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Water pollution, particularly high ammonia concentrations, poses a significant threat to 
aquatic life, especially fish. Previous attempts to classify water pollution levels using 
traditional methods have often faced limitations in handling complex attribute relationships. 
To address these challenges, this study proposes a novel approach utilizing Gated Linear 
Networks (GLNs). By considering key water quality parameters such as pH, dissolved 
oxygen, temperature, turbidity, and ammonia, GLNs offer improved computational 
efficiency and model interpretability compared to nonlinear models. Our experimental 
results demonstrate that the proposed GLN-based model surpasses traditional methods in 
accurately classifying water contamination levels. This advancement has significant 
implications for water quality monitoring and management, contributing to the preservation 
of fish habitats and the overall health of aquatic ecosystems. 
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1. INTRODUCTION

Water is that quality that those in aquatic environment [1]
pending their services as barometers of the state of an 
ecosystem and the health standards of the people. One prime 
element that falls under this category is ammonia, this is a very 
dangerous water pollutant [2] that is lethal to water sources 
and is known to be toxic to fish and other forms of water life 
[3-6]. Ammonia concentration is very harmful to the 
metabolism of fish and growth [7] and development and every 
moment it is possible to eliminate all the fish from the water 
bodies. As such monitoring of ammonia concentration [8] is a 
very important activity in utilization and management of water 
resources [9] and in environmental sustainability [10-12]. 
They involve restricted movement, the actual near real time 
tracking of pollution and the track and trace mechanism as 
customers may not frequent sampling areas take samples, 
transport them to laboratory and wait for results [13]. While it 
has been made possible using smart devices available to 
monitor sensors as well as acquire data, there is always a 
challenge on how to model the pattern to classify the degree of 
water contamination obtained from the data acquired.  

Existing methods [14-25] that have been applied to water 
quality classification have used several of these other standard 
ML methods including the SVMs together with the RFs. But 
in a way and manner where non form association of water 
quality parameters [26-29] with contamination degree such 
models sometime go wrong. But the two best suitable for the 
problem solution are the Convolutional Neural Networks 
(CNNs) and the Recurrent Neural Networks (RNNs) but it is 
not addressing the challenges in existing water quality 
assessment methods, such as limitations in handling high-

dimensional data, real-time adaptability, and accuracy under 
dynamic environmental conditions. These shortcomings 
underscore the necessity for advanced methods like the 
proposed GLN model, which leverages deep learning to 
overcome these issues [30-38]. They are useful particularly in 
the process of extracting spatial representations from image 
data but in the sample water quality data there [36-38]. This is 
probably because the RNNs that are developed for use with 
sequence data seem to have some limitations in respect of the 
interdependence of the water quality parameters. To avoid 
such limitations, the above research recommended a new 
method that utilizes Gated Linear Network (GLNs) to classify 
the level of water contamination depending on some of the 
quality factors are pH, dissolved oxygen level, temperature, 
turbidity, and ammonia level. Informal insightful, it is still 
likely that GLNs are more than conventional models because 
the linear models with the acknowledgement of non-linear 
gating mechanisms. Hence this study can worsen the positive 
aspects of GLNs to ensure there will be sufficient 
categorization of water pollution to improve the utilization and 
conservation of water resources. 

