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The building and maintenance of structures like roads, expressways, buildings, skyscrapers, 

and so forth requires a sizable workforce as well as a sizable financial investment in the 

fields of civil engineering and construction. Following completion, it is necessary to 

regularly check for deformations such as fractures, the structure's outermost layer peeling 

off, rusting, etc. To maintain the safety of both human life and the building itself, such 

deformations must therefore be continuously monitored and repaired. We present a neural 

network-based method to find cracks in such structures in addition to physical inspection. 

Using 2500 images as training data, the model had an accuracy of 95.0%; on the validation 

set, it had a mean IoU score of 83%. The proposed method also demonstrates superior 

performance, achieving a 15% increase in prediction accuracy when compared to state-of-

the-art methods, thereby illustrating its worth in real-time applications. 
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1. INTRODUCTION

This decade has seen the fastest rate of progress out of all 

those studied. Numerous buildings have been built and 

continue to be built. By building things like roads, buildings, 

dams, and other infrastructure, emerging countries are 

catching up to the rest of the globe [1]. Each of these structures 

took a great deal of capital and pure human labor to create. 

Pumping such resources would only secure the successful 

completion of the building projects for these structures; 

however, upkeep is a critical area in which resources should 

be expanded [2]. 

These built structures are vulnerable to a variety of variables, 

including the environment, chemicals, and man-made causes, 

and they could sustain harm as a result. Damage to these 

constructions includes not only the loss of previously 

expended time and money but, in some situations, the loss of 

lives if the structure suddenly falls and fractures [3]. Therefore, 

it is necessary to continually find and fix such defects in these 

structures. The most typical defects in a cement-based 

structure may be termed the cracks. In most situations, the 

cracks get wider with time, which makes the structures weaker 

in the long run and increases the risk of collapse if the cracks 

are not fixed. 

There are manual methods that require labor to find and 

repair such cracks. Human eyesight is limited in its ability to 

detect objects or areas of interest (ROI), and its detection range, 

which ranges from the lower constraint of 25 cm to the upper 

bound of infinity, is very constrained (depends on various 

factors like size of the objects) [4]. If the range of deformity 

extends well beyond these boundaries at both ends, the manual 

approaches will not work [5]. 

Crack detection is a critical task in infrastructure 

maintenance, where early identification of structural damages 

can prevent catastrophic failures and reduce maintenance costs. 

Traditional methods, such as manual inspections and rule-

based algorithms, often suffer from low accuracy, 

inconsistency, and inefficiency in large-scale applications. 

Recent advances in deep learning have revolutionized image-

based analysis by providing robust feature extraction and 

pattern recognition capabilities, making it a promising solution 

for crack detection. Moreover, deep learning techniques can 

handle diverse and complex crack patterns while offering real-

time processing capabilities, addressing the limitations of 

existing approaches [6]. As opposed to human vision, which is 

limited by characteristics like speed, duration, and range of 

vision, automatic detection systems are relatively resilient to 

such restrictions [7]. Deep learning has shown promise in 

crack detection, but it often requires extensive labeled data. 

The proposed SS-CCDN utilizes a semi-supervised approach 

with a multi-task model and memory module, enhancing 

efficiency and accuracy in detecting concrete cracks [8].  

Thus, this study contributes to the field of automated 

deformities detection in structures, ensuring more accurate and 
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precise detection of such deformities. To ensure the correct 

detection and upkeep of the structures, the article introduces 

strategies that have been addressed in the civil domain. The 

cost calculation to restore the damaged architecture is another 

advantage over the manual technique that this article 

highlights in addition to the attained accuracy and time savings. 

This would eliminate the need for human efforts to list all the 

costs necessary to fix the structure. The described method 

would save a significant amount of time compared to its 

counterpart methodology, which is labor-intensive and may 

still produce some inaccurate results. 

 

 

2. MOTIVATION 

 

2.1 To prevent mishappenings 

 

The main driving force behind the authors' decision to 

produce this work is their desire to avoid any accident or 

misfortune by identifying structural flaws like cracks [9]. 

Although surface cracks may seem natural, their internal 

growth could pose a threat to structures including nuclear 

power plants, dams, bridges, pillars, and others [10]. In the 

case of the large structure stated earlier, these malformations 

can be regarded as the most serious ones. The authors' method 

would identify the critical flaws in advance so that the 

appropriate safety measures and repair work may be done to 

avert the potential accident [11]. 

