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Fake colorized image detection has become a vital challenge in this digital content 

manipulation era, which highly affects the security, authenticity, and trustworthiness of 

visual data. Most of the current methods fail to provide proper identification of fake images 

in cases of complex textures and minute color variations. We present an advanced end-to-

end CNN-based framework to effectively address these challenges. In this way, our 

approach combines multiscale feature extraction with an attention mechanism, which can 

make the model sensitive to local fine-grained features to improve its ability of 

distinguishing between real and fake images. Finally, the proposed method was compared 

to two state-of-the-art models, PanColorGAN and CCAR-TAR, in different scenarios. 

These have shown significant improvements in terms of accuracy and robustness; the 

proposed framework significantly reduced errors in challenging tasks such as classification. 

In particular, the model performed better for cases that were difficult to handle with 

traditional methods: detecting intricate textures and minor color discrepancies. All these 

hints at the fact that such a novel framework enhances accuracy in the detection of fake 

images but also presents one of the most reliable, adaptive solutions for a host of image 

analysis applications. Thus, this work may constitute a useful contribution to developing 

effective ways of ensuring veracity and authenticity in, among other areas, the digital 

forensics segment, content verification, media authenticity, and will presumably represent 

an interesting direction in prospective research and development regarding ways to fight 

digital manipulation. 
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1. INTRODUCTION

While image manipulation is an easy thing in the modern 

digital age—due to the advancement in sophisticated image 

editing tools and techniques—the authenticity of an image 

being shared has become one of the widely questioned aspects 

nowadays across all platforms [1]. The generation of fake 

colorized images—where grayscale images are colorized with 

misleading or inaccurate colors—stands among such 

manipulations. Such images can distort historical records, 

propagate misinformation, and deceive viewers, and their 

detection calls for a robust method of detection [2]. 

The challenge in this area constitutes the fact that, up to this 

date, the current state of computer vision and deep learning 

cannot efficiently detect forged colorized images accurately 

[3]. Traditional methods usually focus on heuristic-based 

methods and simple feature extraction, hence not able to give 

expected results after complex textures or subtle changes in 

color hues with sophisticated color manipulation techniques 

[4]. Furthermore, the existing deep models on image 

manipulation detection such as PanColorGAN [5] and CCAR-

TAR [6], although powerful, are not able to distinctly make 

out the authentic and manipulated images explicitly in some 

delicate scenes. This indicates that critical scientific gaps exist 

in current studies, which this research has wished and is going 

to deal with. 

Not much can be said regarding the detection of reliable 

methods for fake colorization of images. Since both these 

aspects-digitally modified contents and historical records-may 

have a considerable number of shares to shape or restore 

public opinions, the task of maintaining integrity with regards 

to veracity in visual data is crucial. Most of the conventional 

detection techniques suffer from higher false positives and 

false negatives in some challenging situations; such incidents 

may even question the authenticity verification process in 

digital content [7]. This requires the development of more 

sophisticated and accurate models that can handle the 

challenges posed by modern image manipulations [8]. 

A crucial technique helping to detect manipulated images is 

color discontinuity detection, practically for fake colorized 

images that exhibit the unnatural transitions in color gradients 

characteristic of artificial manipulations. Sudden changes in 

color, inconsistent distributions of hue, and unnatural 

saturation levels are indicators of algorithm-based colorization 

that can usually be distinguished from genuine photographic 

blending [9].  

Edge-based segmentation, color gradient analysis at 

multiple scales, and chromatic difference modeling are but a 
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few methods explored in several studies for the detection of 

chromatic inconsistencies. All three searches will uncover 

those areas in manipulated images where unnatural transitions 

occur, thus making them extremely relevant to fake colorized 

image detection [10].  

To the extent of proving able to add charms to the detection 

of image forgery, explorations are on to integrate color 

discontinuity detection with deep learning models. Bringing 

chromatic edge techniques into CNN-based architectures has 

improved classification accuracy by accentuating unnatural 

color transition detection [11].  

Incorporating color discontinuity detection within fake 

image analysis strengthens their firepower to look for fine 

inconsistencies which may not be very clearly visible. 

Processing the abrupt color transitions and unnatural blending 

patterns enhances the strength of fake colorized image 

detection models [12].  

The paper bridges the gap by proposing a unified CNN 

framework that effectively leverages multiscale feature 

extraction and attention mechanisms, making for improved 

detection performance in fake colorized images. By 

underlining the model's fine-grained detail capture and subtle 

color variations, the paper has provided the necessary boost 

for solving shortcomings in hitherto published works, 

furthering image analysis technologies in various dimensions. 

The proposed framework will be compared with the leading 

models, PanColorGAN and CCAR-TAR, in the scenario of 

remaining challenges faced in the detection of fake images. 

Higher accuracy with more robust performance could be 

achieved by the proposed approach when compared to existing 

ones. The study advances the image manipulation detection 

one step further and may also form a basis for further research 

toward secure and authentic digital visual content. 

In short, this research investigates an urgent problem in the 

domain of digital forensics and visual data authenticity, 

answering a very critical scientific gap with fresh eyes, which 

will contribute to increased reliability in image analysis. These 

findings have great implications for media verification, 

historical preservation, and digital content security; thus, this 

is a very much needed and impactful work. 

 

 

2. LITERATURE REVIEW  

 

Detection of fake colorized images is intrinsically a 

challenging task since it requires profound knowledge of 

image features and manipulation techniques [13]. The 

theoretical basis of this work relies on advanced computer 

vision and deep learning concepts, specifically CNNs, multi-

scale feature extraction, and attention mechanisms, which play 

a vital role in improving the capability of the model in 

distinguishing minute differences between real and 

manipulated images [14]. 

They are a class of deep learning models especially put into 

service for the processing and analysis of visual data. In 

particular, they have performed well in image recognition 

tasks owing to their capability in learning hierarchical features 

directly from raw image data in an automatic manner [15]. In 

the context of the problem at hand, the detection of fake 

colorized images relies on CNNs in extracting meaningful 

patterns that help in distinguishing between real and fake 

images. The architecture of the CNN consists of several 

convolutional layers, pooling layers, and finally fully 

connected layers [16]. Conventional layers utilize various 

filters on the input image to extract some important features 

such as edges, textures, colors, etc. These pooled features then 

get mapped to deeper layers so as to detect complex structure 

and relationships within an image. This hierarchical feature 

extraction will play a crucial role in finding the subtle 

manipulations that characterize fake colorized images [17]. 

One of the most critical problems in the detection of pseudo-

colorized images is about both global structure and fine detail 

within an image. Clearly, multi-scale feature extraction 

explicitly allows the model to peer into different levels of 

details within an image. What this technique does is make sure 

that everything gets modeled from large patterns to minute 

ones—from an overall color distribution down to fine nuances 

such as consistencies in textures or tiny anomalies in color [18]. 

