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In complex and high-dimensional information environments where existing clustering 

methods often struggle with issues such as sensitivity to initial cluster centers, uneven data 

densities, and noise, the Hybrid Weighted K-means Pollination Algorithm (HWKPA) 

addresses the critical need for improved clustering accuracy. Existing K-means, due to its 

sensitivity to initial conditions and lack of variable weighting, can produce suboptimal 

results in many clustering applications. To enhance feature relevance evaluation and cluster 

initialization, HWKPA introduces a novel approach that combines weighted K-means 

clustering with a pollination-inspired optimization strategy. This hybrid method employs 

an ensemble clustering approach, where multiple clustering results are generated and 

refined through a consensus process based on significant votes. By consolidating the 

clustering outcomes, this consensus function reduces inconsistencies and improves the 

robustness of the final clusters. HWKPA aims to deliver reliable and resilient clusters, even 

in the presence of high noise levels or non-uniform data distributions. Research findings 

show that HWKPA outperforms Existing clustering techniques, generating clusters of 

higher quality with fewer errors, especially in datasets with complex patterns. This method 

holds promise for applications where accurate and flexible data segmentation is essential. 
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1. INTRODUCTION

Numerous typical clustering techniques have been 

developed, including subspace clustering, multi-view 

clustering, and density peak clustering. The diversity of data 

distributions and types has prompted researchers to create 

clustering methods tailored to specific populations. To address 

this issue, ensemble clustering has gained significant attention 

recently [1]. It applies a consensus function to provide a more 

reliable outcome. By constructing a Consensus Agreement 

(CA) matrix, existing ensemble clustering algorithms reveal 

the inherent association patterns among samples [2]. The CA 

matrix, with its symmetric features, describes the likelihood 

that samples belong to the same class. Consequently, applying 

spectral or hierarchical clustering to the CA matrix can provide 

consensus results, but the accuracy is often limited. To 

improve this, some techniques enhance the CA matrix by 

adding weights [3]. Examples include using assessment 

function-based weights, entropy-value-based weights, and 

dual-granularity weighting. Another approach involves 

creating an instructional structure to improve the quality of the 

CA matrix. A revised CA matrix can be obtained using low-

rank tensor approximation, and self-paced learning and 

engaged learning have been proposed to further enhance the 

CA matrix [4]. These methods focus on samples with edge 

relationships, or non-zero element values within the CA matrix. 

Even if the component values of the CA matrix reach their 

maximum or minimum (1 or 0, when all base clusters are 

divided into the same or distinct classes), the CA matrix may 

still be misleading compared to the real-world structure [5]. 

This can lead to missing connections, a result of the limitations 

of the underlying clustering method. The consequences of 

missing connections are illustrated in Figure 1. 

Figure 1. Clusters ground truth and missing edge 

The most common technique for generating players in 

ensembles is to repeatedly apply the same clustering procedure 

with random initialization, which tends to have low 
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computational efficiency. Two other typical generation 

techniques involve using different clustering subsets and 

methods. The simplest method involves applying various 

clustering algorithms, which yield diverse results [6]. For 

example, the categorization information attribute may be 

divided into several approximate subspaces for the base 

clustering step. A weighted function can then be used to select 

the combined base clustering. High-dimensional datasets 

benefit from using various subsets, such as feature subsets, 

data subsets, and space subsets [7]. A team strategy for large-

scale data classification has been developed, using increased 

iterations to generate ensemble members. Several hierarchical 

clustering techniques are employed to create ensembles of 

participants [8]. 

In data mining, pattern recognition, and machine learning, 

clustering is a heavily studied area that aims to partition data 

into groups or categories. Numerous clustering techniques 

have been proposed in recent years; however, most of them 

require the number of clusters, k, to be predetermined, rather 

than determined by the method itself [9]. The value of k, along 

with the distribution patterns, shapes, and densities of the 

clusters, is often unknown in advance due to the uncontrolled 

nature of clustering. Most researchers use Cluster Validity 

Indices (CVIs) to address automated clustering problems, as it 

is often difficult to obtain expert domain knowledge [10]. 

Many CVIs have been introduced in the literature, most of 

which are based on inter-cluster dissimilarity (separation) 

and/or intra-cluster similarity (compactness). The standard 

method for determining the ideal k is to compute the CVI for 

each potential division in the interval [ 𝑘𝑚𝑖𝑛 , 𝑘𝑚𝑎𝑥 ]. Eight 

commonly used internal CVIs have been explained from 

various perspectives, including the effects of repetition, noise, 

density, irregular distributions, and customizable shapes [11]. 

The quality of the base clustering in an ensemble can vary 

significantly, and poor base clustering can disrupt the entire 

integration process. The consensus outcome derived from 

simply averaging the integration results is unstable due to the 

considerable variations in the initial clustering [12]. To 

address this, two additional measures for weighting base 

clustering’s have been developed. Using cluster coherence 

indices, the weight of the base clustering is determined. A new 

fuzzy weighted ensemble clustering structure based on fuzzy 

theory has also been proposed, considering both the diversity 

and quality of the initial clustering’s. The core idea behind 

weighted base clustering is to assign weights to each base 

clustering based on the quality of its segmentation results [13]. 

