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This paper discusses the design and implementation of an intelligent power management 
system (IPMS) with the goal of optimizing energy consumption within buildings. The 
system incorporates wireless sensor networks (WSNs), a machine learning (ML) model, 
and embedded hardware for monitoring and controlling the power consumption of Heating, 
Ventilation, and Air Conditioning (HVAC) systems, which are the predominant energy 
consumers in buildings. The IPMS architecture comprises of local units (LUs) which are 
equipped with ESP32 microcontrollers and a range of environmental sensors. Additionally, 
there is a central unit (CU) which is built on a Raspberry Pi4. The CU utilizes a Random 
Forest machine learning model to analyze real-time sensor data and ascertain the optimal 
operational mode for each room. This includes transitioning between Shutdown, Select, and 
Full modes based on factors such as occupancy and environmental conditions. The system 
is effectively managed and closely monitored using a Node-RED dashboard, which offers 
a user-friendly interface for seamless control and comprehensive data visualization in real 
time. The proposed system shows a remarkable level of accuracy in forecasting operational 
modes and attains substantial energy conservation, as confirmed by different case studies.  
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1. INTRODUCTION

From residential environments to production facilities,
power management systems are quite crucial for maximizing 
efficiency and energy allocation in many different fields. 
Given the global need for energy, these technologies are 
vitally necessary in promoting sustainability and the energy 
economy. Efficient energy management lowers wasteful 
power usage and carbon emissions, therefore cutting running 
costs and environmental damage. One of the main and rising 
causes of climate change is the building and construction 
sector as over forty percent of world energy consumption and 
one-third of annual greenhouse gas emissions come from it 
[1]. An improved method of tracking and regulating a 
building's energy consumption is building energy 
management systems or BEMS. Apart from controlling 
energy, the system might control a broad spectrum of other 
building components, whether it is industrial, commercial, or 
private buildings [2]. Therefore, intelligent control and 
monitoring systems offer appealing energy savings and a 
return on investment for newly built and retrofitted buildings 
when employed at scale. 

Integrating cutting-edge energy and technical technology, 
the smart building idea offers a transforming method for 
controlling energy use within buildings. Embedded systems 
integration with WSNs and AI technologies completes the 
concept of smart buildings. embedded systems along with 
WSNs create enormous volumes of data. Quickly and 

powerfully processing this data, artificial intelligence systems 
can generate insightful analysis and support real-time 
decision-making [3]. In line with what was already discussed, 
our study's goal is to present an IPMS that seeks to maximize 
power usage by carefully controlling the running of HVAC 
systems, as they are considered the main source of energy 
consumption in buildings [4]. 

This study implements a system to enhance power 
consumption in buildings, the developed system incorporates 
real-time sensor data with AI-driven decision-making 
analysis. The system contains several local units (LUs) and a 
main central unit (CU). Each local unit with ESP32 
microcontroller function attached to sensors is located in a 
room as sensor nodes gathering environmental data including 
temperature, humidity, light intensity, and occupancy status. 
On the other hand, the central unit driven by a Raspberry Pi4, 
acts as a processing center and a gateway. It incorporates a 
machine learning (ML) model to examine local unit incoming 
data to make decisions depending on predefined criteria for 
three classification decisions: Full, Select, and Shutdown. To 
control and monitor the system, node-red; which is a cloud-
based programming tool is used for creatively wiring physical 
turns on devices, APIs, and online services in innovative 
combinations. 

The paper is structured as follows: Section 2 specifies 
related works in energy optimization solutions. Section 3 
indicates the suggested intelligent power management 
system. Section 4 discusses the results, whereas Section 5 
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concludes the findings and suggests future studies. 
 

 
2.  RELATED WORK 

 
Examining studies on how to enhance power management 

shows that, particularly in recent years, power management 
has been thoroughly studied in the literature. Many research 
papers have addressed the idea of Building Energy 
Management Systems (BEMS) and the degree of the 
influence of new technology in enhancing this notion. By 
allowing better energy solutions, embedded systems, WSN, 
and AI are considered a transformation in power management 
in buildings. The literature lacks systematic approaches for 
sensor-actuator integration, which led Fernandes et al. [5] to 
present the SmartLVEnergy framework, intended to upgrade 
outdated low-voltage systems. This framework employs a 
retrofitting strategy that integrates decentralized sensing, 
distributed computation, and predictive analytics. Following 
Artificial Intelligence of Things (AIoT) and small machine 
learning (TinyML) concepts, the framework was used to 
upgrade the energy distribution panel of a legacy 
manufacturing facility with sensor devices supporting remote 
monitoring and decentralized statistical analysis using fifteen-
min energy demand forecasting models based on two-layer 
long-short-term memory (LSTM) networks. This AIoT 
architecture represented a breakthrough in sensor-actuator 
retrofitting—that is, combining digital technologies with 
older systems for smart energy management and low-cost 
end-to-end IoT system design for smart building energy 
monitoring and control. 