Analyzing the image on multiple scales, the model can 

highlight more effectively the deviations which can indicate 

manipulation. This, in particular, is essential for underlining 

subtle changes that may not be visible from a single-scale level 

of an image. Hence, multi-scale analysis further improves the 

robustness of its predictions in dealing with various types of 

manipulations [7, 9]. 

Attention mechanisms in deep learning allow the model to 

focus on parts that are most relevant when compared to other 

parts upon which the model is currently operating. In an image 

analysis setup, an attention mechanism is helpful in letting the 

model give priorities to certain regions of the image that are 

normally expected to contain manipulative features [12]. 

For fake colorized images, attention mechanisms may serve 

to highlight regions containing irregular color transitions, 

inconsistencies in texture, or areas that are differentially 

altered [19]. By focusing the model's attention on these critical 

areas, attention mechanisms improve the capability of the 

model for detecting subtle manipulations which might have 

otherwise been missed. In practice, attention mechanisms 

generate an attention map that highlights parts of the image 

with higher importance. This informs the model to delve 

further into the image, assured that regions which may contain 

relevant information for the task will be given more weight. 

The result of such targeting is the enhanced overall 

performance of the model to turn out more effective in the 

discrimination of real against fake images [20]. 

Detection of fake colorized images is a challenging task due 

to the sophistication in modern image editing tools and 

subtlety in manipulation. Colorization can, in some sense, be 

more misleading compared to other traditional manipulations, 

since changes are done in a way that is designed to appear 

natural [21]. Another major challenge is the inherent 

subjectivity in colorization. There is often not a single 

"correct" color for a grayscale image, since the model must be 

robust against both plausible colorizations as well as 

intentionally misleading colorizations—a deep understanding 

of natural color distributions and contextual cues within the 

image is called for [22]. 

Besides, variability of images regarding their content, 

lighting conditions, and textures increases the challenge for 

detection. A robust detection approach should generalize well 

across a range of image types: avoid false positives in 

inherently weird or artistically colorized images, correctly 

identify malicious manipulations [23]. This study, therefore, 

proposes a theoretical framework that integrates CNNs, 

multiscale feature extraction, and attention mechanisms into a 

robust technique for the detection of fake colorized images. 

Each of these components plays a very important role in the 

model's performance for determining subtle manipulations, 
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hence addressing key challenges in this domain. This shall 

provide a solid foundation in enhancing the accuracy and 

reliability of techniques of image analysis, hence contributing 

to the ongoing effort to combat digital image manipulation. 
 

 

3. THE PROPOSED METHOD 

 

In this section, we present a comprehensive CNN-based 

framework designed to enhance image segmentation and scene 

interpretation specifically for detecting fake colorized images. 

The proposed method integrates multiple advanced techniques 

to ensure high accuracy, efficiency, and robustness in 

processing and analyzing images. The framework is divided 

into several key stages: data preprocessing, model architecture 

design, training and optimization, and post-processing. 

 

3.1 Data preprocessing 

 

The first step in the proposed method involves preparing the 

data to be used for training and testing the model. This stage 

is crucial for ensuring that the model can effectively learn and 

generalize to new data. 

 

Image Resizing and Normalization 

The importance of image normalization as a preprocessing 

step in deep learning image analysis is to make sure that 

features are scaled uniformly and the model can converge 

quickly. Some of the available normalization methods include 

Min-Max Normalization, Z-score Normalization, and Batch 

Normalization. All these methods have pros and cons 

depending on the application [24].  

The pixel values are scaled to a fixed range, usually [0, 1] 

or [-1, 1], using the Min-Max Normalization method, which 

keeps its relative differences in intensity. On the contrary, Z-

score Normalization conforms the data in such a way that it 

subtracts the mean and divides by the standard deviation, 

therefore making it robust under varying lighting conditions. 

Batch Normalization is an advanced form of normalization, 

which normalizes feature maps within a mini-batch so as to 

stabilize the training and help with convergence.  

Once the input images enter the model for training, the three 

contrasting normalizations find justification for being 

considered consistently around these images. The chosen 

experimental setting is shown to be justified by practical 

experiments, confirming that it not only works for 

classification accuracy but also adds a benefit in speed.  

In the preprocessing stage, we prepare the input data for 

effective training and testing of the model. 

All images are resized to a uniform size (e.g., 256×256 

pixels) to maintain consistency across the dataset. Pixel values 

are then normalized to a range of 0 to 1, facilitating faster and 

more stable training. 

Each input image I is resized to a fixed dimension (𝐻, 𝑊), 

ensuring uniformity across the dataset. The pixel values are 

normalized to the range [0,1] to facilitate stable training [25]: 

 

𝐼normalized =
𝐼 − 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

 (1) 

 

where, 𝐼𝑚𝑖𝑛 and 𝐼𝑚𝑎𝑥 are the minimum and maximum pixel 

values in the image. 

 

Advanced Data Augmentation 

To increase the variety of the exercise set and progress the 

model's overview abilities, advanced data augmentation 

techniques such as Cutout, Mixup, and CutMix are applied. 

These techniques help the model become more robust to 

variations and noise in the data. 

In Mixup, two images I1 and  I2 and their corresponding 

labels 𝑦1  and  y2  are combined to create a new training example 

[26]: 

 
𝐼mix = 𝜆𝐼1 + (1 − 𝜆)𝐼2
𝑦mix = 𝜆𝑦1 + (1 − 𝜆)𝑦2

  (2) 

 

where, 𝜆 is a mixing coefficient sampled from a Beta 

distribution: 𝜆∼Beta (𝛼,𝛼) with α>0. 

 

3.2 Model architecture design 

 

The core of the proposed method is a hybrid CNN-based 

model designed to effectively capture both local and global 

features in images. The architecture incorporates several key 

components: 

 

Convolutional Neural Network (CNN) 

The backbone of the model is a deep CNN with multiple 

convolutional layers, each followed by ReLU activation 

functions and pooling layers. These layers extract spatial 

features from the images, allowing the model to learn intricate 

patterns and textures associated with fake colorization. Each 

convolutional layer is defined by a filter 𝑊 and bias 𝑏, where 

the output of the convolution operation is given by [27]: 

 

𝑂𝑖𝑗 = ReLU(∑  𝑚,𝑛 𝑊𝑚𝑛 ⋅ 𝐼(𝑖∣𝑚)(𝑗∣𝑛) + 𝑏)  (3) 

 

where, 𝑂𝑖𝑗 is the output feature map at location (𝑖, 𝑗) and ReLU 

is the Rectified Linear Unit activation function defined as 

ReLU(x)=max (0, x). 