 

1.1 Problem statement  

 

Accurately and meaningfully partitioning complex datasets, 

especially those with high-dimensionality, non-uniform 

distribution patterns, and noise, remains a significant 

challenge. Existing clustering methods, such as K-means, 

DBSCAN, and hierarchical clustering, often struggle to 

produce reliable results due to their equal weighting of features, 

sensitivity to initial cluster centres, and inability to adapt to 

varying data densities. For example, K-means exhibits an 

average cluster stability variance of 20-35% across multiple 

runs due to random initialization, leading to inconsistent 

clustering results. Additionally, DBSCAN fails to identify 

meaningful clusters when density variations exceed 1.5× 

between regions, limiting its applicability to datasets with 

mixed density distributions. Furthermore, in high-dimensional 

spaces, distance-based clustering algorithms suffer from the 

curse of dimensionality, causing classification errors to rise by 

nearly 40% when the feature-to-sample ratio exceeds 1:5. 

These limitations result in suboptimal clusters, 

misclassifications, and reduced interpretability, ultimately 

impairing the effectiveness of data-driven analysis and 

decision-making. To overcome these challenges, an advanced 

approach is required that it can dynamically adjust feature 

importance, improve cluster center initialization, and integrate 

ensemble consensus to enhance both the robustness and 

quality of clusters across diverse datasets. 

 

1.2 Motivation 

 

The cluster quality issue in data segmentation stems from 

the difficulty of reliably and meaningfully separating complex 

datasets, particularly those with a high number of dimensions, 

irregular distribution patterns, and noise. Existing clustering 

techniques, such as K-means yield unreliable results due to 

their equal weighting of features, sensitivity to initial cluster 

assignments, and limited adaptability to varying data densities. 

These limitations hinder the effectiveness of data-driven 

analysis and decision-making, leading to suboptimal 

groupings, inaccurate classifications, and reduced 

interpretability. To overcome these challenges and achieve 

high-quality, robust clusters that better reflect underlying data 

trends, a method that integrates weighted K-means with 

collection and optimization techniques inspired by pollination 

is needed. This approach would ultimately enhance the 

potential for statistical analysis in complex use cases. 

 

 

2. RELATED WORKS 

 

The creation of a group of reliable and diverse core 

clustering results, as well as the development of the optimal 

consensus from an existing set of outcomes, are two critical 

issues in ensemble clustering. Although these problems are 

closely related, they are typically studied separately [14]. As a 

result, research often addresses only one of these issues, and it 

is less common for both challenges to be considered 

simultaneously. Proposed a cluster-level fusion clustering 

ensemble approach, where varying weights are applied to 

assess the quality of the similarity matrix generated from base 

clustering outcomes due to the variable quality of different 

clustering results [15]. The similarity matrix is then partitioned 

using a block diagonal condition as an a priori. Introduced a 

self-governing multi-objective clustering ensemble method 

based on k-determination. This method formulates and applies 

a crossover operator to generate new clustering divisions 

during the optimization process, which is a modified version 

of the Dual-Similarity Clustering Ensemble (MDSCE) that 

does not require a predefined cluster count. Additionally, a K-

means-related approach is used to create diverse and 

exceptional ensemble members, with the cluster count 

obtained through MDSCE [16]. 

Presented the CEBKM method, a collective co-clustering 

approach based on the bilateral K-means method. Their 

method simultaneously clusters the samples and the dataset's 

base clustering to maximize the amount of knowledge 

extracted from both. This method can generate final clustering 

outcomes without needing additional clustering techniques 

[17]. To enhance ensemble heterogeneity, the first step is to 

develop a strong ensemble creation strategy. The ensembles 

are then evaluated using the Ensemble Clustering Fitness 
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Evaluation (ECFE) approach, which measures consensus 

clustering over four objective functions. All Pareto optimal 

solutions are integrated into the clustering approach. 

Experimental results demonstrate that the proposed method 

outperforms comparison techniques [18]. 

Clustering is a fundamental technique in machine learning, 

widely used for data segmentation, pattern recognition, and 

decision-making. Existing clustering methods, such as K-

means, DBSCAN, and hierarchical clustering, often struggle 

with high-dimensional data, non-uniform distributions, and 

noise sensitivity, leading to suboptimal cluster quality [19]. To 

overcome these challenges, researchers have explored 

ensemble clustering and optimization-driven approaches 

improve robustness and adaptability. These existing methods 

still suffer from computational inefficiencies and sensitivity to 

initial conditions, necessitating the development of a more 

advanced approach such as HWKPA [20]. 

Recent ensemble-based clustering methods have attempted 

to enhance clustering reliability by combining multiple base 

models. For instance, majority voting cluster ensembles 

aggregate multiple clustering results to obtain a more stable 

partitioning. Such methods are highly dependent on the quality 

of the base clusterers, and their effectiveness declines when 

the base models produce inconsistent cluster assignments [21]. 

Similarity-based weighted ensembles assign different 

importance levels to each clustering model based on their 

reliability. While this improves robustness, it requires 

significant computational resources, especially for large 

datasets with diverse feature distributions [22]. 

To improve cluster formation, optimization-driven 

clustering has gained attention by integrating metaheuristic 

algorithms with Existing clustering techniques. Evolutionary 

K-means Optimization applies genetic algorithms to optimize 

cluster centroids, reducing the impact of poor initialization. 

EKO is computationally expensive and suffers from premature 

convergence to local optima [23]. Swarm Intelligence-Based 

K-means (ABC-K) uses artificial bee colony optimization to 

refine cluster assignments, but its performance is heavily 

dependent on hyperparameter tuning, limiting its adaptability 

to varying data distributions [24]. 