One of the crucial elements for energy control and 
monitoring in smart buildings includes developing a low-cost 
end-to-end system as represented by Kök et al. [6] where edge 
computing enabled ML models were created to forecast 
building energy use. Based on edge computing, they 
suggested a four-layer IoT architecture to estimate energy 
usage in smart buildings, therefore enabling real-time 
monitoring of energy use. Four-layer IoT system architecture 
provided comprising physical device layer, edge layer, fog 
layer, and cloud layer. With the use of artificial intelligence 
and IoT, test findings reveal that the suggested method may 
be applied in rapid, efficient, and interpretable building 
energy management.  

In the same context, Essa et al. [7] discussed using IoT 

technology and artificial intelligence to create a smart system 
for an educational lab managing energy use. Different 
controllers in the real system such as Arduino Mega 2560 and 
Siemens S7-1200 PLC—help to increase system 
dependability and efficiency. Node MCU ESP8266 sends and 
receives data through Wi-Fi from and to PLCs and Arduinos 
while Bylink and the ThingSpeak platform create the IoT 
facilities. The suggested prototype of building management 
system (BMS) was tested in a laboratory coupled with several 
kinds of sensors. The collected data is Fed to an Artificial 
Neural Network (ANN), enabling the BMS to regulate air 
conditioning, ventilation, firefighting, lighting, 
and temperature forecasting. 

The importance of real-time power monitoring and 
adaptive management for smart homes and smart grid-based 
infrastructure was addressed by Saluja et al. [8]. The 
suggested solution was a smart energy control system using 
smart home appliances for infrastructure. The presented 
solution allowed modern automation and energy usage 
management by combining real-time sensor data across smart 
devices with sophisticated AI-driven analysis. The solution 
guarantees flawless connection between the client appliances 
(Arduino) and the centralized server (Raspberry Pi) through a 
ZigBee-based personal area network in a star topology. This 
enabled quick energy-saving techniques to be applied always. 
Using defense-in-depth with several levels of protection, the 
suggested method also emphasizes a safe system to guard data 
around the smart grid. Implementing real-time monitoring and 
control energy systems have been investigated thoroughly as 
revised in references [9-17]. 

 
 

3. PROPOSED IPMS 
 
In this section hardware and software implementations are 

discussed. Emphasizing the design, functioning, and 
integration of the system will help grasp the technical 
elements and data processing in real time. 

 
3.1 System structure 

 
Using a network of microcontrollers and sensors, the 

intelligent power management system is meant to effectively 
monitor and control energy use inside a specific area, such as 
a building or room. 

 

 
 

Figure 1. System prototype overview 
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Two main components—the Central Unit (Raspberry Pi4) 
and the Local Units (ESP32 microcontrollers)—form the 
architecture as indicated in Figure 1. The CU acts as the 
system's brain. It receives data from the LUs, runs ML 
algorithms on it, and decides how best to control energy use. 
Using the Message Queuing Telemetry Transport (MQTT) 
protocol, the Raspberry Pi4 also manages the local units' and 
its own communications. It processes data using a pre-trained 
machine learning model, follows particular MQTT topics to 
receive sensor data and control requests, and subsequently 
generates control actions back to the local units. 

As mentioned before, local units consist of sensors and 
actuators attached to ESP32 microcontroller. Every ESP32 is 
linked to three sensors: light sensors (LDR), infrared (IR) 
sensors for occupancy detection, and temperature and 
humidity sensors (DHT22). Real-time environmental data 
collected by these sensors is localized by the ESP32 and then 
sent to the Raspberry Pi via MQTT. The ESP32 units also 
follow Raspberry Pi control commands, which they utilize to 
run actuators such as LEDs that symbolize three modes of 
operations.  

Figure 2. Flow chart of the proposed system 

To enable the management and control of this system 
remotely Node-red is implemented which is a web-based tool 
to visualize the integration of hardware devices, API’s and 
online facilities. Leveraging Node-RED, one can remotely 
operate and manage the system by means of real-time data 
graphical representation, control interfaces, and autonomous 
decision-making capability. A flow chart for the proposed 
system is presented in Figure 2. 