 

Attention Mechanisms 

Attention mechanisms enhance deep learning models by 

dynamically weighting the importance of different features of 

an image, which enables the network to focus on regions that 

convey most information. In this particular study, self-

attention and spatial attention have been integrated into the 

approach to enhance fake colorized image detection by 

refining feature extraction at various levels.  

Self-Attention Mechanism: Through the scaled dot-product 

attention, the model attends to these longer dependencies 

within the image by examining relationships across different 

spatial regions: with higher attention weights being assigned 

to regions of more contextual relevance to the classification at 

hand. The self-attention calculation involves constructing 

three sets of matrices: query (Q), key (K), and value (V) 

matrices. Attention scores are computed using a scaled dot-

product of Q and K, which is normalized with a softmax 

function and used to weight V. The advantage of self-attention 

is that it gives the model a dynamic way of adjusting the 

importance of features such that distinguishing between real 

and fake colorized images is enhanced, especially in those soft 

cases where color discrepancies are undetectable.  

Spatial Attention Mechanism: In contrast, the spatial 

attention mechanism attempts to find salient regions in an 

image by making an attention map emphasizing regions of 

interest. Convolutional transformations are applied onto the 

feature map to give each pixel an importance score. Spatial 

519



 

attention is greatly beneficial in detecting localized 

happenings in counterfeit colorized pictures: unnatural edges 

or sudden color discontinuities that could be missed at a global 

feature representation. Thus, with spatial attention 

incorporated, the model gains fine-grained incongruity 

detection with reasonable computational efficiency. 

Implementation and Advantages: By jointly applying self-

attention and spatial attention, one obtains a complementary 

mechanism, where self-attention marries global dependencies 

while spatial attention fine-tunes local feature representations. 

Such a bipolar mechanism gives the proposed method leverage 

over conventional CNNs in making the classification strong 

against complex scenarios. The experimental evaluation 

indicates that introducing both attention mechanisms 

significantly reduces false positives while also improving the 

model's generalization across different datasets. 

To further enhance the model’s focus on relevant areas of 

the image, attention mechanisms for example Self-Attention 

or Spatial Attention are integrated. These mechanisms enable 

the typical to prioritize important regions in the image, which 

is particularly useful for distinguishing subtle differences 

between real and fake colorized areas. The attention map 𝐴 is 

computed as [28]: 

 

𝐴 = softmax(𝑊𝐴 ⋅ 𝐹 + 𝑏𝐴) (4) 

 

where, 𝐹 represents the feature maps from the CNN, 𝑊A and 

𝑏𝐴 are learned parameters, and softmax ensures that the 

attention weights are normalized across the spatial dimensions. 

 

Long Short-Term Memory (LSTM) or Gated Recurrent 

Units (GRU) 

For scenarios involving image sequences (e.g., in video 

frames), LSTM or GRU layers are added to capture temporal 

dependencies and enhance the model’s ability to interpret 

dynamic changes in scenes. For temporal sequence data, a 

recurrent layer such as LSTM is used, where the hidden state 

ℎ𝑡 at time step 𝑡 is computed as [29]: 

 

ℎ𝑡 = LSTM(𝐹𝑡 , ℎ𝑡−1) (5) 

 

Here, 𝐹𝑡 is the input feature at time 𝑡 and ℎ𝑡−1 is the hidden 

state from the previous time step. 

 

3.3 Training and optimization 

 

Finding an optimal learning rate is crucial for the 

convergence of a deep-learning model. Bad choices may result 

in slow convergence or even instability. To help achieve such 

goals, we implemented a warm-up strategy for the learning 

rate, i.e., the learning rate starts at a small value and increases 

linearly to the target learning rate over a few initial epochs, 

after which it decays. Since warm-up helps to avoid large 

weight updates during early training, it reduces gradient 

instability and allows for better generalization. Table 1 

summarizes the key hyperparameters used in the training 

process: 

Impact Analysis of Learning Rate Warm-Up: An 

ablation study was carried out to assess the efficacy of the 

learning rate warm-up strategy, and three training setups were 

compared. 

• Fixed Learning Rate (No Warm-Up) 

• Learning Rate Warm-Up (Proposed Strategy) 

• Learning Rate Warm-Up + Cosine Decay [30] 

Table 1. Key hyperparameters in the training process 

 
Parameter Value Description 

Batch Size 32 
Number of training samples per 

batch 

Initial Learning 

Rate 
0.0001 

Starting learning rate before 

warm-up 

Target 

Learning Rate 
0.001 

Learning rate after warm-up 

period 

Warm-Up 

Epochs 
5 

Number of epochs for learning 

rate warm-up 

Total Training 

Epochs 
50 

Number of total epochs for 

training 

Optimizer Adam Optimization algorithm used 

Learning Rate 

Decay 

Cosine 

Annealing 

Gradual reduction of learning 

rate post warm-up 

 

An ablation study was carried out to assess the efficacy of 

the learning rate warm-up strategy, and three training setups 

were compared, as shown in Table 2. 

 

Table 2. Ablation study in learning rate warm-up 

 

Training 

Setup 

Final 

Accuracy 

(%) 

Convergence 

Speed (Epochs to 

95% of Max 

Accuracy) 

Loss 

Reduction 

(%) 

Fixed 

Learning 

Rate (0.001) 

89.2 25 - 

Learning 

Rate Warm-

Up (0.0001 

→ 0.001) 

92.8 18 14.5% 

Warm-Up + 

Cosine 

Decay 

94.3 15 19.7% 

 

The results indicate that the model convergence speed is 

greatly improved by applying a learning rate warm-up such 

that 28% less epochs will be used for the model to achieve 95% 

of the final accuracy against a fixed learning rate. Furthermore, 

cosine decay applied after warm-up improved performance: 

the method achieved final accuracy 5.1% higher and reduced 

training loss by 19.7%. These findings prove that the proposed 

warm-up method stabilizes gradient updates to speed 

convergence and improve generalization.  

Training the model is a critical phase where various 

optimization techniques are employed to achieve the best 

possible performance. 

 

Loss function 

For binary classification, where the goal is to distinguish 

between real and fake images, a Focal Loss is used to address 

class imbalance and improve the model’s sensitivity to hard-

to-classify examples. For binary classification, the Focal Loss 

function is used to address class imbalance [31]: 

 

Focal Loss(𝑝𝑡) = −𝛼𝑡(1 − 𝑝𝑡)
𝛾log(𝑝𝑡) 

 

where, 𝑝𝑡 is the predicted probability for the true class, 𝛼𝑡 is a 

weighting factor, and 𝛾 is a focusing parameter that adjusts the 

importance of correctly classified examples. 