 

2.2 Producing more feasible options 

 

The structures, small and large both, are built with 

complexities in today’s world. The addition of the new 

facilities also contributes to the increased complexity of these 

structures. Because of such persisting complexity, the manual 

inspection of such structures is not feasible by sole human 

efforts [12, 13]. But there are various small-scale devices like 

small robot cars and other small-sized robots that can go to 

places inside a structure where human reach is not possible. 

So, integrating such devices with the method proposed here 

would facilitate detecting deformities [14]. The proposed work 

would contribute as another element to the array of feasible 

options to inspect a structure. 

 

2.3 Workers' safety insurance 

 

The vast reach of the structures makes it very hard to 

involve humans in various works involved in building and 

maintaining these structures [15]. The factors like location, 

weather, and physical condition of the structure make it very 

hard to ensure the safety of a human participating in the task 

of repairing work. Putting human efforts to detect, count, and 

estimate the required expenditure to repair structure is not the 

most efficient approach but the approach suggested in this 

paper can be bolstered by other methods to calculate the cost 

required to repair the system or structure [16]. Various 

algorithms [17-19] can be integrated with this method to 

calculate the area of damage and hence the cost needed to 

repair and fix them. 
 

 

3. PREDOMINANCE OF PROPOSED APPROACH 
 

The proposed approach in this study makes use of encoder-

decoder architectures, especially U-Net and its variants, which 

are perfectly suitable for image segmentation tasks, such as 

crack detection for several reasons. 

 

3.1 Fine localization 

 

The encoder-decoder architecture allows the network to 

capture high-level contextual information from the encoder 

and fine details from the decoder. This will be used to make 

accurate crack localization. Cracks tend to include fine, subtle 

structures and thus require more precise localization than 

standard classification tasks. While CNNs have been good in 

classification tasks, they often fail at pinpointing pixels 

belonging to a crack. Crack detection using deep learning 

involves employing Convolutional Neural Networks (CNN) to 

analyze images for structural defects. This methodology 

achieves high accuracy by classifying images of cracks and 

non-cracks, utilizing a dataset of concrete crack images for 

training [20]. 

 

3.2 Variability in shape and size of cracks 

 

Encoder-decoders have no problem with the variability in 

shape and size of cracks. The downsampling within the 

encoder captures the overall structure and context, and 

upsampling within the decoder refines the segmentation map 

to delineate the boundaries of cracks, regardless of their 

complexity. 

Those direct connections that the U-Net is providing 

between corresponding layers within the encoder and decoder 

blocks are very helpful as these could bypass the bottleneck in 

case downsampling by an encoder while preserving finer 

information that is critical to perfect segmentation. This often 

ends up being a bottleneck when using simpler encoder-

decoder models without skip connections. 

 

3.3 Outputting segmentation maps 

 

Encoder-decoders are designed to output a pixel-wise 

prediction to generate a segmentation map highlighting 

regions of crack in the image. This is a near-ideal fit for a task 

such as crack detection, although other deep models for 

classification, like a normal CNN, need extra processing to 

yield segmenting maps. 

Although other deep learning models can be used for 

segmentation, the natural architecture of an encoder-decoder 

network makes such a model more suitable for tasks like crack 

detection, where accurate boundary delineation and contextual 

understanding are critical. 

 

 

4. RESEARCH METHODOLOGY  

 

The entire method to perform the research consists of 

mainly 10 steps from the exploration of the dataset to the end 

step which is the analysis of the results produced as the final 

output from the entire research methodology [21, 22]. 

The very initial phase is an exploration of all the datasets 

available for the fulfillment of the intended objective. The 

finalization and incorporation of the datasets then succeed. 

The integrated dataset then is arranged and loaded into the 

objects in the next phases in such a manner as to support the 

training phase of the model in upcoming steps. The Model is 

then initialized and trained on the loaded dataset in succeeding 

steps. The trained model is then evaluated on unseen data in 
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the next to last step and in the last step, the results produced 

by all training and evaluation phases are discussed and 

analyzed. The step-by-step summary of the methodology is as 

depicted in Figure 1. 