3.2 ML model 

ML model plays a major role in this system by processing 
real-time sensor data and making smart decisions. Based on 
the results from our previous work [18] Random Forest RF is 
best suited to be adopted as the ML model for this system. RF 
incorporates several decision trees as shown in Figure 3 to 
improve prediction accuracy with the final forecast derived by 
averaging the findings of all the trees, this method produces 
reduced bias and variation as shown in Eq. (1) [19]: 

Figure 3. RF classifier [20] 

𝑋𝑋∗ = 𝜋𝜋 �𝛰𝛰(𝑐𝑐)�𝛽𝛽 = 1
𝑘𝑘 ∑ 𝑥𝑥𝑙𝑙𝑙𝑙∗𝑙𝑙

𝑙𝑙=1 �𝑓𝑓(𝑐𝑐)�
� , 𝑘𝑘∗ (1) 

where, X* is the ideal points; O(c) is the observation; β is the 
learning rate variable; K is the number of decision trees; f is 
feature transform and lk is a leaf node of the decision tree.  

In order to guarantee reliability, the RF approach utilized in 
this study was configured with particular hyperparameters 
which employ a total of 1000 estimators (trees) and the 
maximum depth is set to five to prevent overfitting. Other 
parameters include a bootstrapping sample technique to 
increase stability and the Gini impurity being criteria for node 
splitting.  

The CU initially handles and scales real-time sensor data to 
fit the demands of the model. The ML model then receives the 
processed data and generates an input-based prediction. After 
that, the label encoder decodes this prediction back into a 
legible action, say "Shutdown," and sent to the pertinent topic 
to guide the LU on the necessary action.  

3.3 Dataset structure 

ML model is pre-trained by a measured data set taken from 
a floor office in a university building over one year [21] where 
both indoor and outdoor measures were acquired. Occupancy-
related models can be developed and validated among other 
uses for the obtained data as a result, the development of the 
model in this study considers indoor elements such as 
temperature, humidity, occupant presence, and light 
conditions. Depending on occupancy status and temperature, 
a new feature called Mode was included in the dataset to 
classify it based on the three described modes (Shutdown, 
Select and Full). As shown in Figure 4 which indicates the 
distribution of operational modes class Shutdown dominates 
other classes, to address this limitation of imbalanced data, 
upscaling measurements are implemented to even out all 
classes and prevent bias issues. After this point, data is labeled 
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by tagging them such that the model may recognize the classes 
by use of tags then features are scaled to improve algorithm 
performance by balancing the influence of all the elements on 
distance computation. Feature scaling is crucial since the scale 
of these features may exceed their values; this can be solved 
by scaling the features into a designated range [22]. The final 
step is dividing data set into 80% training sets and 20% testing 
sets making it ready for the training and testing phase. 

Figure 4. Distribution of operational modes 

3.4 Hardware implementation 

Three LUs and one CU together implement the hardware. 
Specifications for each component are discussed here in 
detail.  

3.4.1 Central unit implementation 
As mentioned before, CU (Raspberry Pi4) as shown in 

Figure 5, acts as the core of the system and it takes several 
steps to accomplish the whole process as discussed below:  

Figure 5. CU (Raspberry Pi4) 

(1) MQTT communications
MQTT is a lightweight protocol, which makes it perfect for

IoT applications, making it efficient for the communication 
between CU and LUs. Raspberry Pi acts as an MQTT broker 
and MQTT client which subscribes to particular topics to get 
data from the LUs. For example, it follows topics like room 1, 
room 2, and room 3 where every topic relates to a specific 
room. Sensor data including temperature, humidity, 
occupancy, and light level abound in these subjects. The CU, 
being subscribed to a certain topic, gets the data payload right 
away when LU gathers real-time sensor data. Apart from 
gathering sensor data, the Raspberry Pi also follows topics 
like manual_mode_room1 that influence the operational 
mode of the system. These topics switch from automatic to 
manual modes depending on commands sent via a user 
interface, which is in our case a Node-RED dashboard. 

CU not only receives data from LUs but also processes 
them through the ML model and publishes the actions (e.g., 
Shutdown, Select, or Full) to topics like action_room1, 
action_room2, and action_room3 to which the LUs already 

subscribe to those topics. This will make the LUs switch from 
one mode to another and that’s represented in this prototype 
system by turning ON/OFF LEDs which correspond to each 
mode of operation. 