2. LITERATURE SURVEY

Currently, an increasing number of publications are aimed
at water quality assessment and prediction, and within this 
topic, different levels of ML models are used or considered 
depending on the problem’s complexity. Of the major classical 
techniques which may be incorporated into use, it is possible 
to determine the water quality parameters using the Support 
Vector Machines or Random Forests. Palani et al. [9] applied 
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the ANNs of marine water quality while Castrillo and García 
2008 employed multi-factor linear regression (MLR) and 
Random Forest (RF) models of riverine water quality. In the 
analysis, the following techniques were used: RF, MLR 
models and ANN which Zambrano et al. [8] applied in the 
assessment of water quality of fish farming reservoirs. 
Therefore, the above-mentioned research studies offered an 
excellent example of how the types of mentioned models can 
be applied for water quality prediction While it is correct to 
state that the kind of pattern that is present in the considered 
data sets can be captured rather effectively with the help of 
such models however their ability to capture the type of pattern 
that is usually recognized as the most challenging can be 
deemed rather ineffective at best. Earlier, deep learning has 
described how DL modelling can be applied in the analysis of 
water quality in the following manner. Some of the traditional 
models include the Convolutional Neural Networks (CNNs) 
that are primarily used in imaging and the same have been used 
in the prediction of water quality. As demonstrated in previous 
studies [11. 12], most models focused on CNNs used for 
spectrum analysis, which was achieved using Fourier analysis. 
On the contrary, we would see that if there is a very common 
technique used together with water quality data known as time 
series then the use of CNNs might be greatly restricted. The 
temporal dependencies have been addressed when it comes to 
extraction of information from water quality databases for 
example by using Recurrent Neural Network (RNNs) 
especially with Long Short-Term Memory (LSTM) network. 
For the cage-cultured environment, forecasts have been 
developed using LSTM deep neural networks [13]. 
Additionally, IoT applications for monitoring water quality in 
cage-culturing environments have been explored [14]. 
However, questions remain regarding the temporal behavior 
of these RNNs, their sophistication, and the computational 
cost, which are major limitations of these studies. 

Models have also been proposed with using in one or 
another the architecture of deep learning to increase the degree 
of reliability of the prediction. Ahmed et al. [15] have used 
gradient boosting as well as MLP from the ensemble methods 
and the neural networks listed in the study. Other works with 
hybrid models have shown promising results. For example, 
nine-layer MLP models combined with KNN imputation have 
been utilized, demonstrating that these models can operate 
optimally even with gaps in the data [16]. Additionally, it has 
been noted that while industrialized aquaculture may benefit 
from certain techniques like IG, SVM remains a suitable 
choice in some contexts. Meanwhile, other traditional machine 
learning methods are widely used across various fields [17]. 
Other machine learning approaches for dissolved oxygen 
include the use of Support Vector Machine (SVM), Non-
Linear Modelling using Multi-Layer Perceptron (MLP), and 
the dynamic pattern of dissolved oxygen analyzed by linear 
Long Short-Term Memory (LSTM) networks [18].  

There was also the use of hybrid modelling as the authors 
stated, which is indeed very efficient in the modelling of all 
the necessary aspects of water quality data. However, in recent 
enhancement of the models, other models have been designed 
in a bid to enhance the capability of prediction proficiency. For 
instance, da Silva and his fellows proposed the toxicity-
warning sensor for water quality monitoring based on LCA 
model and ML which is both are physical and ML based 
models. Chen et al. [21] proposed the designing of the 
intelligent variable flow equipment for the quality water and 
the authors mention that the efficiency of the control systems 

is a key factor to water quality. However, Yang et al. [22] 
employed CNN, GRU and attention mechanism based deep 
learning network for predicting the water quality of RAS and 
they stated that more than one deep learning process is useful 
for improvement, and they achieved an improvement of more 
than one than the deep learning process. Moreover, the use of 
integrated models such as ANN-WT-LSTM has been 
demonstrated to enhance predictive ability in applications like 
the Jinjiang River [23]. For instance, improved models have 
been proposed using wavelet decomposition combined with 
W-ARIMA and GRU neural networks for water quality 
analysis in Beijing [24]. Chen et al. [25] also used LSTM and 
at the same time attention based on long short-term memory 
(AT-LSTM) applied to water quality of Burnett River in 
Australia and focused mainly on attention to data. Based on 
the study [26], which discusses the analysis of Kalman-filtered 
LSTM with attention, it becomes clear that the application of 
the Kalman filter as well as connection with deep learning 
helped to enhance the Haimen Bay data prediction. However, 
Farzana et al. [27] did not use either XGBoost & GRU to 
analyze the Toowoomba reservoirs an issue of the best strategy 
in water management under the climate condition was given. 
These works confirm rich in the range of the variety of the ML 
techniques and the use of their combinations for the water 
quality prediction, and it is mentioned that the application 
should be different for some water bodies for the certain goal 
or objective of monitoring. 