 

 

 
 

Figure 1. Research methodology 

 

 

5. EXPERIMENTATION 

 

All the phases of the research methodology are discussed in 

extended detail in the following sub-section: 

 

5.1 Dataset exploration, diversity and finalization 

 

To fulfill the need for data to train the model the team of 

authors has performed an intense exploration of the dataset 

which contains the images of the surfaces with the crack and 

the corresponding masks for the ground truth. The exploration 

was performed solely on the internet as the availability of such 

data cannot be collected locally and it would be feasible to 

explore various surfaces and get the images. 

 

All the data explored in the previous phase is also checked 

for diversity and data has been collected from various sources. 

To create a truly diverse dataset for crack detection, several 

factors were considered and carefully controlled or varied 

during data acquisition: 

 

5.1.1 Surface types and materials 

Concrete: The authors have included various types of 

concrete as part of dataset images:  smooth, textured, stamped, 

colored, different aggregate sizes and compositions, and aged 

concrete exhibiting weathering and discoloration. 

Asphalt: Different asphalt types, ages, and conditions (e.g., 

cracked, potholed, repaired). 

Metals: Various metals (steel, aluminum, etc.), finishes 

(painted, unpainted), and conditions (rust, corrosion). 

Other Materials: Wood, brick, stone—any material where 

cracks might be relevant.  This is crucial for genuine 

generalization. 

 

5.1.2 Crack characteristics 

Orientation: Capture images with cracks running 

horizontally, vertically, diagonally, and at various angles are 

considered. 

Width and Length: The dataset includes cracks of varying 

sizes, from hairline cracks to wide, extensive cracks. 

Depth: While depth is hard to directly capture visually, 

include cracks in different stages of deterioration to represent 

different depths.  

Types of Cracks: Different crack types like transverse 

cracks, longitudinal cracks, map cracks, etc were considered 

in dataset images. 

Fillings: We have also included cracks that are filled or 

repaired, as the model should be robust enough to differentiate 

these from genuine cracks. 

 

5.1.3 Environmental conditions 

Lighting: The dataset images under various lighting 

conditions:  direct sunlight, shade, overcast skies, different 

times of day, and artificial lighting were considered.  Consider 

adjusting the exposure settings as well to incorporate varying 

levels of brightness. 

Weather: The dataset includes images captured in wet, dry, 

snowy, or dusty conditions.  These conditions significantly 

change how cracks appear visually. 

Shadows: There have been varying angles and intensities of 

shadow that can obscure cracks, recreating images with 

different shadow patterns. 

 

5.1.4 Image acquisition 

Resolution: Images had high enough resolution to capture 

fine details of cracks. 

Viewpoint: Images were taken from various viewpoints, 

including close-up shots and more distant images. 

Background: Varying background conditions (complex 

backgrounds, relatively clean backgrounds) to test robustness 

were considered. 

 

5.1.5 Handling variations and generalization 

Data Augmentation: The authors have endeavored to 

artificially increase dataset size by creating variations of 

existing images.  Standard augmentation techniques rotation, 

flipping, scaling, cropping, color jittering, and adding noise, 

have been used.  Advanced techniques like GANs that could 

synthesize new images were also considered for a part of the 

dataset. 

Robust Loss Functions: The authors have employed robust 

loss functions that are less sensitive to outliers and noisy data. 

This helps when handling significant variations in lighting or 

surface quality. 

The diversity of the dataset is directly proportional to the 

model's ability to reliably detect cracks under real-world 

conditions. So, the diverse dataset was considered and later 

handled using variation handling techniques and 

generalization methods. 

 

 

 
 

Figure 2. Samples from different datasets 
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After performing the exploration and collecting the 

diversity of the dataset, the authors found 4 datasets [23-26]. 

that have the samples/dataset that is the most suitable for the 

objective of this article. Figure 2 shows various samples from 

the diverse datasets. 

The Datasets finalized after the intense explorations are then 

unified under a single entity. Various samples, from various 

sources, are unified to increase the length of the samples in the 

dataset. This facilitates the study by increasing the size of the 

dataset and helps in generalizing the model so the model is less 

susceptible to noise and hence can be saved from overfitting. 

 

5.2 Arrangement of the incorporated dataset 

 

After unifying the data, the directory arrangement is done in 

a manner that bolsters the training phase of the model. The 

input samples received from various sources are then stored in 

a single directory and renamed and then their mask or ground 

truth are mapped correctly with their counterpart input images. 