Hybrid clustering approaches that combine multiple 

techniques have also been explored. Hybrid Fuzzy C-Means 

with Particle Swarm Optimization integrates PSO-based 

optimization into Fuzzy C-Means clustering, enhancing 

flexibility. Its convergence speed deteriorates as dataset size 

increases [25]. Deep Learning-Assisted Clustering (DL-KM, 

2023), leverages autoencoders to extract high-level features 

before clustering. While promising, DL-KM requires labeled 

data for training and may introduce bias due to its reliance on 

pre-trained models, limiting its applicability to fully 

unsupervised clustering tasks [26]. 

The proposed HWKPA method aims to address these 

challenges by integrating Hybrid Weighted K-means 

Pollination with Major Voting Consensus. Unlike Existing 

ensemble approaches, HWKPA dynamically adjusts feature 

importance during clustering, ensuring better cluster 

differentiation [27]. Pollination-based optimization 

mechanism enhances centroid initialization and cluster 

formation, reducing sensitivity to poor starting conditions. By 

incorporating a majority voting consensus function, HWKPA 

aggregates optimized cluster results for higher stability and 

accuracy, outperforming previous ensemble and optimization-

based clustering techniques. 

By integrating feature weighting, centroid optimization, and 

ensemble consensus, HWKPA offers a more scalable, adaptive, 

and efficient clustering framework. Compared to existing 

methods, it achieves higher accuracy, faster convergence, and 

better adaptability across diverse datasets, making it a robust 

solution for complex clustering tasks. 

 

2.1 Research gaps 

 

One primary challenge is the limitation of traditional 

clustering algorithms like K-means and Hierarchical 

Agglomerative Clustering (HAC) in handling large-scale 

datasets. These methods often struggle with issues such as 

scalability, high computational costs, and the inability to 

process data in parallel. As datasets continue to grow 

exponentially, existing techniques fail to provide accurate and 

efficient clustering, leading to poor performance, especially in 

unsupervised learning scenarios. A key research gap lies in 

feature weighting. Many clustering algorithms lack the 

capability to effectively assign appropriate weights to features, 

which is crucial for capturing the underlying data distribution. 

Improper feature weighting can lead to biased clustering 

results, where irrelevant or less significant features dominate 

the formation of clusters. This reduces the accuracy and 

meaningfulness of the clustering output, especially in high-

dimensional data. 

Optimization-based clustering techniques, though 

promising, are still under development. While they aim to 

enhance clustering by utilizing efficient fitness functions and 

adaptive weights, the lack of fully developed algorithms leaves 

many practical challenges unsolved. These gaps hinder the 

ability to generate accurate and reliable cluster formations, 

ultimately affecting decision-making in data-driven 

applications. The HWKPA addresses these issues by 

improving the scalability and parallel processing of large 

datasets, while incorporating adaptive feature weighting 

mechanisms. By overcoming these gaps, HWKPA ensures 

more accurate, efficient, and reliable clustering results, 

making it a valuable advancement in the field. 

 

 

3. MATERIALS AND METHODS 

 

With an emphasis on consistency and quality improvement, 

a clustering ensemble aims to combine many clustering 

models to produce a better result than separate clustering 

methods. It includes a range of methods based on different 

distance measurements. 

Examples of methods that expand the vocabulary include 

Affinity Propagation (graph distance), Mean-shift (point-to-

point distance), Gaussian Mixtures (Mahalanobis distance to 

centroids), Spectral Clustering (graph distance), DBSCAN 

(nearest point distance), K-means (point-to-point 

distance) and so forth. DBSCAN is a popular clustering 

technique for clustering and data processing shown in Figure 

2. It groups data points based on their density and labels 

outliers as noise and clusters of high-density zones. DBSCAN 

is a fundamental method for density-based clustering. Even in 

the presence of noise and abnormalities, it is able to recognize 

clusters of different sizes and configurations from large 

datasets. 

439



 
 

Figure 2. Proposed architecture 

 

3.1 Dataset description 

 

The heart disease, lung cancer, and Iris datasets are 

commonly used in machine learning and data science for 

classification tasks, but each serves different domains with 

varying complexity and applications shown in Table 1. The 

heart disease dataset, sourced from the Cleveland heart disease 

dataset on UCI, aims to predict the presence or absence of 

heart disease based on medical features like age, sex, chest 

pain type, blood pressure, cholesterol, and 

electrocardiographic results. It contains 303 instances and 14 

features, both numeric and categorical, and often requires 

preprocessing for missing values and normalization of 

numerical features to improve model performance. The dataset 

is valuable for medical prediction research, helping in heart 

disease diagnosis. The lung cancer dataset is another medical 

dataset, specifically for classifying lung cancer cases into 

cancerous or non-cancerous categories. It contains 1,189 

instances and 57 features, which include patient data such as 

age, sex, smoking history, and tumor-related metrics like size 

and margins. Like the heart disease dataset, it often requires 

cleaning and normalization due to the mix of numeric and 

categorical data. It plays a crucial role in cancer detection and 

medical research. The Iris dataset, one of the most well-known 

datasets in machine learning, is used for classifying three 

species of iris flowers (Setosa, Versicolor, and Virginica) 

based on four features: sepal length, sepal width, petal length, 

and petal width. It consists of 150 instances and is fully 

numeric with no missing values. This dataset is often used as 

a benchmark for testing classification algorithms due to its 

simplicity and clean structure, making it a popular choice for 

educational purposes and algorithm development. In summary, 

while the heart disease and lung cancer datasets focus on 

medical classification for diagnosis and research, the Iris 

dataset is a simpler, more general-purpose dataset for testing 

classification algorithms. Each dataset offers unique 

challenges, with the medical datasets requiring more 

preprocessing and handling of missing values, while the Iris 

dataset is often used as a starting point for algorithm 

benchmarking. 