 
 

3. PROPOSED METHODOLOGY 
 
This research aims at using the proposed GLNs in 

categorizing contamination degree of water by using water 
quality indices (Figure 1). Thus, GLNs can reside as a good 
stand in linear models as well as the gating mechanisms that 
contain a nonlinear eqn. At the same time, for this problem, 
really non-scalar structures can be too excessive – CNNs and 
RNNs, while GLNs let track the relationships within the data 
with enough number of layers and, simultaneously, provide 
demand in computational performance. At the gates, 
information can be filtered hence there is specific information 
on the pattern of the water quality in the model of the GLNs. 
 

 
 

Figure 1. Proposed GLN architecture 
 
GLNs utilize a combination of gated mechanisms and linear 

transformations to efficiently learn complex relationships in 
data. The model includes layers with gated units that 
adaptively control the flow of information, ensuring robust 
feature learning. Key parameters, such as the number of gated 
units in each layer and activation functions, were optimized to 
achieve high accuracy while maintaining computational 
efficiency.  

Initialize Parameters 
Input vector: The input vector 𝑋𝑋𝑡𝑡 is the data taken by the 

GRU cell at time step t. We can define the input vector of 
words, the output vector of words in NLP, the time series data 
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and the extraction features of the extracted data and so on time 
series data analysis.  
𝑋𝑋𝑡𝑡 denote the state of 𝑋𝑋𝑡𝑡 in time step t.  
Hidden state: The hidden state ℎ𝑡𝑡 is a vector that contain 

the memory of the GRU for that particular time step t; it 
considers the current input 𝑋𝑋𝑡𝑡  and the previous hidden state 
ℎ𝑡𝑡−1.  
ℎ𝑡𝑡−1 from previous time step where transition probabilities 

of movements are conditioned with respect to current 
observation at time t.  

Weight matrices: The GRU uses several weight matrices 
to transform and combine the input data 𝑋𝑋𝑡𝑡 and the previous 
hidden state ℎ𝑡𝑡−1. 

Update gate: 𝑊𝑊𝑧𝑧 and 𝑈𝑈𝑧𝑧 
Reset gate: 𝑊𝑊𝑟𝑟 and 𝑈𝑈𝑟𝑟  
Candidate hidden state: 𝑊𝑊ℎ and 𝑈𝑈ℎ 
Bias terms: Bias terms are added to the computations 

within the GRU to allow each unit to have a trainable offset. 
They help in shifting the activation functions, enabling better 
leaning. 

bz, br, bh 
Compute the update gate: The update gate determines 

how much of the previous hidden state ℎ𝑡𝑡−1 one needs to send 
forward to the future hidden state ℎ𝑡𝑡 . Actually, if assists in 
defining the trade-off between memorization of prior inputs 
and accumulation of new knowledge from the current input 𝑋𝑋𝑡𝑡. 

 
𝑧𝑧𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑧𝑧𝑋𝑋𝑡𝑡 + 𝑈𝑈𝑧𝑧ℎ𝑡𝑡−1 + 𝑏𝑏𝑧𝑧) 

 
where, 𝜎𝜎 is the sigmoid activation function. 

Compute the reset gate: Reset gate decides with what 
extent of the previous hidden state ℎ𝑡𝑡−1 should be forgotten. 
Using the current and previous time step has a role in 
regulating the impacts of past information for the current 
candidate hidden state. 

 
𝑟𝑟𝑟𝑟 = 𝜎𝜎(𝑊𝑊𝑟𝑟𝑋𝑋𝑟𝑟 + 𝑈𝑈𝑟𝑟ℎ𝑟𝑟 − 1 + 𝑏𝑏𝑟𝑟) 

 
Compute the candidate hidden state: The candidate new 

hidden state is a possible new hidden state at some time t, 
which depends on the current input and the resetting of the 
prior hidden state. 
 

ℎ�𝑡𝑡 = 𝑟𝑟𝑡𝑡𝑡𝑡ℎ(𝑊𝑊ℎ𝑋𝑋𝑡𝑡 + 𝑈𝑈ℎ(𝑟𝑟𝑡𝑡 ⊙ ℎ𝑡𝑡−1) + 𝑏𝑏ℎ) 
 
where, ⊙ stands for element wise multiplication. 