This would mark the dataset as ready to be loaded for training 

as each image would be having correct mask mapped to them 

which would serve as the pair of the input image and ground 

truth. The arrangements of images and their corresponding 

masks in the finalized dataset are shown in Figure 3. 

 

 

 

 
 

Figure 3. Images and their corresponding masks 

 

5.3 Preprocessing and feature extraction 

 

Marked in the previous phase, the arranged dataset is then 

loaded into two objects. One object serves the purpose of 

storing all the input images in a proper format which may be 

an array or tensor. The other object would store the mask or 

ground truth value utilized in the model optimization. The 

loaded datasets are then normalized to bring the values of the 

data points within the range of 0-1. Each loaded dataset is 

divided by 255 to achieve the normalized dataset. 

The encoder in an encoder-decoder architecture used in this 

research study performs hierarchical feature extraction using 

convolutional layers. However, its role is specifically to create 

a rich, compressed representation of the input image that the 

decoder can then use to generate the segmentation map. The 

details of feature extraction are as follows: 

Downsampling and Feature Extraction: The encoder 

used in the proposed study uses a series of convolutional layers 

followed by pooling (or strided convolutions) to progressively 

downsample the input image.  This downsampling serves two 

key purposes: 

Increases Receptive Field: Going deeper into the encoder, 

the receptive field of the neurons expands.  This means that 

neurons in later layers "see" a larger portion of the input image, 

enabling them to capture broader contextual information about 

the cracks. This is crucial for understanding the overall crack 

structure and distinguishing it from noise or other image 

features. 

Creates a Compressed Representation: The 

downsampling effectively compresses the image's spatial 

dimensions, creating a lower-resolution representation that 

encodes the essential features of the crack.  This compression 

helps the network learn more abstract and generalizable 

features, making it less sensitive to minor variations in crack 

appearance. 

Feature Hierarchy Within the Encoder:  The hierarchical 

feature learning has used in the encoder decoder architecture 

that has been deployed here. The details of the layers used in 

feature extraction are as follows: 

Early Layers: This layer focus on low-level features like 

edges, gradients, and corners, providing the initial building 

blocks for crack detection. 

Middle Layers: These layers capture more complex 

patterns, linear structures, and crack morphology.  The 

increased receptive field allows these layers to integrate 

information from a larger area of the image. 

Later Layers (Bottleneck): Extract the most abstract, high-

level features representing the overall presence, location, and 

potentially the type of crack.  These features form the 

compressed representation that is passed to the decoder. 

The key difference in the encoder-decoder is how these 

extracted features are used. Unlike in a standard CNN where 

the final layer might be a classifier, here, the encoded features 

serve as input to the decoder. 

Decoder Upsampling and Segmentation: The decoder 

takes the compressed feature representation from the encoder's 

bottleneck and progressively upsamples it, recovering the 

spatial information needed for precise segmentation. 

Skip Connections: Crucially, encoder-decoders like U-Net 

utilize skip connections. These connections directly pass 

feature maps from corresponding encoder layers to the 

decoder.  This allows the decoder to combine the high-level 

contextual information from the deeper layers with the fine-

grained details from the earlier layers, leading to more 

accurate and sharp segmentation boundaries around the cracks. 

In essence, the encoder's role is to learn a rich, multi-scale 

representation of the crack.  The decoder then leverages this 

representation and the skip connections to reconstruct a 

detailed segmentation map that precisely outlines the crack's 

location and extent in the original image. 
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5.4 Experimentation setup 

 

The experimentation is performed on Google Colab virtual 

environment with the memory of 13.6 Gigabytes and graphical 

memory of 12 Gigabytes. The virtual environment also has a 

storage space of 70 Gigabytes which is utilized to store the 

temporary data and intermediate results of the 

experimentations. Colab is based on Debian-based Ubuntu 

Linux 18.04 LTS and hence has most of the dependencies, for 

experimentation, like python, pip, and git are pre-installed. All 

the required libraries as OpenCV, Numpy, etc are also 

preinstalled on the environment. Few other libraries, like 

imutils, from third-party sources, are required to be installed 

according to the need of the experimentation. This virtual 

environment is accessed throug web-browser client Google 

Chrome installed on Ubuntu 22.04 LTS with memory of 12 

Gigabytes and storage space of 500 Gigabytes. The host 

operating system runs on Intel i5 processor from 8th 

generation. 