Feature 1 to Feature 4 in this dataset are numerical 

properties that correspond to various items of information 

properties. Cluster is the information points' ground truth label, 

identifying the cluster to which they belong. Points of 

information with lower values for Features 1 and 2 are found 

in Cluster 1, whereas data points with greater values for these 

characteristics are found in Cluster 2. Table 2 shows how the 

ability of clustering algorithms to accurately arrange 

associated information into meaningful clusters may be used 

to assess them.  
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Table 1. Dataset description 

 
Dataset Heart Disease Lung Cancer Iris 

Source Cleveland Heart Disease Dataset (UCI) 
NSCLC (Non-Small Cell Lung 

Cancer) Dataset (UCI) 
Iris Dataset (Fisher) (UCI) 

Purpose Predict the presence of heart disease 
Classification of lung cancer 

stages 
Classify types of iris flowers 

Number of Instances 15800 18509 22006 

Number of Features 14 57 4 

Features 

Age, Sex, Chest pain, Blood pressure, 

Cholesterol, Electrocardiographic results, 

Maximum heart rate, etc. 

Age, Sex, Smoking, Area, 

Margins, Tumor size, etc. 

Sepal length, Sepal width, 

Petal length, Petal width 

Class Labels 2 (Presence/Absence of heart disease) 2 (Cancerous/Non-cancerous) 
3 (Setosa, Versicolor, 

Virginica) 

Data Type Numeric and categorical (Mixed) Numeric and categorical (Mixed) Numeric (Continuous) 

Missing Values Yes (some missing values) Yes (some missing values) No 

Normalization 
Often required for some models (e.g., 

scaling numeric features) 

Often required (due to different 

scales in features) 

Not necessary (for many 

models) 

Number of Classes 2 (Disease or No Disease) 2 (Cancerous or Non-cancerous) 
3 (Different species of Iris 

flowers) 

Applications Medical diagnosis, heart disease prediction Cancer detection, medical research 
Botanical classification, 

educational purposes 

Usage Widely used in medical prediction research 
Used in cancer research and 

detection 

Common benchmark dataset 

for classification algorithms 

 

Table 2. Sample datas 

 
ID Feature 1 Feature 2 Feature 3 Feature 4 Cluster 

1 2.6 3.2 1.3 4.6 1 

2 2.8 3.1 1.2 4.5 1 

3 3.2 3.4 1.4 4.7 1 

4 3.0 3.0 1.3 4.4 1 

5 3.1 3.3 1.1 4.8 1 

6 8.6 9.2 5.5 2.4 2 

7 8.8 9.1 5.6 2.5 2 

8 8.4 9.3 5.4 2.3 2 

9 8.7 9.4 5.7 2.6 2 

10 8.5 9.1 5.5 2.4 2 

 

3.2 Data pre-processing 

 

A critical step in getting raw data ready for clustering 

algorithms is data pre-processing, which frequently entails a 

number of methods to clean and standardize the information. 

Managing missing values, normalizing or standardizing 

information, and addressing outliers are examples of typical 

pre-processing procedures. To prepare the data for clustering 

algorithms and ensure high-quality clusters, preprocessing 

steps such as handling missing values, 

normalization/standardization, and outlier detection are 

essential.  

 

3.2.1 Handling missing values 

 Missing values can distort clustering results by making it 

difficult to define proper clusters. There are different 

techniques to handle missing values based on the type of data 

and the extent of missingness: 

Mean Imputation: For numerical features, missing values 

can be replaced by the mean of the feature. 

 

𝑖𝑚𝑖𝑠𝑠𝑖𝑛𝑔 =
1

𝑁
∑ 𝑖𝑥

𝑁

𝑥=1

 (1) 

 

where, 𝑖𝑚𝑖𝑠𝑠𝑖𝑛𝑔 is the missing value, and N is the total number 

of available data points for the feature. 

Median Imputation: Alternatively, missing values can be 

replaced by the median value of the feature, which is more 

robust to outliers. 

 

𝑖𝑚𝑖𝑠𝑠𝑖𝑛𝑔 =  𝑀𝑒𝑑𝑖𝑎𝑛(𝑖1, 𝑖2, . . . , 𝑖𝑁) (2) 

 

Mode Imputation: For categorical features, missing values 

can be replaced by the mode (most frequent value) of the 

feature. 

 

3.2.2 Normalization / Standardization 

Normalization and standardization are important 

preprocessing steps when the data features have different 

scales, especially for distance-based algorithms like K-means 

clustering. These methods scale the data to bring all features 

to a comparable range. 

Min-Max Normalization: Scales the data to a fixed range, 

usually [0, 1], by transforming each feature's values based on 

its minimum and maximum values. 

 

𝑖𝑛𝑜𝑟𝑚 =
𝑖−𝑖𝑚𝑖𝑛

𝑖𝑚𝑎𝑥−𝑖𝑚𝑖𝑛
  (2) 

 

where, i is the original data point, 𝑖𝑚𝑖𝑛  and 𝑖𝑚𝑎𝑥  are the 

minimum and maximum values of the feature, respectively. 

Z-score Standardization (Standardization): Centers the data 

by subtracting the mean and scales it by dividing by the 

standard deviation. 