Compute the final hidden state: The last one is obtained 
from merging the previous hidden state and the candidate 
hidden state with help of the update gate. 

 
ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡) ⊙ ℎ𝑡𝑡−1 + 𝑧𝑧𝑡𝑡 ⊙ ℎ�𝑡𝑡 

 
Output the final hidden state: The last of the 

aforementioned hidden state ℎ𝑡𝑡 , acts as the output of the GRU 
for the current time step. It incorporates the compressed data 
from the parallel input at the current time step, 𝑋𝑋𝑡𝑡  and the 
previous hidden state ℎ𝑡𝑡−1. 

 
Algorithm 1: Lightweight GLN model for water 
contamination classification 
1. Initialization: 
               𝑊𝑊𝑧𝑧,𝑈𝑈𝑧𝑧 , 𝑏𝑏𝑧𝑧 = initialize parameters for update gate () 
                 𝑊𝑊𝑟𝑟 ,𝑈𝑈𝑟𝑟 , 𝑏𝑏𝑟𝑟   = initialize parameters for reset gate () 
               𝑊𝑊ℎ,𝑈𝑈ℎ, 𝑏𝑏ℎ   = initialize parameters for candidate 

state () 
 
2. Assume we have T time steps and input data X of 

shape (𝑇𝑇, 𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑)                 𝑇𝑇 =  𝑋𝑋. 𝑠𝑠ℎ𝑡𝑡𝑖𝑖𝑎𝑎[0] 
 
3. Initialize hidden state h0 
                 ℎ𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝 = initialize hidden state() 
 
4. Loop over each time step 
                     for t in range(T): 
                             𝑧𝑧𝑡𝑡 = 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠�𝑊𝑊𝑧𝑧@𝑋𝑋[𝑟𝑟] +
𝑈𝑈𝑧𝑧@ℎ𝑝𝑝𝑟𝑟𝑎𝑎𝑟𝑟 + 𝑏𝑏𝑧𝑧� 
                             𝑟𝑟𝑡𝑡 = 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠(𝑊𝑊𝑟𝑟@𝑋𝑋[𝑟𝑟] +
𝑈𝑈𝑟𝑟@ℎ𝑝𝑝𝑟𝑟𝑎𝑎𝑟𝑟 + 𝑏𝑏𝑟𝑟) 
                             ℎℎ𝑡𝑡𝑟𝑟𝑡𝑡 = tanh�𝑊𝑊ℎ@𝑋𝑋[𝑟𝑟] + 𝑈𝑈ℎ@�𝑟𝑟𝑡𝑡 ∗
ℎ𝑝𝑝𝑟𝑟𝑎𝑎𝑟𝑟� + 𝑏𝑏ℎ� 
                             ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡) ∗ ℎ𝑝𝑝𝑟𝑟𝑎𝑎𝑟𝑟 + 𝑧𝑧𝑡𝑡 ∗ ℎℎ𝑡𝑡𝑟𝑟𝑡𝑡 
                             ℎ𝑝𝑝𝑟𝑟𝑎𝑎𝑟𝑟 = ℎ𝑡𝑡 
5. Output  

 
The hyperparameters of the GLN model, such as the 

learning rate, batch size, and optimizer, have been carefully 
tuned to achieve optimal performance. A learning rate of 0.001 
was selected to ensure a balance between convergence speed 
and stability. The batch size was set to 32, enabling efficient 
processing of data while maintaining stable gradient updates. 
The Adam optimizer was chosen for its effectiveness in 
minimizing loss and handling sparse gradients. 
 
 
4. RESULTS AND DISCUSSIONS 
 

The empirical data and discourses of this paper’s Results 
and discussion section dwells on the performance evaluation 
of the proposed GLN model to in recognition of water 
contaminant. When solving problem involving multi-variate 
water quality data, the model was found to be more efficient 
than other models. Such conclusions undoubtedly affirm that 
the developed approach can be insightful for real-time 
monitoring of water sources and hence it can lay the 
foundation for the further preservation of the environment.  