The MQTT protocol is utilized for allowing light-weight 
and effective communication between the CU and the LUs as 
a result Quality of Service measurements (QoS) is set to zero, 
this ensures the fastest message delivery without 
acknowledgment to lower latency and resource usage which 
is suitable for real-time applications. To overcome this 
limitation, the system checks the MQTT connection between 
CU and LUs constantly. In case the connection is lost, LUs 
intended to automatically re-connect with the MQTT broker 
and continue Publish/Subscribe with topics. Besides that, to 
reduce the possibility of missed communications, the LUs 
transmit regular updates to the CU at five-second intervals. If 
a message is not received, it shall be substituted by the 
subsequent update to ensure dependable real-time 
performance for critical decision-making processes. 

(2) Mode handling
The CU is responsible for running two separate modes:

Manual Mode and Automatic Mode. The default mode, 
Automatic Mode, uses the ML model and autonomous 
decision-making to continuously process sensor input. The 
CU handles received sensor data, forecasts required actions, 
and transmits commands to the ESP32 nodes to drive 
actuators like LEDs. Manual Mode lets the system wait for 
user commands instead of making automatic decisions based 
on sensor data. To switch from Automatic Mode to Manual 
Mode a message is received from a subscribed topic like 
manual_mode_room1 which is controlled by Node-Red web 
application. In this mode, the user can directly send 
commands to LUs from the application dashboard. 

(3) Multi-room coordination
In order to guarantee efficient power utilization in a multi-

room situation, the CU combines and controls data among 
several LUs. Every LU is given a distinct MQTT client ID to 
set it apart from others, therefore allowing the CU to access 
and handle data from individual nodes. Every LU sends its 
real-time sensor data that is: temperature, humidity, 
occupancy and light to distinct MQTT topics including room 
1, room 2, and room 3. The CU functions as both the MQTT 
broker as well as client, subscribing to the selected topics and 
at the same time processing the incoming data. Upon 
processing, the CU employs the RF machine learning model 
to predict the suitable mode for each room. Then the decisions 
made from CU are sent back to LUs through topics like 
action_room1, action_room2 and action_room3. Each LU 
defines its related control message through its distinct MQTT 
identifier and as a result, reacts accordingly. 

3.4.2 Local unit implementation 
LU which consists of an ESP32 microcontroller and 

(temperature, humidity, light, and occupancy status) sensors 
attached to it responsible for the data acquisition process as 
shown in Figure 6. ESP32 is a strong and flexible 
microcontroller well-known for its integrated Wi-Fi and 
Bluetooth capabilities. Its dual-core CPU and plenty of GPIO 
pins support a broad spectrum of sensors and peripherals 
helping it to effectively manage functions including data 
collecting, processing, and communication. Three types of 
sensors are connected to ESP32 which are DHT22 for 
temperature and humidity, light sensors represented by LDR 
sensor which measures light intensity, and Occupancy status 
sensor which is an IR sensor that can detect motions. LU also 
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handles three LEDs each one corresponding to one of the three 
modes of operation (Shutdown, Select, and Full), LU is 
subscribed to a topic such as action_room1, and upon 
receiving the command from the topic, it updates the status of 
the LEDs according to that command. 

 

 
 

Figure 6. Local unit 
 

The ESP32 gathers regular interval data from the DHT22, 
LDR, and IR sensors. The sensor readings, temperature and 
humidity, for the DHT22 are numerical values that are not 
needed for further processing. The IR sensors accumulate 
binary outputs, either motion or non-motion, that are used to 
determine occupancy levels over time. LDR sensor measures 
light intensity and based on a specific threshold it indicates 
whether there is light or not. After that, the gathered data is 
arranged into a structured payload. This payload is ready for 
MQTT transfer to the central unit, therefore guaranteeing that 
all pertinent environmental data is sent for centralized 
processing.  

It is worth mentioning that LU subscribes to related topics 
(e.g., action_room1 and manual_mode_room1) and publishes 
sensor data to topics like room1. Automatic reconnection is 
also handled if the MQTT connection is lost. The loop 
operation of the ESP32 constantly monitors the MQTT 
connection and, in case of need, reconnects to guarantee 
continuous data flow. 
 