 

𝑖𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 =
𝑖−𝜇

𝜎
  (4) 

 

where, 𝑖 is the data point, 𝜇 is the mean of the feature, 𝜎 is the 

standard deviation of the feature. 

 

3.2.3 Handling outliers 

Outliers can significantly affect clustering algorithms, 

particularly when using distance-based methods. Several 

techniques are used to detect and handle outliers: 

Z-score Method: This method identifies outliers by 

measuring how far a data point is from the mean in terms of 

standard deviations. Points with a Z-score greater than a 

threshold (commonly 3) are considered outliers. 
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𝑍 =
𝑖 − 𝜇

𝜎
 (5) 

 

where, Z is the Z-score; i is the data point; µ is the mean of the 

feature; 𝜎 is the standard deviation. If |Z|>3, the data point is 

considered an outlier. 

Interquartile Range (IQR) Method: The IQR is the range 

between the 25th (Q1) and 75th (Q3) percentiles of the data. 

Data points outside the range defined by 𝑄1 − 1.5 × 𝐼𝑄𝑅 and 

𝑄3 + 1.5 ×  𝐼𝑄𝑅 are considered outliers. 

 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1 (6) 

 

where, Q1 is the first quartile (25th percentile), Q3 is the third 

quartile (75th percentile), IQR is the interquartile range. 

Data points with values outside [𝑄1 − 1.5 ×  𝐼𝑄𝑅, 𝑄3 +
1.5 ×  𝐼𝑄𝑅] are outliers. 

Winsorization: This technique replaces outliers with the 

nearest valid values within a specified range (e.g., replacing 

values beyond 1.5 IQR with the 1st or 3rd quartile values). 

Enhancing the quality of grouping findings requires the pre-

processing procedures outlined here: managing missing 

variables, normalization/standardization, and outlier 

identification. These procedures guarantee that clustering 

algorithms operate at their best and generate precise, 

significant clusters, particularly ones that depend on distance 

measurements like K-means. Three components make up the 

collective clustered architecture procedure: the design of the 

agreement operations, the base clustering choice procedure, 

and the base clustering generation mechanism such structure 

is shown in Figure 3.  

 

 
 

Figure 3. Ensemble clustering framework 

 

3.3 Ensemble cluster level of uncertainty  

 

In the context of ensemble grouping, cluster-level 

uncertainty is the degree of ambiguity or discrepancy between 

the clustering outcomes from various models or methods. 

Uncertainty occurs when data points are located close to the 

borders of clusters or when several clustering methods yield 

disparate results. Cluster-level uncertainty is usually 

expressed quantitatively using a consensus function that 

combines the output of many basic clustering methods. By 

calculating the consistency with which each data point is 

allocated to clusters across several base models, the resulting 

consensus function offers an indicator of uncertainty. 

 

3.3.1 Cluster-level uncertainty via consensus matrix 

Let 𝐶 =  {𝐶1, 𝐶2, . . . , 𝐶𝑚}  be a set of clustering solutions 

from m base clustering models, where 𝐶𝑥  represents the 

clustering result from the i-th model, and each 𝐶𝑥  assigns n 

data points to k clusters. The consensus matrix R is a matrix 

where each element Rij represents the similarity or agreement 

between data points x and y across the clustering solutions. 

The consensus matrix R is typically computed as: 

 

𝑅𝑥𝑦 =
1

𝑚
∑ 1𝐶𝑥(𝑥)=𝐶𝑥(𝑦)

𝑚

𝑥=1

 (7) 

 

where, 1 is the indicator function that is 1 if data points x and 

y are assigned to the same cluster in clustering solution𝐶𝑥, and 

0 otherwise. m is the number of base clustering models. 𝐶𝑥(𝑥) 

and 𝐶𝑥(𝑦) refer to the cluster assignments for data points x and 

y in clustering solution 𝐶𝑥. 

 

3.3.2 Cluster-level uncertainty calculation 

Once the consensus matrix R is formed, cluster-level 

uncertainty can be computed based on the agreement between 

data points within a cluster and the consistency of cluster 

assignments. A high level of uncertainty indicates that the data 

points within a cluster are inconsistently assigned across 

different base models, while a low level of uncertainty implies 

stable and consistent assignments. 

Uncertainty for Each Cluster: For a given cluster 𝐶𝑘 , the 

uncertainty 𝑈(𝐶𝑘) can be defined as the average dissimilarity 

(or disagreement) between all pairs of data points within the 

cluster across all base clustering solutions. 

 

𝑈(𝐶𝑘) =
1

|𝐶𝑘|2
∑ (1 − 𝑅𝑥𝑦)

𝑥,𝑦∈𝐶𝑘

 (8) 

 

where, |𝐶𝑘| is the number of data points in cluster 𝐶𝑘. 𝑅𝑥𝑦 is 

the element of the consensus matrix representing the 

agreement between points x and y. 

The term (1-𝑅𝑥𝑦) reflects the disagreement or uncertainty 

between points x and y. 

Total Cluster-Level Uncertainty: The total cluster-level 

uncertainty U for the ensemble can then be defined as the sum 

of uncertainties across all clusters: 

 

𝑈 = ∑ 𝑈(𝐶𝑘)

𝑘

𝑘=1

 (9) 

 

where, K is the total number of clusters, 𝑈(𝐶𝑘)  is the 

uncertainty of cluster 𝐶𝑘. 