The study done used data set from catfish ponds in 
freshwater aquaculture system. One of the used components 
were ESP 32 microcontroller with array of sensors aimed to 
monitor several water quality parameters per 5 seconds. The 
sensors used were Dallas Instrument Temperature sensor 
(DS18B20) for the temperature of water, a DF Robot Turbidity 
sensor for turbidity of water, a DF Robot Dissolved Oxygen 
sensor for calculating amount of dissolved oxygen in water 
and a DF Robot pH sensor V2. It comprises of the pH Level, 
for which we have placed an MQ-137 Ammonia sensor and 
Nitrate Level for which an MQ-135 Nitrate sensor has been 
placed. In addition, data collection was also done by the 
Lacuna Award for Agriculture in Sub-Saharan Africa 2020 by 
the Meridian Institute based in Colorado, USA. Water quality 
analysis of twelve aquaponics catfish ponds was conducted 
from June to mid-October, 2021. There were 6 sensors for 
each pond while each unit produced data records of over 
170,000. Data was collected, processed and classified from 
time to time with a view of managing biasness and variability. 
This is attributable to the fact that often the large quantity of 
data is available which can be used effectively to provide good 
basis for benchmarking the Attention-Quantized GRU model 
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while comparing the performance of the proposed model for 
the categorization of water quality in aquaculture systems.  

The preprocessing performed on data have been detailed to 
ensure clarity and reproducibility. Missing values were 
addressed by imputing the mean, numerical features were 
standardized to achieve a zero mean and unit variance, and 
duplicate entries were removed to maintain data consistency. 
These preprocessing steps significantly improved the quality 
of the input data and contributed to the enhanced performance 
of the GLN model. 

Accuracy of proposed GLN and existing models is depicted 
in Figure 2. Compared these results with the conditions under 
which GLN was initiated the exposure to one-hundred epochs 
produced an enhanced accuracy of 0.92 It may be increased up 
to 0.992 besides, its initial value is 0.92 thus making it to be 
relatively higher than other models. However, there is also the 
AT-LSTM one which has also been precise with the 
performance enhancing with an accuracy of 0. 979 indicating 
that the developed models have relatively high predictive 
capability. 

It should noted, that in general both the models developed 
for BMI and systolic blood pressure have relative high value 
of coefficient R square statistic of the fit 0.979. We can 
observe that both AODEGRU and DSTCNN have optimized, 
but they have started from accuracies which are almost equally 
small and marginal in differences of 0.951 and 0.946 
respectively. All the models work but from the graph we see 
that Generalization is highest in GLN. 
 

 
 

Figure 2. Accuracy 
 

 
 

Figure 3. Precision 
 

The last precision metrics in Figure 3 are the proposed GLN 
with high capability of selecting positive instances as the 
precision values increases from 0. 91 to 0. 984. The final 
precision of AT-LSTM stands at 0. 963 whereas AODEGRU 

and DSTCNN get less reflecting falser positive than GLN that 
is it expresses more fake negative as positives than any model 
on this paper so far. The further development of precise for 
GLN also increases its reliability in the sense of making 
forecasts. 

Figure 4 illustrates the recall of proposed GLN against 
existing models, the final epoch shows that GLN has reached 
maximum 0. 992 suggesting how accurate this particular 
model can be aquiring true positive results with the cases that 
occur during the test phase or validation period. Next, is AT-
LSTM that marks recall rate at the end equivalent to 0. 969 
which means it is good with detecting negatives within its 
group though not as great as GLN’s ability. At approximately 
0. 552 for AODEGRU while the lowest average node degree 
was 0 for both CAMBRIDGE and AODEGRU. Recall of 
0.947 for DSTCNN their recalls peak thus proving that the 
models work well but the possibility to miss some positive 
examples is small as opposed to the GLN model that does not 
make such mistakes as evidenced by slightly higher scores. 