 

Transfer Learning  

The proposed model employs transfer learning on a pre-

trained network, such as ResNet, Inception, or EfficientNet. 
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The models pre-trained on huge datasets like ImageNet serve 

a very strong prior, which is fine-tuned on our dataset for 

improved accuracy and reduced training time. 
 

Dynamic Learning Rate Scheduling 

Techniques like Cyclical Learning Rates and Learning Rate 

Warm-up are employed to dynamically adjust the learning rate 

during training, ensuring efficient convergence and preventing 

the model from getting stuck in local minima . 

A cyclical learning rate (CLR) schedule is employed to 

dynamically adjust the learning rate during training. The 

learning rate 𝜂(𝑡) at epoch t is computed as [32]: 
 

𝜂(𝑡) = 𝜂min +
1

2
(𝜂max − 𝜂min ) (1 + cos (

𝑡

𝑇
𝜋))  

 

where, ηmin and 𝜂𝑚𝑎𝑥 are the minimum and maximum learning 

rates, and 𝑇 is the number of epochs in a cycle. 

 

3.4 Post-processing and evaluation 
 

After training, the model goes through a series of post-

processing steps to further refine performance and 

interpretability. 
 

Ensemble Learning 

To ensure maximum robustness in classifications and 

therefore reduce the number of misclassifications, an 

ensemble learning method was employed, which combines 

various models in the interest of overall performance 

improvement. The great strength of ensemble learning is in 

combining different architectures while reducing the effect of 

the biases from individuals' models and enhancing the 

generalization. Some ensemble strategies such as majority 

voting, weighted averaging, and stacking were carried out to 

find a better method for detecting fake colorized images. 

We evaluated the following ensemble strategies: 

1. Majority Voting - Each model independently predicts the 

class label, and the final decision is based on the majority vote. 

2. Weighted Averaging - The output probabilities of each 

model are weighted according to individual performance, with 

higher-performing models contributing more to the final 

prediction.  

3. Stacking - A meta-learner (e.g., logistic regression) is 

trained for combining predictions from multiple models for 

optimal classification [33]. 

The performance of these ensemble methods was compared 

using key evaluation metrics. Table 3 presents a comparative 

performance analysis of different ensemble methods. 
 

Table 3. Performance comparison of ensemble methods 
 

Ensemble 

Method 

Final 

Accuracy 

(%) 

False 

Positive 

Rate 

(%) 

False 

Negative 

Rate (%) 

Inference 

Time (ms) 

Majority 

Voting 
91.3 7.8 10.2 35 

Weighted 

Averaging 
94.1 5.5 8.3 40 

Stacking 93.5 6.1 9.0 55 

Best 

Single 

Model 

90.2 9.5 11.8 30 

 

The results manifest that ensemble learning provides a boost 

in performance even when compared to a single model. The 

weighted average method yielded the best results in terms of 

accuracy (94.1%); at the same time, it administered low false 

positive (5.5%) and false negative rates (8.3%); therefore, it is 

the most efficient combination strategy. Stacking had an 

accuracy of 93.5%, which was an improvement in its own right 

but came at a far greater inference time of 55 ms due to the 

extra meta-learning layer. On a contrary note, majority voting, 

which is simple enough, ended up having worse performance 

when contrasted with weighted averaging. These findings 

ratify that ensemble learning really boosts the robustness of 

classifications by combining different capacities from each 

diverse model. The weighted average method adopted strikes 

a good balance between accuracy as well as efficiency and so 

is considered suitable for its deployment in real-time 

applications for the detection of fake images. 

Different models are combined in ensemble methods, 

improving the general performance of better accuracy and 

reduction of variance. Such a resulting system will be more 

robust in detection. The final prediction y ̂ is the weighted 

average of the individual model predictions [34]: 

 

�̂� = ∑  𝑁
𝑖=1 𝑤𝑖�̂�𝑖  

 

where, 𝑁 is the number of models, �̂�𝑖 is the prediction from the 

𝑖-th model, and 𝑤𝑖 is its corresponding weight. 

 

Feature Analysis 

Techniques such as Grad-CAM or Layer-wise Relevance 

Propagation allow the illustration of which features and parts 

of the input the model bases its decisions on. This not only 

helps to understand the behavior of the model, but also 

provides insight into where the model may be improved. The 

Grad-CAM heat-map 𝐿𝑔𝑟𝑎𝑑_𝑐𝑎𝑚 is calculated as [35]: 

 

𝐿grad_cam 
𝑘 = ReLU(∑  𝑐 𝛼𝑐

𝑘𝐴𝑐)  

 

where, α𝑐
𝑘  a are the importance weights obtained by global 

average pooling the gradients of the target class 𝑘 with respect 

to the feature map activations 𝐴𝑐. 

 

3.5 Deployment in real-world systems 

 

It then prepares the optimized model for deployment in real-

world systems by guaranteeing its efficiency and effectiveness 

in practical scenarios. 

 

Model Compression 

Model pruning, quantization, and knowledge distillation are 

some of the techniques that have been used to reduce model 

size and computation requirements so that it can be deployed 

on resource-constrained devices like mobile phones or 

embedded systems. 

 

System Integration 

The model is integrated with a larger system where the real-

world conditions of variable light, image quality, and other 

environmental factors can be tested. This step makes the 

model robust and reliable in practical scenarios. The flowchart 

for the fake image detection process is shown in Figure 1. 

Efficient deployment of deep learning models in real-world 

applications requires reducing computational complexity 

while maintaining high performance. To achieve this, various 

model compression techniques can be applied, including 

quantization, pruning, and knowledge distillation, each 
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offering different trade-offs in terms of accuracy, memory 

footprint, and inference speed. 

Comparative Analysis of Model Compression Methods: 

• Quantization: The conversion of high-precision (for 

example, 32-bit floating-point) weights into lower-

precision formats (such as 8-bit integers) that reduce the 

model size and inference latency but could cause minor 

accuracy degradation.  

• Pruning: Removing less important weights or neurons 

from the network so as to reduce complexity of the model 

while retaining most of its performance. In its turn, 

structured pruning can boost inference speed, whereas 

unstructured pruning minimizes the parameters of the 

model.  

• Knowledge Distillation: A process in which a large, high-

performance "teacher" model transfers knowledge to a 

smaller "student" model, maintaining performance but 

with reduced computational requirements. 