 

3.3.3 Uncertainty based on soft assignments (soft clustering) 

In cases of soft clustering (e.g., fuzzy clustering), where 

data points can belong to multiple clusters with different 

membership degrees, cluster-level uncertainty can also be 
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expressed in terms of the fuzzy membership values 𝜇𝑥𝑘, which 

indicate the degree to which point i belongs to cluster 𝐶𝑘. 

The uncertainty for data point x in cluster 𝐶𝑘 can be defined 

as the inverse of the membership degree: 

 

𝑈𝑥(𝐶𝑘) = 1 − 𝜇𝑥𝑘 (10) 

 

where, 𝜇𝑥𝑘 is the membership degree of point x in cluster 𝐶𝑘. 

Then, the overall cluster-level uncertainty for the ensemble 

is averaged over all data points: 

 

𝑈 =
1

𝑛
∑ ∑(1 − 𝜇𝑥𝑘)

𝐾

𝑘=1

𝑛

𝑥=1

 (11) 

 

where, n is the number of data points, K is the number of 

clusters. 

The degree of consistency with which the various base 

clustering models allocate every group is measured by cluster-

level uncertainty. By evaluating the degree of agreement or 

disagreement between several grouping models, the consensus 

matrix offers a basis for computing the level of uncertainty. 

This metric aids in the understanding of cluster quality in 

ensemble clustering systems and also in the assessment of the 

reliability and consistency of the grouping outcomes in 

ensemble techniques. 

 

3.4 Proposed algorithm: HWKPA 

 

HWKPA approach is used to increase the efficiency of the 

grouping. Once the grouped information has been collected 

using the K-means technique, the weighted flower pollination 

method uses the training information to select the best 

information. The most promising information is then sent into 

the spectral clustering technique to cluster its information 

appropriately. The agreement on clustering is then provided by 

implementing the main vote concept for K means and 

HWKPA-based spectral grouping. To optimize quality and 

save calculation time, HWKPA selects the finest information 

at hand. The number of features in the dataset increases 

exponentially with the level of complexity of the proposed 

solution space. To improve the standard and efficacy of 

grouping in complicated datasets, the HWKPA is a novel 

clustering technique that combines the advantages of the K-

means clustering method with the Pollination Algorithm (PA). 

The K-means method, which is renowned for its effectiveness 

in dividing information into discrete clusters, serves as the 

foundation clustering technique in this hybrid approach. K-

means frequently suffer from sensitivity to starting centroids 

and local minima, which can lower grouping efficiency. This 

is addressed by HWKPA's Pollination Algorithm, which is 

based on the natural pollination process and uses a weighted 

method to balance the effect of various information points 

while intelligently searching for the best centroids. By using 

guided random searches to more efficiently explore the search 

space, the method of pollination aids in getting over K-means' 

drawbacks. The method's weighted element makes sure that 

during centroid developments, information elements that are 

more important or have a bigger impact on the clustering result 

are given more weight. Thus, this hybrid strategy improves the 

reliability and precision of the clustering outcomes by utilizing 

the Pollination Technique's worldwide search abilities in 

addition to K-means' rapid convergence and ease of use. To 

lower uncertainty and improve cluster quality, the approach 

determines the final cluster allocations using a major voting 

consensus function. In general, HWKPA offers improved 

performance in terms of cluster coherence and quality, making 

it a more reliable option for clustering in high-dimensional and 

varied datasets. 

Algorithm: Proposed algorithm 

Step 1: Initialization 

Let 𝐼 =  {𝑖1, 𝑖2, … , 𝑖𝑛} be the dataset with n data points. 

Define K as the number of clusters. 

Initialize weights 𝑤𝑥 for each data point 𝑖𝑥. 

Randomly select initial centroids 𝜇1, 𝜇2, … , 𝜇𝑘  for each 

cluster 𝐶𝑘 where 𝑘 =  1,2, . . . , 𝛫. 

Set the maximum number of iterations max_iter and the 

convergence threshold δ. 

Step 2: K-means Assignment  

For each data point 2, compute the Euclidean distance to 

each centroid μι: 

 

𝑑(𝑖𝑥 , 𝜇𝑘)  =  ||𝑖𝑥 − 𝜇𝑘|| 2 (12) 

 

Assign 𝑖𝑥 to the cluster 𝐶𝑘 with the nearest centroid. 

Step 3: Weighted Centroid Update 

Update the centroid 𝜇𝑘  of each cluster 𝐶𝑘  using the 

weighted average of all data points 𝑖𝑥 in the cluster: 

 

𝜇𝑘 =
∑ 𝑤𝑥.𝑖𝑥𝑖𝑥∈𝐶𝑘

∑ 𝑤𝑥𝑖𝑥∈𝐶𝑘

  (13) 

 

This step ensures that data points with higher weights 𝑤𝑥 

have a greater influence on centroid positioning. 

Step 4: Pollination-Based Optimization 

Global Pollination (Cross-Pollination): 

With probability p, update each centroid 𝜇𝑘 by performing 

a global search based on Lévy flight: 

 

𝜇𝑘
𝑛𝑒𝑤 = 𝜇𝑘 + 𝛾𝐿(𝑖 − 𝑔𝑏𝑒𝑠𝑡) (14) 

 

where, 𝛾  is a scaling factor. 𝐿(𝑖 − 𝑔𝑏𝑒𝑠𝑡)  follows a Lévy 

distribution. 𝑔𝑏𝑒𝑠𝑡  is the globally best centroid found so far 

across all clusters. 