Figure 5 depicts the F1 scores it shows that only for these 
models, we will get the highest percentage up to 98%. This 
implies their favourable scores propose that in execute they 
show equivalent sensitivity and precision and that there is no 
way that either of the two can influence the other. Nonetheless, 
the F1 score of0.965 which is high and still it is not as good in 
this aspect as GLN. DSTCNN and AODEGRU have 
comparatively lower F1 score which means there is a 
difference in the capability of the two in terms of precision and 
recall which may be a setback in situations where both 
precision and recall are very crucial. 
 

 
 

Figure 4. Recall 
 

 
 

Figure 5. F1-Score 
 

Figure 6 shows the loss value; it shows how the models are 
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able to reduce the error in training. The loss reducing rates of 
GLN were highest among all the groups and started from 0. 
133 to 0. 079 suggesting that learning and optimisation 
occurred throughout all phases. While AT-LSTM, 
AODEGRU, and DSTCNN have also attained the smaller 
losses compared with GLN, they are not getting into similar 
level stating that errors are minimized better by GLN therefore 
improving its ability to make more accurate predictions as 
well. 
 

 
 

Figure 6. Loss 
 
Confusion matrix analysis is very important in deep 

learning since it is used to assess the performance of the 
classification models. It affords a graphical comparison 
between the model’s predictions and the actual ground truth 
labels with a clear view of the zones that the model performs 
excellently or poorly. The confusion matrix of proposed and 
existing models for water contamination analysis has been 
shown in the Figure 7. Therefore, there is consistency in water 
quality of dissolved oxygen pH temperature and ammonia and 
hence affect the fish in the aquaculture farms. Outbreak of 
diseases as well as development of stress and deaths may 
originate from poor water quality hence the importance of 
regular examination of water contaminants. Other previous 
models such as DSTCNN AODEGRU and AT-LSTM has also 
been employed in predicting the water quality, but each of 
them has its own disadvantage.  

For instance, DSTCNN is limited by temporal dependencies 
and therefore gets confused between the contamination of 
water in different conditions and has a higher rate of error. 
Compared to other algorithms, AODEGRU provides a better 
result but suffers from noisy and high dimensional data which 
hampers its performance as well as especially focusing on not-
contaminated water. Overall, AT-LSTM provides better 
outcome prediction but, it overfits; this means that it’s less 
likely to generalize in areas with dramatically different aquatic 
landscapes.  

However, the proposed GLN model does not have such 
problems because it is accurate and flexible for real time 
monitoring of water quality. The confusion matrix 
demonstrates fewer errors hence its efficiency in 
differentiating between contaminated and not contaminated 
water, which is crucial in taking immediate correction in 
aquaculturing. The implementation of the GLN model also 
leads to the enhancement of the computational capability to 
walk this latency thus being important in dynamic health 
environments where response is crucial. However, conversely 
as it is more adaptable to the constantly changing water 
patterns for a better long-term expectation, it is a better long-
term tool to ensure fish health and profitability of aquaculture 

more than the traditional models. 
 

 
(a) DSTCNN 

 
(b) AODEGRU 

 
(c) AT-LSTM 

 
(d) GLN 

 
Figure 7. Confusion matrix analysis of proposed and existing 

models in water contamination classification 
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Table 1. 10-fold cross validation 
 