 

 
 

Figure 1. Flowchart outline for fake image detection process 

 

Table 4. Key simulation parameters for the proposed method 

 
Parameter Category Parameter Value/Description 

Data Preprocessing 

Image Dimensions 256×256 pixels 

Normalization Pixel values scaled to [0, 1] 

Data Augmentation Random rotation, translation, cropping, scaling 

Augmentation Strategy Mix-up with α = 0.4 

CNN Architecture 

Number of CNN Layers 4 to 10 

Filter Size 3×3, 5×5 

Number of Filters per Layer Starting from 32/64, doubling each layer 

Activation Function ReLU 

Pooling Type Max Pooling, 2×2 

Dropout Rate 0.5 (for fully connected layers) 

Attention Mechanism 
Attention Map Dimensions Same as feature map dimensions 

Attention Factor Softmax-weighted attention maps 

Recurrent Layers 

Type of Recurrent Layer LSTM or GRU 

Hidden State Dimensions 128 or 256 

Number of Recurrent Layers 1 or 2 

Training and Optimization 

Loss Function Focal Loss (γ = 2, α = 0.25) 

Learning Rate (Cyclical) 
η_min = 1e-5, η_max = 1e-3, cycle length = 10 

epochs 

Number of Epochs 50 to 100 

Batch Size 16 or 32 

Optimizer Adam or AdamW (initial learning rate = 1e-4) 

Ensemble Learning 
Number of Models in Ensemble 3 to 5 

Ensemble Weighting Weights between 0.2 to 0.4 

Evaluation Metrics 
Metrics Accuracy, Precision, Recall, F1-Score, AUC-ROC 

Cross-Validation 5-fold cross-validation 

Simulation Environment 
GPU NVIDIA Tesla V100 or RTX 3090 

Framework TensorFlow or PyTorch 

 

To quantify the effect of these compression techniques on 

the proposed model, a comparative study was performed. 

Results suggest that 8-bit quantization cuts the model down to 

25% of its original size, with only 1.9% loss in accuracy. 

Pruning at 40% sparsity yielded a 55% reduction in model 

parameters while keeping 98% of the original accuracy intact. 

Knowledge distillation gave the most balanced results, 

achieving a 60% reduction in model size for 99% of the 

original accuracy at a much-reduced computational cost.  

From these results, the deployment will use a combination 
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of quantization and knowledge distillation, as this yields the 

best compromise between efficiency and performance. 

Improved future work may allow some adaptive compression 

whereby the compression is dynamically tuned by the 

deployment constraints. 

 

3.6 Simulation parameters 

 

In order to simulate and put into practice the proposed 

approach, the key parameters involved may be divided into 

three kinds of categories: modeling parameters, optimization 

parameters, and the settings of the neural network. Table 4 

gives a list of some suggested parameters. 

 

 

4. THE EXPERIMENT RESULTS 

 

In this section, the results of the experiments by the 

proposed method are drawn and compared with the state-of-

the-art models including PanColorGAN and CCAR-TAR. For 

performance metrics, accuracy, precision, recall, F1-score, 

and AUC-ROC were employed in order to deeply explore the 

effectiveness of the applied methods . 

These results have, therefore, proved the efficiency and 

effectiveness of the proposed approach in terms of detection 

and image classification. More detailed comparisons have 

been performed by means of various metrics; the progress that 

had been reached by the proposed model was shown. In each 

subsection, quantitative data, visual representation, and 

analytic discussions are given in detail to carry on these 

evaluations. 

 

4.1 Dataset 

 

Class imbalance is one of the significant hindrances in the 

deep learning model training for fake colorized image 

detection. In most datasets, the real images vastly outnumber 

the fake colorized images, creating a very biased prediction by 

the models to favor the majority class. When class balancing 

is not performed, the model ends up learning to mostly predict 

the dominant class, which subsequently reduces its usefulness 

in predicting fake images [36]. 

 

Addressing Class Imbalance: The following measures 

were discussed to remedy this situation: 

• Oversampling the Minor Class: The images were faked 

synthetically with colorization via the augmentation 

paths of random color jittering, histogram equalization, 

and GAN-based augmentation to increase the 

multiplicity of fake samples of somewhat different 

characteristics. 

• Undersampling the Majority Class: A small subset of real 

images was purposefully selected in such a way as to 

achieve a more or less balance in the distribution of 

classes in the dataset while still retaining variety. 

• Weighted Loss Function: A class-weighted cross-

entropy loss function was implemented in the training 

process, with an aim to target higher penalties on 

misclassified fake images, so as to assure that the model 

does not focus on the modeling of the majority class. 

• Hybrid Sampling Approach: A combination of both 

oversampling and undersampling techniques was 

adopted in order to obtain a dataset that remained 

representative while enhancing the model's capability to 

distinguish between bona fide and fake images. 

The experiments revealed that a weighted loss function 

coupled with GAN-based augmentation gave the optimal 

performance. This, in particular, resulted in a 12.5% increase 

in the recall of the model concerning fake images, leading to a 

more balanced classification without compromising precision. 

Posterior adjustments were made to the final dataset 

composition to enable a fair evaluation of the models, 

otherwise biased evaluation would lead to erroneous results. 

In this work, we adopt the ImageNet dataset [37-40], 

probably one of the most popular and widely used datasets in 

computer vision. ImageNet is a dataset containing over 14 

million images categorized into 1,000 object classes that has 

been really helpful in training deep models. 

For the detection of fake-colored images, ImageNet acts as 

the root for original color images. Images will then undergo 

some preprocessing, in which some of these would be changed 

into grayscale images for generating fake-colored samples. 

With large-scale variability and high-quality ImageNet 

annotations, our model can tell quite accurately whether an 

image has real colors or fake colors. 

 

4.2 Quantitative results 

 

In line with further testing for model robustness, an 

intensive classification performance analysis has been 

conducted in various combinations of the texture. Detecting 

fake colorized images is a challenge when the images have 

high-frequency textures, complex patterns, and fine-grained 

texture details, for subtle inconsistencies in color may well be 

drowned by the natural variations. Therefore, a comparative 

analysis was done to study how well the proposed method and 

the baseline models (PanColorGAN and CCAR-TAR) 

perform in front of these difficult cases.  The dataset was 

divided into two categories: 

1. Simple Texture Images - Composed of smooth 

backgrounds with small variations in color.  

2. Complex Texture Images - Are finely detailed with very 

complex patterns and highly variable color. 

Table 5 presents the model performance for both categories: 

 

Table 5. Model performance for both categories 

 

Model 
Accuracy (Simple 

Textures) (%) 

Accuracy (Complex 

Textures) (%) 

False Positive Rate 

(Complex) (%) 

False Negative Rate 

(Complex) (%) 

Proposed Method 95.2 91.8 6.1 8.5 

PanColorGAN [5] 92.4 85.7 9.5 14.2 

CCAR-TAR 

[6] 
90.1 80.9 12.7 18.4 

 

All the models were expected to perform well on simple 

textures, with the proposed method achieving an accuracy of 

95.2%. For complex textures, however, the accuracy for all the 

models dropped, because it is difficult to differentiate between 

real and fake colorized details in the high-frequency regions. 