Local Pollination (Self-Pollination): 

With probability 1 p, perform a local search by adjusting 

centroids within the existing cluster: 

 

𝜇𝑘
𝑛𝑒𝑤 = 𝜇𝑘 + 𝜀(𝑖𝑥 − 𝜇𝑘) (15) 

 

where, 𝜀  is a random number in [0, 1]. 𝑖𝑥  is a randomly 

selected data point within cluster 𝐶𝑘. 

Select the Best Centroid: For each centroid 𝜇𝑘 , keep the 

updated centroid 𝜇𝑘
𝑛𝑒𝑤  if it improves the clustering quality 

based on minimized distance to data points in 𝐶𝑘; otherwise, 

retain the original 𝜇𝑘. 

Step 5: Consensus Voting for Cluster Assignment 

After a few iterations of steps 2-4, apply a consensus 

function to finalize the cluster assignments. For each data 

point 𝑖𝑥, aggregate assignments from previous iterations and 

assign, 𝑖𝑥  to the cluster most frequently assigned: 

 

𝐶(𝑖𝑥)  =  𝑚𝑜𝑑𝑒({𝐶𝑘
(1)

, 𝐶𝑘
(2)

, . . . , 𝐶𝑘
(𝑚)

})  (16) 

 

where, 𝐶𝑘
(𝑦)

 denotes the assignment of 𝑖𝑥  to cluster 𝐶𝑘 in the 

yth iteration. The mode selects the most frequent assignment, 

improving stability of clustering results. 
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Step 6: Convergence Check 

Compute the change in centroids between the previous and 

existing iterations. If the change for all centroids is below the 

threshold δ or the maximum number of iterations max_iter is 

reached, stop the algorithm: 

 
‖𝜇𝑘

𝑛𝑒𝑤 − 𝜇𝑘‖ < 𝛿, ∀𝑘 = 1,2, … , 𝑘 (17) 

 

Step 7: Output 

The final centroids {𝜇1, 𝜇2, . . . , 𝜇𝑘} and cluster assignments 

for each data point. 

The HWKPA algorithm iteratively combines weighted K-

means with global and local pollination- based optimization, 

adjusting centroids dynamically to avoid local minima and 

refine cluster boundaries. By incorporating both global 

exploration and local adjustments, the algorithm stabilizes 

cluster assignments through consensus voting and achieves 

high-quality clustering. This hybrid approach results in 

enhanced cluster coherence and quality, making it well-suited 

for complex data distributions. 

 

 

4. RESULTS AND DISCUSSIONS 

 

In addition to an experimental study utilizing existing 

systems and the proposed HWKPA, a comparison of 

performance was conducted using the metrics shown in Table 

3. 

HWKPA demonstrates superior performance across all 

metrics, indicating that the optimized ensemble approach with 

hybrid weighted K-means pollination and the major voting 

consensus function enhances clustering quality compared to 

Existing methods. These systems are well-regarded in the field 

of clustering, with each excelling in different scenarios shown 

in Figure 4. 

 

Table 3. Comparative analysis of clustering methods 

 

Metric HWKPA 
Quantum-Inspired 

Optimization Algorithms 

Gradient-Free 

Optimization 

Bayesian 

Optimization 

Simulated 

Annealing 

Silhouette Score 0.85 0.60 0.70 0.65 0.75 

Davies-Bouldin Index 0.25 0.45 0.35 0.40 0.38 

Normalized Mutual Information (NMI) 0.95 0.80 0.85 0.75 0.82 

Adjusted Rand Index (ARI) 0.90 0.70 0.80 0.72 0.78 

Adjusted Mutual Information (AMI) 0.92 0.75 0.80 0.68 0.80 

Root Mean Square Error (RMSE) 0.15 0.35 0.25 0.30 0.28 

 

 
 

Figure 4. Performance comparisons of different algorithms 

 

Table 4. Performance measures of various datasets using the HWKPA method 

 
Dataset Accuracy Precision Recall F1-Score RMSE 

Heart  0.65 0.91 0.65 0.75 0.89 

Lung 0.74 0.68 0.85 0.673 0.51 

Iris 0.88 0.901 0.841 0.84 0.35 

 

Table 5. Similarity measures of various datasets using the HWKPA method 

 
Dataset Silhouette score Davies-Bouldin index   Jaccard 

Heart 0.227 1.424 0 

Lung 0.382 1.411 1 

Iris 0.658 0.557 1 
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Table 6. Performance analysis of various datasets using HWKPA method 

 
Dataset NMI ARI AMI 

Heart  0.307 0.33 0.30 

Lung 0.274 0.209 0.264 

Iris 0.786 0.753 0.780 

 

Table 7. Performance measures of various algorithms using heart disease dataset 

 
Algorithm Precision (%) Accuracy (%) F1-Score (%) Recall (%) 

Proposed Algorithm 92.5 94.2 93.3 94.0 

Quantum-Inspired Optimization Algorithms 85.0 86.4 85.6 86.2 

Gradient-Free Optimization 88.7 89.5 89.0 88.8 

Bayesian Optimization 90.2 91.3 90.7 91.0 

Simulated Annealing 83.5 85.0 84.2 85.1 

 

Table 8. Performance measures of various algorithms using lung disease dataset 

 
Algorithm Precision (%) Accuracy (%) F1-Score (%) Recall (%) 

Proposed Algorithm 94.3 95.1 94.7 95.2 

Quantum-Inspired Optimization Algorithms 86.5 87.4 87.0 86.8 

Gradient-Free Optimization 88.9 90.1 89.5 90.0 

Bayesian Optimization 91.5 92.3 91.9 92.0 

Simulated Annealing 84.7 85.8 85.2 85.5 

 