Epoch Model Accuracy Precision Recall F1-Score Loss 

10 

DSTCNN 0.89 0.88 0.89 0.887 0.154 
AODEGRU 0.91 0.91 0.92 0.91 0.149 
AT-LSTM 0.88 0.91 0.92 0.91 0.144 

GLN (Proposed) 0.92 0.91 0.93 0.92 0.133 

20 

DSTCNN 0.905 0.887 0.907 0.905 0.153 
AODEGRU 0.915 0.911 0.923 0.917 0.142 
AT-LSTM 0.93 0.92 0.93 0.92 0.132 

GLN (Proposed) 0.93 0.925 0.935 0.93 0.122 

30 

DSTCNN 0.912 0.909 0.918 0.913 0.15 
AODEGRU 0.922 0.915 0.916 0.924 0.143 
AT-LSTM 0.93 0.92 0.93 0.92 0.13 

GLN (Proposed) 0.942 0.936 0.944 0.94 0.112 

40 

DSTCNN 0.922 0.917 0.924 0.921 0.147 
AODEGRU 0.931 0.918 0.931 0.927 0.136 
AT-LSTM 0.95 0.93 0.94 0.93 0.123 

GLN (Proposed) 0.954 0.946 0.954 0.95 0.109 

50 

DSTCNN 0.924 0.921 0.926 0.923 0.146 
AODEGRU 0.936 0.929 0.934 0.931 0.131 
AT-LSTM 0.95 0.94 0.94 0.94 0.121 

GLN (Proposed) 0.964 0.955 0.963 0.96 0.101 

60 

DSTCNN 0.93 0.924 0.932 0.927 0.135 
AODEGRU 0.94 0.934 0.944 0.937 0.118 
AT-LSTM 0.96 0.95 0.96 0.95 0.112 

GLN (Proposed) 0.974 0.966 0.975 0.97 0.098 

70 

DSTCNN 0.938 0.929 0.937 0.933 0.132 
AODEGRU 0.947 0.936 0.945 0.94 0.117 
AT-LSTM 0.967 0.954 0.959 0.956 0.108 

GLN (Proposed) 0.976 0.967 0.977 0.972 0.089 

80 

DSTCNN 0.945 0.935 0.946 0.939 0.123 
AODEGRU 0.949 0.941 0.943 0.942 0.111 
AT-LSTM 0.971 0.962 0.967 0.963 0.101 

GLN (Proposed) 0.982 0.973 0.981 0.977 0.087 

90 

DSTCNN 0.942 0.939 0.943 0.941 0.122 
AODEGRU 0.951 0.947 0.939 0.944 0.11 
AT-LSTM 0.977 0.964 0.968 0.966 0.099 

GLN (Proposed) 0.986 0.978 0.987 0.982 0.081 

100 

DSTCNN 0.946 0.943 0.947 0.944 0.117 
AODEGRU 0.934 0.941 0.946 0.931 0.109 
AT-LSTM 0.979 0.963 0.969 0.965 0.097 

GLN (Proposed) 0.992 0.984 0.992 0.988 0.079 
 
Cross validation is shown in Table 1, it is one of the methods 

that can come up when evaluating a model, and to address the 
issue of over fitting in DL 10-fold cross validation is used. It 
entails dividing the data into 10 portions; uses nine portions to 
train the language analyzing model and the last portion to test 
the language analyzing model. This dataset is divided 
randomly into 10 folds and anyone-fold is used as a testing set 
while the other set is taken as training set. By averaging the 
result across these ten divides, cross validation, especially 10-
fold cross validation provides a far better approximation of the 
generalization ability of the model as compared to having train 
and test split. This helps to minimize the over fitting that sets 
in when the model is tuned with the training data and thus gave 
a poor prediction when the test data was presented to it. About 
specifics of the models’ performance, it is clear from the 
scenario depicted in Tale-1 that the GLN model constitutes the 
highest levels of performance among all the models under 
consideration. Earlier, it provided answers to queries with 92% 
accuracy and which later went up to 99%. After 10 folds, not 
only GLN performance becomes better, but it also identifies 
the contaminated water samples with the least error of 2%. The 
model produces the accuracy of about 98%. For contamination 
4% and for the recall of 99. This can be evidenced on the 2% 
which is seen to be capable of offering an accurate detection 

without compromising on a huge number of contaminated 
samples hence making this model the best for contamination 
detection. The latter is quite similar to AT-LSTM, which has 
scored noble 97.9% and 93%, 90% for precision and recall 
values respectively and as a result; it is ideal in the analysis of 
the water contamination level.  

For the other models, the performances are moderate and 
for AODEGRU and DSTCNN respectively, have obtained 
95% of the maximum accuracy. 1% while DSTCNN was 
slightly low at 94%. From the models, the results show that 
both forms function well with the discovery that they possess 
slightly lower reconstruction accuracy, lower accuracy in the 
identification of contaminated products, and slightly higher 
loss as compared to GLN and AT-LSTM.  