The proposed method therefore increased the margin of 
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advantage significantly over PanColorGAN (85.7%) and 

CCAR-TAR (80.9%), thereby asserting its generalization to a 

wide variety of image conditions. 

The false negatives for complex textures were lowest in the 

proposed method (8.5%) compared to PanColorGAN (14.2%) 

and CCAR-TAR (18.4%). This means that the multi-scale 

feature extraction and attention in the proposed method were 

more effective in capturing fine inconsistencies and thereby 

reducing the chance for misclassification in a fine detailed 

region. However, some misclassification was still possible in 

certain extremely complex structures, suggesting that the 

introduction of other refinements, such as adaptive filtering, 

would help to enhance the performance.  These findings 

confirm that while complex textures remain an issue, the 

proposed method offers improved reliability over any of the 

existing models. Future endeavors may target research into 

texture-aware feature extraction and adaptive attention 

mechanisms to further enhance classification accuracy in 

complex visual situations.  

Extensive performance comparisons between the proposed 

method, PanColorGAN, and CCAR-TAR were done by 

considering several key metrics. Figure 2 and Table 6 show 

that the proposed method performs better compared to the 

existing models in most categories. 

 

 
(a) Accuracy comparison of different methods 

 
(b) Precision comparison of different methods 

 
(c) Recall comparison of different methods 

 
(d) F1-Score comparison of different methods 

 
(e) AUC-ROC comparison of different methods 

 

Figure 2. The comparison results of the proposed methods 

with the others 
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Table 6. Comparing the results of the proposed method with others methods 

 
Model Accuracy Precision Recall F1-Score AUC-ROC 

PanColorGAN [5] 0.85 0.82 0.8 0.81 0.87 

CCAR-TAR [6] 0.88 0.86 0.83 0.84 0.9 

Proposed Method 0.92 0.9 0.89 0.89 0.94 

 

Here, the accuracy of the proposed method is 0.92, which 

outperforms PanColorGAN with an accuracy of 0.85 and 

CCAR-TAR with an accuracy of 0.88. Higher accuracy means 

better performance in terms of correctly classifying true 

positives and true negatives for a wide range of test scenarios. 

The precision for the proposed method is 0.90, higher than 

PanColorGAN with 0.82 and CCAR-TAR with 0.86. This can 

be explained by a lower number of false positives and more 

reliable positive predictions obtained by the proposed method. 

Finally, the recall for the proposed method is 0.89, 

representing significant improvement over PanColorGAN 

(0.80) and CCAR-TAR (0.83). The higher recall therefore 

means that the model is better at catching the actual positive 

cases, reducing missed relevant cases. 

Among those, the proposed approach better balances the 

performance of precision and recall, reaching a degree of 0.89 

for the F1-score, higher than that from PanColorGAN with a 

degree of 0.81 and CCAR-TAR with 0.84. This means that by 

the proposed method, a more effective balancing between the 

two most important metrics is reached. The proposed approach 

yields an AUC-ROC score of 0.94, which outperforms the 

state-of-the-art methods like the PanColorGAN method, with 

0.87 and the CCAR-TAR method at 0.90. Hence, it may be 

deduced that a high value of AUC-ROC signifies better class 

discrimination and it is more reliable for a variety of 

classification tasks. 

4.3 ROC and precision-recall curves 

 

In an attempt to evaluate comprehensively the robustness of 

the proposed method, a thorough study was made on the 

performance variations using different threshold settings. The 

Receiver Operating Characteristic (ROC) curve depicts a 

graphical interpretation of the trade-off between true positive 

rate (TPR) and false positive rate (FPR) at different decision 

thresholds. However, the use of only a single threshold does 

not sufficiently characterize the adaptability of the model, thus 

requiring the examination of how performance varies with 

other thresholds instead.  

 

Performance Variation Across Different Thresholds 

In order to understand the importance of threshold choice, 

we investigated how the proposed model and baseline models 

(PanColorGAN and CCAR-TAR) behave under three 

threshold levels:  

1. Low Threshold (0.3): Recalls are prioritized, causing 

more detections but also creating more false positives.  

2. Medium Threshold (0.5): Shows a compromise between 

recall and precision.  

3. High Threshold (0.7): Classifications are made 

strenuously, and this will decrease false positives but increases 

false negatives. 

 

 
 

Figure 3. Model performance comparison 

 

Table 7. Performance of each model at different thresholds 

 
Model Threshold Accuracy Precision Recall AUC-ROC 

Proposed Method 

0.3 91.2 88.1 96.3 94.8 

0.5 94.3 92.4 93.5 97.1 

0.7 90.5 95.8 87.2 95.2 

PanColorGAN 

0.3 85.4 82.9 90.2 89.3 

0.5 88.7 86.2 85.9 92.1 

0.7 84.3 91.1 78.4 90.4 

CCAR-TAR 

0.3 79.8 75.6 88.5 85.1 

0.5 83.2 80.1 82.7 88.4 

0.7 78.6 87.3 74.5 86.2 
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Figure 4. Precision-recall curve for model comparison 

 

 
(a) ROC Curve comparison of different methods 

 
(b) Precision-Recall Curve comparison of different methods 

 

Figure 5. Comparison results in terms of ROC and precision-

recall curves 

 

The performance of different models was further analyzed 

across multiple key metrics, including accuracy, precision, 

recall, F1-score, and AUC-ROC, as depicted in Figure 3. 

Additionally, Figure 4 presents the precision-recall curve 

comparison, which highlights the superiority of the proposed 

method with a higher AUC (0.95) compared to PanColorGAN 

(0.90) and CCAR-TAR (0.86). This further demonstrates the 

robustness of the proposed approach in distinguishing between 

real and fake colorized images. 

Table 7 summarizes the performance of each model at 

different thresholds. 

In all the models, it is seen that by increasing the threshold, 

the precision gets better, while the recall worsens. With a low 

threshold (0.3) on the other hand, the method being presented 

gives the best recall of 96.3%, meaning that great numbers of 

fake colorized images could have been detected with the 

method. However, the price paid for this was lower precision 

(88.1%), meaning that it gave a lot of false positive results. 

At the medium threshold (0.5), the proposed method takes 

the best overall performance marking out in precision (92.4%) 

and recall (93.5%) hence yielding the highest AUC-ROC score 

(97.1%); this features the strength of the robust method that 

can actually discriminate real from fake images. 

At the high threshold (0.7), the precision gets improved and 

is thus at 95.8%, meaning that few positive predictions were 

inaccurate by the model. But the recall dropped to 87.2%, 

which implies that the stricter the criteria of classification, the 

more detections will be missed. Thus, it imposes more 

importance on the trade-off for any applications depending on 

the requirements for threshold selection. 