 

5.5 Model construction 

 

After loading the datasets in the respective objects 

according to the type of the data, the next step would consist 

of the model construction. As the model follows the encoder-

decoder structure, so the model is constructed accordingly. 

And in this case of encoder-decoder structure, the model 

follows the sequential order so the model is constructed as the 

Sequential() so various layers can be stacked on top of each 

other. As the model follows the encoder-decoder structure the 

model is mainly constructed with the input layer, encoder 

block, decoder block, and the output layer in the end. The input 

layer accepts the image in the size of 448×448×1. 

Encoder: The encoder block follows the input layer and 

consists of 4 sub-blocks which are made up of repetitive 

conv2D and Batch Normalization layers, repeated 2 times in 

the first sub-block of the encoder. The connection between 

each sub-block of the encoder is established by deploying the 

Activation layer. The second sub-block has a MaxPooling2D 

layer for down sampling and then, as in the first sub-block of 

the encoder, the Conv2D layer is stacked, followed by the 

Batch Normalization layer. This pattern of Conv2D followed 

by Batch Normalization is repeated twice in the given order in 

each remaining sub-block of the encoder. After stacking all the 

blocks and connecting them by the Activation layer, the 

encoder is connected by the decoder by connecting both 

through a block called the bridge. The bridge consists of a 

MaxPooling layer followed by a repeating layer structure as 

each sub-block of the encoder, followed by another Activation 

layer, and at the end, the bridge has the Conv2DTranspose 

layer. 

Decoder: The decoder, as encoder, has a fixed number of 

blocks i.e. 4. The bridge is connected to the first sub-block of 

the decoder. The first decoder block is connected to the bridge 

by concatenating layer. The concatenate layer connects the 

previous sub-block to the next one in the case of the decoder 

and the same layer also connects the current sub-block of the 

decoder to the corresponding sub-block of the encoder. The 

correspondence of the sub-blocks of encoder and decoder is 

determined based on the parameters they have or based on the 

order of the insertion in the network. Each sub-block of the 

decoder has the repeating structure of layers as in the case of 

sub-blocks of the encoder with a Conv2DTransopose layer 

added at the end of each sub-block of the decoder except the 

last sub-block of the decoder. In the last sub-block, the 

Conv2DTranspose layer is replaced by the Conv2D layer 

which produces the output. 

The input accepts the input of the size 448×448×1 and each 

Conv2D layer in each sub-block of the encoder has filters 

number of filters as 16,32,64,128 in-order, in each sub-block 

of the encoder. The kernel size for all the Conv2D layers is set 

as 2×2 and stride of 2 and padding is not changed. MaxPool 

has a pool size of (2,2). The Activation function is RELU in 

the entire model. The decoder block has Conv2DTranspose 

layers which have several filters as 128, and 64,32,16 in order. 

The kernel size for this layer is kept as 2×2. The stride of 2 is 

initialized and padding is, as the encoder part, kept the same. 

The output layer is the Conv2D layer which has kernel size 

1×1 and activation function as Sigmoid. 

 

5.6 Callbacks and parameters initialization and model 

compilation 

 

For training the model efficiently and getting the best results 

during the training phase 2 callbacks are initialized named 

EarlyStopping and tensorboard logs. Early Stopping is a 

callback method that ensures that the model does not learn 

noise from the supplied data and hence saves the model from 

overfitting. It does by stopping the model from training when 

the model does not show any improvement in the accuracy 

over the epochs. The EarlyStoppping is the method from Keras 

API. It has a parameter named min_delta which determines the 

minimum amount of change in the validation accuracy to keep 

training continues. Patience defines the number of epochs for 

which the training won't be stopped even if there is no change 

in the model’s validation accuracy over the epochs. Another 

parameter named restore_best_weights ensures that the model 

is saved with the best weight even if the training does not show 

any improvements over the epochs. The initialization of the 

tensorboard would assist in the visualization of the training in 

the form of interactive graphs as it would save the training logs 

which can be used to plot the graphs like accuracy and loss 

graphs. 