Table 2 shows how the different sampling frequencies of the 
sensors (1Hz, 5Hz, and 10Hz) affect the GLN model. When 
the sampling frequency increases, the number of time, 
accuracy, precision, recall and F1-score also enhances, which 
proved that higher frequency gives more detailed data for the 
better prediction of the model. 

Table 3 compares the performance of the GLN model in the 
presence of noise in sensor data (5% and 10%) and also where 
the data is missing (5% and 10%). Here, the performances of 
the model reveal the models’ robustness by slightly decline 

354



causes by the noise or missing data but are still reasonable and 
reliable. 

Table 4 compares the computational efficiency of three 
existing models—DSTCNN, AODEGRU, and AT-LSTM—
with the proposed GLN model. The number of parameters 
indicates the computational complexity of each model, while 
the runtime in seconds highlights the time required for 
processing. The proposed GLN model has the lowest number 

of parameters (1.8M), demonstrating its lightweight 
architecture compared to the other models. This reduced 
complexity contributes to its significantly faster runtime (12.8 
seconds), making it more efficient while maintaining or 
exceeding the accuracy of existing models. These results 
showcase the computational advantages of the proposed GLN 
model. 

 
Table 2. Performance of proposed model with different sampling frequencies 

 
Experiment Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Sampling Frequency (1Hz) 89.5 88.9 90.1 89.5 
Sampling Frequency (5Hz) 92.1 91.8 92.5 92.1 
Sampling Frequency (10Hz) 93.8 93.2 94 93.6 

 
Table 3. Performance of proposed model with Noise and missing data 

 
Experiment Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Sensor Data Noise (5%) 90.3 89.7 91.2 90.4 
Sensor Data Noise (10%) 87.9 86.7 88.2 87.4 

Missing Data (5%) 91.2 90.5 92 91.2 
Missing Data (10%) 88.4 87.8 89.1 88.3 

 
Table 4. Model complexity and run time comparison 

 
Model Number of 

Parameters 
Runtime 
(Seconds) 

DSTCNN 2.5 M 15.2 
AODEGRU 3.1 M 18.7 
AT-LSTM 4.8 M 22.5 
Proposed 

GLN 1.8 M 12.8 

 
 
5. CONCLUSIONS 

 
High concentration of ammonia poses a threat to the health 

of the aquatic systems and the fish which is an important 
aspect considered under the present work. In that regard, the 
use of GLN model to categorize water pollution based on 
necessary water quality parameters as suggested in this 
research would enhance precision and reliability when 
determining the quality of water. Another parameter explained 
the fact that the GLN model’s performance is higher than the 
performance of traditional models. This means that the GLN 
model is very robust in recognition or categorization of 
contamination rates attaining average precision are superior. 
The following result shows comparable fluctuation for the 
year 1992 while holding a high level of precision and a high 
recall rate. This way it is tone to balance sensitivity and 
specificity presented with F1-score and one more thing is 
about it stating it is useful for practice where false negative 
and positive instances should be eliminated. Furthermore, the 
losses should be cut to 0 levels from much higher earlier 
levels. The following is the summary of the current and the 
earlier loss levels: 0.079 gives the amount of data by which the 
model is trained for a forecast before the model is optimized 
to make it efficient. So besides being conceptually consistent 
this also means that GLN can be used to declare real time water 
quality control objectives. For the purpose of the water 
resource management, it could improve the existing 
approaches to provide more adequate and timely assessment 
of the pollution degree that might negatively impact ecology 
or fish.  

Before continuing any further in this discussion, it must be 
pointed out that this research holds very concrete practical 
implications. For instance, in the environmental monitoring 
stations the application of the GLN model can lead to the fact 
that some test on water quality can be carried out 24/7. In this 
way, quick actions like restoration measures can be made 
when a traceability system alerts contamination early enough 
hence protecting the lives of aquatic animals including human 
beings’ lives. Additionally, they appear to be easily 
interpreted; environmental scientists and policy makers do not 
have to work hard to try and understand them; thus, can trust 
the predictions from models developed from this type to 
increase the probability of their adoption into regulations. 
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