3.4.3 Local unit fault tolerance handling mechanisms 

To guarantee the reliability and robustness of the system, a 
specialized mechanism has been developed to identify and 
manage LU failures. Failures in the LU may originate from 
two principal sources: the sensors failing to supply data or a 
failure of the ESP32 microcontroller due to missing 
connectivity or hardware failure. A central unit was 
developed to identify the two types of errors by monitoring 
for absent sensor data or a lack of connectivity from the LU. 
Upon the identification of such issues, the CU isolates the 
malfunctioning LU, and stops the 
automatic decision processes associated with that unit. After 
this point, CU publishes the status of malfunctioning LU to a 
topic named (node_red/fault_status_room1), which the node-
RED already subscribed to, to initiate an alert in the 
controlling dashboard to allow user intervention 

 
3.5 Cloud central site 

 
One cloud-based programming tool acknowledged as 

helping IoT systems and services to be developed and 
integrated is Node-RED [23]. Node-RED offers a scalable and 
adaptable environment for users to build intricate processes 

by linking physical devices, APIs, and many internet services 
as a cloud-native platform. Node-RED's cloud-based 
architecture lets several users build, run, and administer apps 
from anywhere with internet access, therefore facilitating 
real-time access and teamwork. In current distributed systems, 
where flawless integration between many devices and 
services is crucial, this feature is especially helpful. Utilizing 
Node-RED's cloud deployment, scalability is also supported, 
therefore enabling applications to expand and change with 
system demands. Node-RED uses the cloud to streamline the 
creation and upkeep of IoT solutions, thereby providing an 
easily available and strong tool for field practitioners as well 
as researchers. 
 
 
4. RESULTS OF THE PROPOSED SYSTEM 

 
The proposed IPMS prototype is implemented as shown in 

Figure 7 where three nodes of LUs correspond to a room, so 
they represent room1, room2, and room3 respectively. Three 
cases were discussed to verify the real-time data processing 
for the prototype system as clarified below: 
 

 
 

Figure 7. IPMS prototype implementation 
 
4.1 First case study 

 
The first case study represents when there is no occupancy 

in the room while maintaining the rest of the features.  
 

 
 

Figure 8. Implementation for LU in room1 
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Figure 9. Web application monitoring for room1 
 

Table 1. Serial monitor readings from room 1 
 

Sensor Timestamp Occupancy Temperature (℃) Humidity (%) Light Action Timestamp Action 
02:46:34.609 0.00 29.50 49.30 1 02:46:34.609 Shutdown 
02:46:39.629 0.00 29.80 59.30 1 02:46:39.583 Shutdown 
02:46:44.624 0.00 30.10 65.30 1 02:46:44.624 Shutdown 
02:46:49.623 0.00 30.40 68.40 1 02:46:49.623 Shutdown 
02:46:54.630 0.00 30.70 68.00 1 02:46:54.630 Shutdown 
02:46:59.657 0.00 31.00 67.00 1 02:46:59.610 Shutdown 
02:47:04.646 0.00 31.20 64.70 1 02:47:04.646 Shutdown 
02:47:09.665 0.00 31.30 61.00 1 02:47:09.665 Shutdown 
02:47:14.673 0.00 31.50 52.30 1 02:47:14.673 Shutdown 
02:47:19.686 0.00 31.50 47.90 1 02:47:19.686 Shutdown 
02:47:24.688 0.00 31.50 46.60 1 02:47:24.688 Shutdown 
02:47:29.687 0.00 31.50 44.60 0 02:47:29.687 Shutdown 

 
In this case no matter the parameters acquired from the 

LUs, the IPMS shut down all the HVAC devices since there 
is no occupancy at all. This case will be represented as a red 
LED turned on which indicates the Shutdown mode as shown 
in Figure 8. Figure 9 shows the Web application monitoring 
process in Automatic Mode for this room. 

Readings are taken every five seconds and we take 120 
readings representing 10 minutes. The system accurately 
predicts the Shutdown mode in all readings. Table 1 implies a 
window of one-minute serial monitor readings in LU for room 
1. 
 
4.2 Second case study 
 

The second case study shows the implementation of the 
proposed system in the case of Select Mode as Figure 10 
implies. LUs will measure the occupancy levels and all 
parameters and send them to CU for processing. It specifies 
when the room is partially occupied within the specified 
temperature range. Hence, there is no need to operate all 
HVAC devices, and it is represented by a yellow LED. Since 
the room is not fully occupied, this mode represents an 
energy-saving approach in the smart system.  

Figure 11 indicates the Automatic mode monitoring 
through the web application while Table 2 shows the serial 
monitor readings for room 2. From the readings, it could be 
seen that the system accurately predicts the mode of operation 

depending on real-time sensor readings but when the 
temperature drops from 25℃ to 24.80℃ in the time stamp 
(16:25:14.312) the mode status did not change to shut down 
in the upcoming reading (16:25:19.314), instead, it cahanges 
in the second upcoming reading (16:25:24.322) that means it 
takes approximately ten seconds to transit from one mode to 
another when specific changes happen. That could be justified 
due to the predefined delay of 5 seconds between sensor 
reading intervals. 
 