Then in this phase, the initialization of the hyperparameters 

takes place. The first hyperparameter is adam optimizer is used 

in training. The learning rate is kept as 0.0001. The loss 

function is assigned as binary_crossentropy and the metric 

function is the accuracy that indicates the performance of the 

model would be judged based on the accuracy achieved during 

the training phase. After the initialization of hyperparameters 

and callback functions to bolster training, the model is 

compiled with the compile() method. 

 

5.7 Model training and testing 

 

The model training is started by using the method fit(). This 

method takes arguments such as training and validation data, 

batch size, number of epochs, and callbacks. The training and 

validation dataset is provided as Xtrain, YTrain, and Xtest, 

Ytest, respectively. Batch size is kept as 4 which suggests that 

each batch in the dataset would contain 4 image samples.  

The significance of the batch size uring training is that it 

determines the memory usage during the training phase of the 

model. More value of batch size would use more memory and 

would be computationally expensive, and the pace of training 

would be slower in comparison to the case when the batch size 

is smaller. The model is projected to be trained for 5, 10, 15, 

and 20 epochs respectively as the experimentation trial 
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maximize the chances to achieve the best accuracy. Verbosity 

is set to 1 to check the training logs on the screen in real-time. 

The shuffling is disabled in this case, but it also can be enabled 

with no noticeable impact on the training or metrics like 

accuracy and errors. Callbacks are assigned as 

tensorboard_callback and EarlyStopping.  

After assigning all the essential variables, finally, the 

training is started using the model.fit(). 

Running trials with the predefined number of epochs, the 

model achieved the best accuracy on the validation set in the 

case of 5 epochs. The model suffers from overfitting if trained 

for more than 10 epochs. The final epoch in each trial reported 

the accuracy over validation split as 94.5%, 95.0%, 94.5%, and 

94.02% respectively with epochs as 5, 10, 15, and 20 epochs. 

The average time taken by the model to process a single epoch 

is 183 seconds in each trial. The parameter tuning process was 

conducted to optimize model performance using a systematic 

grid search method. Key hyperparameters, including the 

learning rate (0.0001-0.001), batch size (4-32), and the number 

of convolutional filters (16, 32, 64, 128), were varied to 

evaluate their impact on model accuracy and mean IoU score. 

We evaluated combinations of these parameters on the 

validation set and observed that a learning rate of 0.0001, 

batch size of 4, and filter sizes of 16, 32, 64, and 128 achieved 

the best trade-off between convergence stability and 

computational efficiency. 

The accuracy achieved on the training set and validation set 

for each epoch is shown in Figure 4. By following the orange 

curve in the graph, the distinct gradual increment in the 

accuracy of the model on the training set is visible. The model 

achieves an accuracy of 95.0%, on the training set till the end 

epoch which is epoch 10. 

 

 
 

Figure 4. Epoch accuracy 

 

The outcomes from the loss functions are depicted in Figure 

5. The small difference between the training and validation 

curve proves that the model does not learn from the noise, so 

it is not the case of overfitting. Figure 5 also shows that the 

losses for the validation split are gradually decreasing which 

substantiates the optimized learning by the model. 

Figure 6 denotes the model’s accuracy on the validation 

split over the progressing numbers of iterations. There is a 

sharp decrement in the accuracy on iteration 1700 and then 

there is a constant sharp growth in the same. Till the end 

iteration, the model achieved an accuracy of 95.0%. Thus, the 

number of iterations focused during experimentation is 1700. 

Justified by Figure 7 which denotes the loss over the 

validation set. The graph of accuracy and loss are closely 

related as clear from Figures 6 and 7. As there is a sharp 

decrement in the accuracy in Figure 6, in Figure 7 there is a 

sharp increase in the loss function around iteration 1700. After 

iteration 1700, the model shows improvements sharply which 

is clear from the accuracy and loss graph of the validation set. 

 

 
 

Figure 5. Epoch loss 

 

 
 

Figure 6. Evaluation accuracy 

 

 
 

Figure 7. Evaluation loss 

 

After completion of the training phase, the model is tested 

against the split that was marked as testing split, comprised of 

1000 images, during the data preparation phase. The entire 

testing split is sent to be predicted for the segmented results 

from the input dataset. The result from this phase of prediction 

of the testing split is then utilized to determine the prediction 

threshold which would be used to determine the model’s 

accuracy over the testing split by employing mean IoU or 

mean of intersection over union score. This performance 

metric would be the ratio of the intersection of the predicted 

image and ground truth of the same input image over the union 

of the predicted image and ground truth. A higher mean IoU 

score indicates the prediction accuracy of the model. 