In comparison with PanColorGAN and CCAR-TAR, the 

method has surpassed both of them in AUC-ROC with respect 

to every threshold. This enhancement is most pronounced in 

the score at the medium threshold (97.1% compared to 92.1% 

for PanColorGAN and 88.4% for CCAR-TAR), showing that 

the method proposed exerts a high capacity for generalization 

over varying classification conditions. 

The observations imply that the threshold selection ought to 

be application-dependent: in forensic analysis, a lower 

threshold may be more desirable to favor recall, while in strict 

verification tasks, a higher threshold could be utilized to 

reduce false positives. Future work may involve investigating 
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procedures for dynamic threshold adjustment based on 

confidence scoring in real-time to further enhance 

classification outcomes. 

In order to see the performance of the proposed method 

against other models, we have created and analyzed ROC and 

precision-recall curves. These curves are very important to 

understand the trade-offs involved between true positive rates 

versus false positive rates and precision versus recall. The 

ROC curve plots the true positive rate or sensitivity versus the 

false positive rate or 1-specificity at different threshold 

settings. AUC-ROC summarizes the performance of a model 

at distinguishing the positive class from the negative one by 

taking one single value. The proposed approach outperforms 

PanColorGAN and CCAR-TAR, yielding higher classification 

performance, as evidenced from Figure 5 . 

Precision-recall curves are much more informative in cases 

of imbalanced data. The plot will be between precision. In 

scenarios of a class imbalance problem, this could provide a 

more accurate representation than ROC regarding the model's 

performance. As shown in Figure 5, the proposed approach 

guarantees higher precision and recall in detecting true 

positives while keeping false positives low. Therefore, these 

evaluations confirm that the proposed method provides a more 

reliable and accurate approach to detecting fake colorized 

images compared to baseline models. 

 

 

5. DISCUSSION 

 

To have a more accurate analysis of the proposed method, 

in this section, we compared additional experiments. In the 

following, the results of an error and confusion-based analysis 

are presented . 

 

5.1 Error analysis 

 

A more detailed analysis of error trend reveals that subtle 

color variations are still a challenge for fake colorized image 

detection. In certain cases, the gradual hue shift, slight 

saturation inconsistency, or nearly-identical adjacent color 

distributions have presented hurdles to the models all around. 

The proposed approach has demonstrated better performance 

in identifying these kinds of variations when compared with 

PanColorGAN and CCAR-TAR; however, distinguishing 

between artificially colorized images and naturally occurring 

low-contrast areas continues to be a challenge. For example, 

we presented a test case involving an actual black-and-white 

historical image that was artificially colorized; our proposed 

method managed to find texture inconsistencies but 

misclassified it because of the highly plausible yet artificial-

looking color gradients. On the contrary, CCAR-TAR 

obtained a higher false-positive rate (17.6%), frequently 

labeling genuine colorized images as fake because of its lesser 

inclination toward natural color transitions. On the other hand, 

PanColorGAN, while being more competent on a global scale 

in judging color inconsistencies, had a lower success rate with 

fine pixel variations, leading to a false-negatives rate of 22.3% 

where subtle shading and lighting changes were the major 

indicators for forgery.  

 

Table 8. Performance comparison of models on images with subtle color variations 

 
Model Accuracy  False Negative Rate  False Positive Rate  Key Weaknesses 

Proposed 

Method 
91.4 8.6 5.2 

Struggles with artificially generated smooth color 

gradients 

PanColorGAN 84.7 22.3 10.8 
Fails to detect fine-grained pixel variations and minor 

shading inconsistencies 

CCAR-TAR 79.1 14.5 17.6 
Frequently misclassifies real images as fake due to 

lower sensitivity to natural color transitions 

 

 
 

Figure 6. The error analysis of the proposed method compared with the others 
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To compare model performances in these cases, another 

evaluation was conducted on a subset of controlled color 

variations in 500 images. The results show that:  

The proposed method was able to identify images with 

slight color difference with an accuracy of 91.4% and a false 

negative of 8.6%.  

On the same dataset, PanColorGAN had a lower accuracy 

of 84.7%, with a false negative of 22.3%.  

CCAR-TAR gave the lowest performance with accuracy at 

79.1% and a false positive of 17.6%, which meant it 

misclassified often. 

An error performance analysis was carried out versus other 

state-of-the-art models, namely PanColorGAN and CCAR-

TAR. The two categorically selected categories that impose a 

very challenging task are chosen as "Complex Textures" and 

"Subtle Color Variations." For this purpose, the author has 

selected two categories, mainly "Complex Textures". 

This comparison, as summarized in Table 8, highlights the 

strengths and weaknesses of each method when applied to 

images with subtle color variations. The Proposed Method 

demonstrates the best overall accuracy, with the lowest false 

positive and false negative rates. 

Regarding "Complex Textures," this proposed method 

yielded better performances with much lower errors relative to 

PanColorGAN and CCAR-TAR. In the category where there 

is usually a repetition of intricate patterns or the depiction of 

detailed surface areas, models with an overreliance on simple 

features really encounter problems. With a preponderance 

toward colorization and generative aspects of image 

generation, PanColorGAN fared worse than expected, 

incorrectly distinguishing almost all the slight differences of a 

certain class. Similarly, CCAR-TAR was strong in other areas 

but failed to capture the minute details of complex textures and 

hence gave more errors, see Figure 6. 

In contrast, the architecture of the proposed method, which 

embeds multi-scale feature extraction and enhanced 

convolutional layers, was effective in grasping the fine-

grained details that are necessary for distinguishing between 

similar textures. This capability is crucial in applications 

where texture plays a pivotal role, such as in material 

classification or scene analysis. 

For "Subtle Color Variations," again the proposed method 

outperformed the competing models. Minor color variations in 

hue, saturation, or brightness will easily lead to 

misclassifications if the color information is not well utilized 

by the model. PanColorGAN generated quite plausible 

colorizations; still, it was wrong with a higher error rate on this 

category since the PanColorGAN is generative, not designed 

for accurate classification. 

In addition, CCAR-TAR also had certain limitations in the 

form of recognition accuracy. This is probably because 

dependence on classic convolution filters barred the model 

from differentiating minor differences of color, hence prone to 

errors. However, in this proposed system, special-colored 

sensitive layers and attention mechanisms for advanced 

colored processing have been incorporated that enhances its 

capabilities in detecting and correctly placing an image with 

minor color variation. This is indicative of the method's 

robustness and flexibility in scenarios that require subtle color 

discrimination . 

It can be observed from the error distribution chart of 

comparative analysis that, under all categories considered in 

the comparison, the proposed method tends to perform much 

better than PanColorGAN and CCAR-TAR. Lower errors 

while handling complex textures and minute changes in color 

indicate a stronger ability in processing detailed visual 

information . 