 
 

Figure 10. Implementation of room 2 
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Figure 11. Web application monitoring of room 2 
 

Table 2. Serial monitor readings from room 2 
 

Sensor Timestamp Occupancy Temperature (℃) Humidity (%) Light Action Timestamp Action 
16:24:39.247 0.40 26.50 36.30 1 16:24:44.256 Select 
16:24:44.256 0.40 26.20 32.40 1 16:24:49.263 Select 
16:24:49.263 0.40 25.90 29.80 1 16:24:54.262 Select 
16:24:54.262 0.40 25.50 28.20 1 16:24:59.270 Select 
16:24:59.270 0.40 25.30 27.30 1 16:25:04.299 Select 
16:25:04.299 0.40 25.20 26.70 1 16:25:09.287 Select 
16:25:09.287 0.40 25.00 26.60 1 16:25:14.312 Select 
16:25:14.312 0.40 24.80 26.40 1 16:25:19.314 Select 
16:25:19.314 0.40 24.80 26.30 1 16:25:24.322 Shutdown 
16:25:24.322 0.40 24.60 27.00 1 16:25:29.329 Shutdown 
16:25:29.329 0.40 24.30 29.70 1 16:25:34.345 Shutdown 
16:25:34.345 0.40 24.00 33.50 1 16:25:39.355 Shutdown 

 
Table 3. Serial monitor readings from room 3 

 
Sensor Timestamp Occupancy Temperature (℃) Humidity (%) Light Action Timestamp Action 

16:40:58.945 0.50 25.90 41.60 1 16:41:03.949 Full 
16:41:03.949 0.50 25.80 41.20 1 16:41:08.955 Full 
16:41:08.955 0.50 25.70 41.00 1 16:41:13.976 Full 
16:41:13.976 0.50 25.30 39.50 1 16:41:18.996 Full 
16:41:18.949 0.50 24.90 38.80 1 16:41:23.978 Full 
16:41:23.978 0.50 24.50 38.70 1 16:41:28.966 Shutdown 
16:41:28.966 0.50 24.20 42.30 1 16:41:29.005 Shutdown 
16:41:29.005 0.50 23.90 46.70 1 16:41:34.009 Shutdown 
16:41:34.009 0.50 23.60 50.10 1 16:41:39.013 Shutdown 
16:41:39.013 0.50 23.50 52.80 1 16:41:44.020 Shutdown 
16:41:44.020 0.50 23.40 54.70 1 16:41:49.035 Shutdown 
16:41:49.035 0.50 23.20 55.70 1 16:41:54.026 Shutdown 

 
4.3 Third case study 

 
This case study indicates the operation in Full mode. LUs 

will measure the occupancy levels and all parameters and send 
them to CU for processing. When the occupancy and 
temperature exceed the threshold levels, IPMS will operate all 
the HVAC devices in this room and a green LED turned on to 
represent this mode. The implementation for this case and the 
web application monitoring are shown in Figures 12 and 13 
respectively. 

Table 3 shows the serial monitor readings of room 3, It 
shows that the mode will be Full if the occupancy status is 
beyond the threshold which is more than or equal to 50% of 

the total room capacity and the temperature is more than or 
equal to 25C. As we noticed in case study 2, it takes one 
reading to switch from one mode to another when sensor 
readings change.  

Manual mode could be activated at any time to manually 
control the system from the node-red web application. As 
previously mentioned, CU subscribes to topics named 
(manual_mode_room1, manual_mode_room2, and 
manual_mode_room3) which correspond to each room 
respectively where the user can active this mode and operate 
the LUs remotely to operate manually in one of the three 
operation modes as shown in Figure 14 which indicates the 
manual control in room 3. 
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Figure 12. Implementation of room3 

Figure 13. Web application monitoring for room3 

Figure 14. Manual mode 
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4.4 Fourth case study 

Using a mix of hardware, cloud monitoring, and centralized 
control, three LUs are used concurrently in this case study to 
monitor and control various rooms within a building. LU1 
represents room 1 which is in Shutdown mode LU2 signifies 
room 2 in Select mode and LU3 denotes room3 in Full mode 
as shown in Figure 15 which depicts the hardware 
configuration for the three rooms, thereby highlighting how 
each room has sensors and controllers linked to an ESP32 
microcontroller (LUs), which is in charge of interacting with 
the CU (Raspberry Pi), it could be seen that each LU operates 
in different modes as implied by the various LEDs. 