Prediction on the test split by the trained model shows the 

mean score of IoU as 83%, shown in Figure 8, which means 

that the predicted images by the model have been Extending 
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the insights received by mean IoU score on the testing split, 

the trained model was then exposed to the unseen images. This 

testing with the unseen would mimic the real-world 

deployment of the model. The model produces the outputs 

corresponding to the input images. The few sample predictions 

made by the model are shown in Figure 9. The model predicts 

new segmented images which show the structure deformities, 

i.e. cracks, with a pixel intensity of 255, and the background 

region is shown by absolute black color or pixel intensity of 0. 

 

 
 

Figure 8. Segmentation score (Mean IoU) on test split 

 

 
 

Figure 9. Prediction results by model 

 

 

6. RESULT ANALYSIS 

 

The achieved mean IoU score of 83% on a dataset size as 

small as containing only 2500 images, promises enhanced 

accuracy on the larger dataset. The memory limitation on the 

environment acts as a constraint to improve accuracy as 

alteration of the hyperparameters crashes the session and for 

that reason, the maximum achieved accuracy on various trials 

limits itself to only 83% of the mean IoU score shown in 

Figure 8. On the other hand, the visual interpretation, as shown 

in Figure 9, confirms the superiority of the model’s prediction 

over any static algorithm or method. In the pseudo deployment 

phase, the model predicts the segmented image with such an 

accuracy that it can detect the fillings between the trace of 

cracks on the surface as depicted in the first image sample of 

Figure 9. From the last sample in Figure 9, it can be inferred 

by the visual interpretation that the model struggles to predict 

an ideal segmented image if the input image has a complex 

crack structure on the surface. This shortcoming can be 

overcome by training the model over the larger dataset. The 

basic architecture of the proposed and applied model is 

depicted in Figure 10 where the convoluted encoder and 

decoder are connected via a bridge. 

 

 
 

Figure 10. Encoder-decoder structure 

 

 

7. CONCLUSION AND FUTURE SCOPE 

 

This study targets to automate the process of inspection and 

detection of the deformities, and cracks in this case, so they 

can be repaired, and the structure can sustain for a long time. 

The proposed methodology not only ensures the structural 

safety of the system but also promises to save the lives of 

workers who would otherwise require manual inspections. The 

accuracy achieved on the testing dataset further reinforces the 

objectives of this study. Currently, the model addresses only 

one type of deformity, namely cracks. However, augmenting 

the dataset by incorporating sample images of other 

deformities, such as rust and peeling, could enhance the 

model's generalizability as a predictor. Furthermore, by 

integrating the model with additional algorithms for area 

calculation and geotagging applications, the entire processes 

of detection and cost estimation can be automated.  

While the model achieved promising results with a mean 

IoU score of 83%, certain failure cases were observed. For 

instance, as depicted in Figure 9, the model struggled with 

detecting complex crack structures on surfaces with high 

texture or noise. This may be attributed to the limited 

representation of such scenarios in the training dataset, 

resulting in insufficient generalization. Similarly, low-contrast 

cracks in poorly lit environments occasionally led to false 

negatives. The observed failure cases, particularly with 

complex or low-contrast cracks, highlight the need for larger 

and more diverse datasets encompassing challenging real-

world conditions. Additionally, exploring hybrid architectures 

or attention-based mechanisms could enhance the model's 

robustness to such scenarios. Incorporating multimodal data, 

such as thermal imaging, may further reduce the likelihood of 
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misclassification. 

To address limitations in detecting complex crack patterns, 

future work could explore the use of 3D imaging modalities 

such as structured light scanning or photogrammetry to 

provide a more comprehensive representation of crack 

morphology and depth. This would necessitate adapting the 

current 2D encoder-decoder architecture to handle 3D data. 

Additionally, integrating multimodal data (e.g., infrared 

thermography for thermal anomalies, acoustic emission 

sensing for crack propagation detection, or Ground 

Penetrating Radar for subsurface crack detection) offers 

significant potential for enhancing the accuracy and reliability 

of the crack detection system. Advanced data fusion 

techniques would be crucial to effectively combine these 

disparate data sources.  
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