This superior performance is attributed to the novelty in 

integrating multi-scale feature extraction, advanced color-

processing layers, and an attention mechanism within the 

proposed model design. These enhancements enable the model 

to capture a greater range of visual features and thus cope with 

the challenges provided by complex textures and discreet color 

variations.  

 

5.2 Confusion matrix analysis 

 

Here, a confusion matrix-based analysis for the proposed 

method, PanColorGAN, and CCAR-TAR was performed to 

have a deep view about the classification performance, 

emphasizing how well each model distinguishes between 

classes, see Figure 7. 

 

 
 

Figure 7. The confusion matrix analysis of the proposed method compared with the others 
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In order to analyze the model's performance more closely, 

we examined the confusion matrix in detail with respect to the 

misclassification patterns among different types of fake 

colorized images. The proposed method demonstrated a very 

high accuracy when distinguishing real images from fake ones, 

thus presenting challenges in distinguishing between 

artificially colorized historical images and fake images 

generated by GANs. Upon a closer view of the confusion 

matrix, it is noted that the false positive rate of the model for 

artificially colorized historical images was 6.3%, wherein real 

images were classified as fakes because of natural variability 

in color tone. Furthermore, the GAN-generated images 

recorded a 9.8% false negative rate, which suggests that 

certain high-quality fakes were difficult to detect. This 

indicates that colorized images generated by adversarial means 

can closely mimic the natural distribution of colors, thus 

making it a difficult task to differentiate them from actual 

color photographs. 

Contrarily, it can be seen that compared to the Proposed 

Method, the PanColorGAN confusion matrix has more off-

diagonal elements. In fact, though the performances were 

relatively good for PanColorGAN, this network then more 

often confuses between the different classes, while this 

network misclassifies at a higher rate, struggling when the 

color subtlety or complex texture in test images is decisive for 

correct classification, more false positives and false negatives 

thus result.  

CCAR-TAR has the most dispersed confusion matrix, 

having quite a noticeable number of errors in almost all 

categories. This is supported by a great number of off-diagonal 

elements testifying that this model is problematic regarding 

precise classification and is easily confused between classes 

that are quite similar. This model commits more generalized 

errors, which is a signal that it might fail in capturing minute 

details required for high accuracy on challenging tasks. 

In a comparative analysis of PanColorGAN and CCAR-

TAR, while our method has an overall advantage in the 

classification compared to these methods, it still struggles with 

the detection of subtle abnormalities in GAN-generated 

images. For instance, PanColorGAN had an extraordinarily 

high false positive rate of about 12.5%, meaning it had flagged 

far too many real images as fakes, while CCAR-TAR had its 

highest false negatives found, at about 15.2%, signaling it is 

having distress detecting GAN-generated images.  

This proves to be a critical weakness for the current 

approach: although multi-scale feature extraction and attention 

mechanisms improve performance, it is still very difficult to 

separate them from advanced GAN-generated fakes. Future 

improvements should integrate adversarial training techniques 

that capture even the subtlest inconsistencies in colorization 

patterns, thereby reducing false negative detection in very 

challenging cases.  

 

 

6. CONCLUSION 

 

This is an in-depth assessment of the novel end-to-end 

CNN-based framework developed to detect fake colorized 

images and benchmarked with two of the most prominent 

models: PanColorGAN and CCAR-TAR. As a matter of fact, 

the proposed approach turned out to be much better, evidenced 

through quantitative metrics and confusion matrix analysis 

which ascertains its efficacy to address the challenges put 

forward by fake image detection . 

Another major strength of the proposed approach consists 

of complex textures and color variations, just those factors 

where current models, specially PanColorGAN and CCAR-

TAR, make many mistakes. This paper presents a CNN-based 

method where multi-scale feature extraction, along with an 

attention mechanism, improves the capability of capturing 

crucial fine-grained details useful in differentiating real or fake 

images. This capability is further validated by the lower error 

rates observed in these challenging categories. 

The comparison analysis also indicates that while 

PanColorGAN generally works well, the possible focus on 

colorization and generative aspects may reduce its accuracy in 

distinguishing subtle differences in texture and color. 

Similarly, CCAR-TAR is effective in some recognition tasks 

but lacks nuanced processing for high-precision image 

analysis, hence resulting in higher misclassification rates. 

Moreover, the superiority of the proposed approach will not 

only reflect in terms of minimum error conditions but will also 

emerge in terms of general robustness across various testing 

scenarios. In fact, it has been pretty clear from the confusion 

matrices that the correct predictions for the proposed approach 

show higher concentration, proving the reliability and 

repeatability of the obtained results . 

Therefore, the proposed end-to-end CNN-based framework 

for the detection of fake colorized images outperforms other 

state-of-the-art models by a big margin. This would further 

have very broad applications in tasks that require high 

accuracy, both in visual recognition and image analysis, 

because of its superior performance on complex textures and 

subtle color variations. The results of this study indicate that 

the proposed method is not only more accurate but also more 

versatile to adapt to different challenges in fake image 

detection. With the increasing demand for more reliable and 

accurate image analysis tools, this framework thus provides a 

promising solution that could be further refined and extended 

to other domains of image processing. 

The proposed algorithm has demonstrated robust 

performance in detecting fake colorization images, but certain 

challenges still exist with regards to highly complex textures 

and very subtle color changes. Future work should thus aim at 

evolving more advanced feature extraction techniques that can 

sensitively detect fine-grained texture patterns without 

incurring greater false positive rates. This might entail 

integrating potential self-supervised learning whereby the 

model learns representations from large-scale unlabeled 

datasets, with the end goal of improving generalization in 

texture-rich images. Also, applying adversarial training 

through GANs could buttress robustness against advanced 

colorization techniques, further reducing false negatives in 

GAN-generated fakes.  

Another major improvement is refining the attention 

mechanism within transformer-based architectures toward 

understanding spatial-contextuality. Thus, the model can 

follow gradual color transitions and inconsistencies beyond 

the scope of conventional CNN-based methods. 

These improvements will provide an automated way of 

detection to the extent of being practically beneficial in areas 

such as digital forensics, media authentication, and restoration 

of images taken in history. Further, extending this study to 

consider multi-modal approaches that combine visual analysis 

and metadata could further fortify fake-image detection 

protocols. 

More diverse datasets are also a suggested avenue for future 

work, introducing the complexity of higher resolution and 
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respect for images from standard and specialty sources that 

ensure robustness against various image styles and quality 

levels. Expanding benchmark evaluations to real-world 

manipulated datasets will give deeper insights into the model's 

adaptability and limitations, in turn paving the road for even 

more discriminative and generalizable fake image detection 

techniques. 
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