Real-time data from every room is presented in Figure 16 
which shows the cloud monitoring and control interface using 
Node-RED. Every room's occupancy, temperature, light, and 
humidity levels may be viewed by users who can also change 
between manual and automatic management modes.  

Showing the run windows in the CU, Figure 17 shows the 
execution of scripts matching every room. These scripts find 
the suitable control action to be transmitted back to the LUs 

by processing the sensor data using the pre-defined ML 
model, from the figure it could be noticed that room 1 is in 
Shutdown mode, room 2 is in Select mode while room 3 is in 
Full mode. 

Figure 15. Hardware configuration for the three rooms 

Figure 16. Node-red cloud monitoring and control 

Figure 17. CU run window 

343



Figure 18. Fault detection in CU 

Figure 19. Notification for malfunctioning LU notification for malfunctioning LU 

4.5 Fifth case study 

The implementation effectively illustrates the system's 
capability to identify and isolate faults within a Local Unit. 
Figure 18 illustrates that the CU is responsible for monitoring 
the status of LUs. Upon detection of a fault, the CU takes 
action to isolate the faulty LU by stopping decision-making 
processes associated with that particular unit. Simultaneously, 
the system provides notifications to the user via the Node-RED 
dashboard. As illustrated through Figure 19, this notification 
serves to quickly notify the user that one of the LU is not 
responding. 

4.6 Case studies analysis 

For the above-mentioned case studies, a comparison is 
made between the results of this study and the results obtained 
from our previous study which investigated the optimal ML 
method in terms of accuracy [18]. In this work, the system 
achieved a 100% accuracy rate by showing great accuracy in 
predicting modes of operation (Shutdown, Select, and Full) in 
real-time settings. This performance is in line with our 
previous research, in which the Random Forest (RF) classifier 
remained robust and also attained 100% accuracy as shown in 
Figure 20. Although this work mostly concentrates on real-
time hardware implementation with efficient processing of 
sensor data every 5 seconds, the original study provides a more 
general comparison of machine learning and deep learning 
models; RF emerges as the most efficient in terms of both 

accuracy and classification time. 

Figure 20. The accuracy results in reference [18] 

Moreover, it could be seen from the confusion matrix in 
Figure 21 that RF 100% accurately predicts all the classes and 
this is the exact situation in our study where it always gives 
accurate predictions in real-time measurements. With the RF 
classifier being a common and ideal option in both systems, 
both use machine learning to show great efficiency in 
controlling energy in buildings. This guarantees that, 
especially in using RF for precise and effective power 
management, our system is in line with the best practices and 
results offered in the original study. 

To measure the efficiency of the proposed approaches, 
power consumption is calculated for both Select mode and 
Shutdown mode, lets first assume that each room has ten 2-ton 
Air Conditioners (ACs) so the following calculations are done. 
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Figure 21. Confusion matrix for RF in reference [11] 

Convert tons to BTUs: 
The cooling capacity 𝑄𝑄𝐴𝐴𝐴𝐴  of an AC unit is measured in tons 

where 1 ton is equal to 12,000 British Thermal Units per hour 
(BTU/hr). Hence, for a 2-ton AC unit: 

𝑄𝑄𝐴𝐴𝐴𝐴=2∗12,000 𝐵𝐵𝐵𝐵𝐵𝐵/ℎ𝑟𝑟=24,000 𝐵𝐵𝐵𝐵𝐵𝐵/ℎ𝑟𝑟  

Convert BTUs to watts: 
The power consumption P in watts (W) can be calculated 

by converting BTUs to watts where each 1 BTU / hr = 
0.29307107 W. Thus, for a 2-ton AC unit: 

𝑃𝑃𝐴𝐴𝐴𝐴=𝑄𝑄𝐴𝐴𝐴𝐴 ∗ 0.29307107W = 24,000 ∗ 0.29307107W
≈ 7,033.7W 

Thus, for a room equipped with n = 10 ACs total power 
consumption 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙  is: 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙 = 𝑛𝑛 ∗ 𝑃𝑃𝐴𝐴𝐴𝐴 = 10 ∗ 7,033.7W = 70,337W ≈ 70.34kW 

That means each room needs approximately 70.34 kW, now 
let’s assume when “Select” mode is activated half of the ACs 
(𝑛𝑛𝑆𝑆𝑆𝑆𝑙𝑙𝑆𝑆𝑆𝑆𝑡𝑡 = 5) will operate so the power consumption 𝑃𝑃𝑆𝑆𝑆𝑆𝑙𝑙𝑆𝑆𝑆𝑆𝑡𝑡  
will be: 

