages after implementing the ensemble 

approach. Most notably, the AUC values increased 

significantly for No DR and Severe DR stages, reaching 0.90 

and 0.99 respectively, demonstrating exceptional diagnostic 

accuracy. 

The confusion matrix presented in Figure 13 reveals 

enhanced discriminative capabilities of the ensemble model, 

particularly in the critical Severe and Proliferative stages. The 

true positive rates for Moderate and Severe DR stages showed 

marked improvement, increasing from 0.778 to 0.90 and from 

0.556 to 0.58, respectively. The matrix also demonstrates a 

notable reduction in misclassifications, especially in the 

critical Severe and Proliferative stages. 

 

 
 

Figure 12. ROC curves and corresponding AUC values for 

the ensemble model evaluated on the Messidor dataset 

 

 
 

Figure 13. C onfusion matrix for the ensemble model on the 

Messidor dataset demonstrates improved detection rates for 

the Moderate (0.90) and Severe DR (0.58) stages 

 

The improvement in AUC values across most DR stages 

following the implementation of the weighted sum ensemble 

approach suggests effective leveraging of individual model 

strengths. This is particularly evident in the model's enhanced 

ability to distinguish between different DR stages. The 

dramatic increase in performance for Severe DR stage 

detection (reaching an AUC of 0.99) is especially significant, 

given the crucial importance of accurate identification of 

severe cases for timely treatment intervention. 

 

(3) Classification confusion analysis 

For the Kaggle Dataset, examination of the confusion 

patterns reveals important insights into DR grade 

misclassification. Without ensemble methods, there was 

notable confusion between adjacent severity grades, 

particularly in the mild-to-moderate transition where the 

model achieved only 0.61 AUC. This confusion can be 

attributed to several factors. 

The primary factor is subtle feature progression. The 

transition between mild and moderate DR is characterized by 
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gradual changes in the number and size of microaneurysms 

and small hemorrhages. The model particularly struggled with 

cases where these features were just crossing the threshold 

between grades, suggesting a limitation in capturing these 

nuanced transitions. 

Analysis of misclassification patterns in the Messidor 

Dataset revealed specific transition challenges. In the No DR 

to Mild DR transition, where AUC improved from 0.87 to 0.90 

with ensemble, confusion primarily occurred in cases with 

very early microaneurysms that could be mistaken for normal 

vascular variations. For Moderate to Severe DR transition, 

where AUC improved from 0.93 to 0.99, misclassification was 

most common in cases where the quantity of hemorrhages was 

borderline between grades. In the Severe to Proliferative DR 

transition, even with ensemble methods, some confusion 

persisted (improved to 0.58) due to the variable presentation 

of neovascularization. 

After implementing the weighted sum ensemble approach, 

there was significant improvement in distinguishing between 

adjacent grades. The ability to differentiate between no DR 

and mild DR improved as the ensemble leveraged multiple 

perspectives on early pathological changes. Moderate-to-

severe classification showed the most dramatic improvement 

(reaching AUC 0.99) as the ensemble effectively combined 

evidence of progressing disease markers. However, challenges 

remained in cases where features were transitional between 

grades, particularly in the early stages where pathological 

changes were subtle. 

The results suggest that while the ensemble method 

significantly improved classification accuracy, inherent 

challenges remain in cases where DR severity exists at the 

boundaries between grades. This reflects the continuous nature 

of disease progression versus the discrete nature of severity 

grading systems. 

 

 

5. CONCLUSION AND FUTURE WORKS 

 

Diabetic Retinopathy is a growing cause of blindness in 

diabetic patients, and early detection and treatment are 

essential for effectively preventing DR-related disability. This 

paper aimed to investigate deep learning schemes on 

enhancing their ability in DR diagnosis as well as their 

superiority over traditional quantification methodology in 

recent decades. Specifically, the paper emphasized 

strengthening diagnostic ability using a Weighted Sum 

Ensemble method with ResNet50 as the basic architecture. 

Among the first experiments implemented on ResNet50 model 

without any modification, it was observed that prediction 

accuracy is inconsistent across DR stages, with relatively poor 

performance in predicting Mild and Proliferative conditions. 

The challenge here is that the phenomenology of these phases 

has subtle and diverse forms, not well-represented by standard 

processing methods. 

After modifying the consensus model by implementing an 

ensemble method, performance improved for all stages of DR: 

AUC [No DR] increased from 0.87 to 0.90, and a particularly 

dramatic improvement in accuracy was achieved for detection 

of Severe DR (AUC=0.99). This suggests that the ensemble 

method is better at balancing class bias and improves feature 

extraction to enhance overall diagnostic accuracy. 

The success of the ensemble model illustrates its potential 

application in real-world clinical practice where timely 

identification of any DR stage is vital for appropriate treatment 

interventions. It also provides evidence on how preprocessing 

and ensemble techniques become key to working around the 

limited performance of traditional CNNs in medical imaging 

cases characterized by high variability, simplifying otherwise 

cumbersome data. 

While we acknowledge the importance of model robustness, 

several aspects remain to be explored in future work. These 

include evaluating performance under different illumination 

conditions, testing with varying image qualities, analyzing 

model robustness against different noise levels, and assessing 

performance with images from different equipment sources. 

Additionally, further advancement in these ensemble 

strategies will enable their application to different expert 

review of Medical Imaging tasks to improve health diagnosis 

outcomes. 

Finally, for the detection of DR stages in retinal images, a 

good balance between computational complexity and 

diagnostic accuracy can be achieved using the weighted sum 

ensemble model. The study carries significant potential for 

advancing AI expertise in eye care and improving the 

diagnosis, management, and treatment of complications that 

diabetic practitioners encounter. 
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