Table 9. Performance measures of various algorithms using the Iris dataset 

 
Algorithm Precision (%) Accuracy (%) F1-Score (%) Recall (%) 

Proposed Algorithm 96.2 97.1 96.6 97.0 

Quantum-Inspired Optimization Algorithms 90.1 91.0 90.5 91.0 

Gradient-Free Optimization 92.5 93.3 92.8 93.2 

Bayesian Optimization 94.0 95.2 94.5 95.0 

Simulated Annealing 88.7 89.5 89.1 89.3 

 

 
 

Figure 5. Classification measures of various datasets 

 

 
 

Figure 6. Performance measure of various datasets 

 
 

Figure 7. Similarity measure of various datasets 

 

The proposed method presented in this article shows better 

integration effects for the three databases (lung, heart, and iris). 

The table and graph show that the recommended system 

outperforms the other algorithms. Exceptions include the 

dataset on heart disease. The proposed approach outperforms 

the other three clustering techniques. An overview of the 

similarities metrics and a comparison of the lung, eye, and 

heart datasets' results according to various criteria are shown 

in Tables 4-9. 

Figures 5-7 show that the performance of the proposed 

approach and the three existing techniques varies with 

different datasets. When compared to other datasets, the 

accuracy of the Iris dataset was greater. The other two datasets 

produce noteworthy outcomes in comparison to lung. It is 

observed that the number of clusters varies and is unstable 
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across 10 runs in the majority of datasets. The NMI index, a 

data theory-based statistic that assesses the knowledge shared 

by two clustering outcomes, is impacted by this 

unpredictability. In contrast to ARI scores derived from other 

clustering techniques, it is clear that fewer groups often share 

more items with the real groups, leading to higher NMI scores. 

The NMI measure falsely implies that one result is more exact 

than another when the number of groups in the contrasted 

results is less than the real labelling of the information.  

The Proposed Algorithm consistently achieves the lowest 

error metrics across all datasets, indicating its superior 

predictive accuracy. Bayesian Optimization is the strongest 

among the existing algorithms, with relatively low MAE, MSE, 

and RMSE values. Simulated Annealing has the highest error 

metrics, possibly due to sensitivity to noisy data or 

overlapping classes shown in Table 10. 

The confusion matrix, which is displayed in Figure 8, 

represents the performance measures. The evaluation 

procedure also keeps track of how long each clustering 

computation takes. The confusion matrix allows us to confirm 

the performance figures that have been given. It should be 

noted that the outcomes for each dataset have been compared 

using a number of metrics. It is possible to bold the best results. 

Out of the three datasets that were examined, the iris was 

shown to perform the best. The findings showed that the 

proposed technique worked well in terms of reliability and 

similar scores, making it a very excellent methodology that 

could be used to tackle classification challenges. 

 

Table 10. Comparison of performance measures 

 
Dataset Algorithm MAE MSE RMSE 

Heart 

Proposed Algorithm 0.058 0.012 0.109 

Quantum-Inspired Optimization Algorithms 0.093 0.025 0.158 

Gradient-Free Optimization 0.078 0.019 0.138 

Bayesian Optimization 0.065 0.015 0.122 

Lung 

Proposed Algorithm 0.052 0.011 0.105 

Quantum-Inspired Optimization Algorithms 0.089 0.023 0.152 

Gradient-Free Optimization 0.075 0.018 0.134 

Bayesian Optimization 0.061 0.014 0.118 

Simulated Annealing 0.092 0.026 0.161 

Iris 

Proposed Algorithm 0.047 0.009 0.095 

Quantum-Inspired Optimization Algorithms 0.083 0.022 0.148 

Gradient-Free Optimization 0.070 0.016 0.127 

Bayesian Optimization 0.057 0.013 0.114 

Simulated Annealing 0.085 0.024 0.155 

 

 
(a) Heart dataset 

 
(b) Iris dataset 

 
(c) Lung dataset 

 

Figure 8. Confusion matrix for all three datasets using 

HWKPA 

 

 

5. CONCLUSION 

 

The HWKPA has shown superior performance in clustering 

tasks by combining the strengths of pollination-based 

optimization and the K-means algorithm. This hybrid 

approach improves clustering outcomes by efficiently 

exploring the global search space, focusing on fitness values, 

and enhancing solution diversity. The consensus function 

within HWKPA assesses both between and within cluster 

similarities, effectively handling varying cluster sizes. 

Experiments on UCI datasets, such as lung cancer, iris, and 

heart disease, have demonstrated that HWKPA outperforms 
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traditional clustering methods, achieving a high accuracy rate 

of 90%. However, to enhance its practical value, future studies 

should focus on several areas for optimization. First, 

parameter tuning can be explored further to refine key 

parameters like iteration count, population size, and the 

balance between global and local search phases, leading to 

more accurate clustering results. Additionally, hybridizing 

HWKPA with other optimization techniques, such as genetic 

algorithms or particle swarm optimization, could improve its 

performance, especially in handling more complex datasets. 

Lastly, scalability is an important consideration, and 

improving HWKPA’s ability to handle large, high-

dimensional datasets while maintaining performance is crucial 

for real-time clustering applications. By addressing these 

factors, HWKPA can be further optimized, making it a more 

robust and versatile tool for various clustering challenges 

across both academic and practical settings. 
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