𝑃𝑃𝑆𝑆𝑆𝑆𝑙𝑙𝑆𝑆𝑆𝑆𝑡𝑡 = 𝑛𝑛𝑆𝑆𝑆𝑆𝑙𝑙𝑆𝑆𝑆𝑆𝑡𝑡 ∗ 𝑃𝑃𝐴𝐴𝐴𝐴=5 ∗ 7,033.7W = 35,168W
≈ 35.17kW 

When Shutdown mode is activated none of the ACs will be 
operated resulting in: 

𝑃𝑃𝑆𝑆ℎ𝑢𝑢𝑡𝑡𝑢𝑢𝑡𝑡𝑢𝑢𝑢𝑢 = 0W 

As a result, whereas the "Shutdown" mode yields a 100% 
power savings, the "Select" mode reduces power consumption 
by 50%. This notable lower in energy consumption 
emphasizes the effectiveness and energy-saving possibilities 
of using various running modes. 

Let’s assume the working hours in a building are 8 hr/day, 
and the AC system runs in Full mode for four hours, in which 
case all ten of the units are active requiring 70.34 kW of power. 
The system turns to Select mode for three hours, in which case 
just half of the AC units are operational, lowering power usage 
to 35.17 kW. The system is in shutdown mode throughout the 
last hour, in which case 0% power consumption results from 

none of the AC units being active. The complete power 
consumption for every mode for the eight-hour period is 
broken out in Table 4. 

Table 4. Energy consumption 

Mode Duration 
(hours) 

Power 
Consumption 

(kW) 

Energy 
Consumption 

(kW/h) 
Full 4 70.34 4 × 70.34 = 281.36 

Select 3 35.17 3 × 35.17 = 105.51 
Shutdown 1 0 1 × 0 = 0 

Total 8 105.51 386.87 

From Table 4 it could be inferred if the room runs in Full 
mode for eight hours, the overall energy consumption may be 
computed as follows: 

𝐸𝐸1 = 8 × 70.34kW = 562.72kWh 

By contrast, the total energy usage in the scenario whereby 
the system runs four hours in Full mode, three hours in Select 
mode, and one hour in Shutdown mode is: 

𝐸𝐸2 = 386.8kWh 

We can apply the following calculation for system 
efficiency under the scenario as opposed to running in Full 
mode for eight hours: 

𝐸𝐸𝑓𝑓𝑓𝑓𝐸𝐸𝑐𝑐𝐸𝐸𝐸𝐸𝑛𝑛𝑐𝑐𝐸𝐸% = �
𝐸𝐸1 − 𝐸𝐸2
𝐸𝐸1

� × 100% 

Substituting the values: 

𝐸𝐸𝑓𝑓𝑓𝑓𝐸𝐸𝑐𝑐𝐸𝐸𝐸𝐸𝑛𝑛𝑐𝑐𝐸𝐸% = �
562.72 − 386.87

562.72
� × 100% ≈ 31.27% 

Operating with the mixed mode scenario (Full, Select, 
Shutdown) generates an energy savings of roughly 31.27% 
compared to running in Full mode for the whole 8-hour period. 
This shows that strategic usage of Full, Select, and Shutdown 
modes can considerably increase energy efficiency, hence 
lowering the power consumption by 31.27%. This efficiency 
helps to use more sustainable energy as well as lowers running 
expenses. 

5. CONCLUSION

The deployment of the proposed IPMS shows the potential
for substantial energy conservation in building management. 
Through the utilization of Internet of Things (IoT) 
technologies and a sophisticated machine learning model, the 
system effectively monitors and controls the functioning of 
HVAC systems by analyzing sensor data in real time. The 
findings from the case studies demonstrate that the IPMS 
possesses the capability to effectively forecast and transition 
between operational modes, thus enhancing energy efficiency 
and minimizing unnecessary power consumption. The 
incorporation of Node-RED into the system's framework 
significantly improves its usability and scalability for remote 
control and monitoring purposes. This study not only offers a 
pragmatic resolution for the management of energy in 
intelligent buildings but also establishes the foundation for 
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upcoming improvements, such as the integration of 
supplementary sensors for indoor settings to provide exact 
monitoring and energy economy. Future research will examine 
how exterior sensors may be integrated to consider the impact 
of outside environmental variables, thus enhancing the 
adaptability of the system. 

Although the present model makes use of data from one 
building, future studies will try to include multi-building 
datasets and the implementation of more sophisticated 
machine learning models to increase generality and flexibility 
among several building kinds. These attempts will help to 
improve the IPMS design so assuring its adaptability and 
efficiency under many operational environments. 
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