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Feature selection is a critical phase in machine learning, aimed at improving model 

performance by pinpointing the most relevant elements within a dataset. However, it 

encounters difficulties, especially with high-dimensional data, such as the possibility of 

being ensnared in local optima and the considerable computational expense of navigating 

an extensive feature space. This work introduces a novel feature selection approach using 

the Black-Winged Kite Algorithm (BKA) to address these challenges efficiently. The BKA 

methodology integrates two novel methods. Initially, it employs a probability-based 

initialization method to enhance the correlation between features and labels, facilitating 

expedited convergence in the optimization process. Secondly, it utilizes a task formation 

method predicated on feature correlation, segmenting the process into two tasks: the 

primary job chooses highly linked features, while the secondary task finds non-redundant 

ones. Utilizing a multi-task transfer mechanism, the algorithm disseminates information 

across tasks, enhancing search space exploration and diminishing the probability of local 

optima. Experiments on five high-dimensional datasets demonstrate that this BKA-based 

approach attains superior classification accuracy with a reduced number of features and 

exhibits quicker performance than conventional approaches, establishing it as an effective 

solution for high-dimensional data issues. 

Keywords: 

feature selection, Black-Winged Kite 

Algorithm (BKA), optimization, 

classification, high-dimensional data 

1. INTRODUCTION

Classification is one of the most common problems in 

machine learning, where a model aims to predict an outcome 

for any future data. Feature selection is considered one of the 

most important preprocessing approaches to improve 

classification performance by eliminating redundant variables 

and retaining only the most relevant variables [1]. FS has been 

applied so far with promising results in several domains, such 

as job scheduling [2], text categorization [3], picture 

processing [4], disease diagnosis [5], and gene selection [6]. 

This increases exponentially in the number of features n of a 

dataset and therefore gives rise to a combinatorial problem. 

This exponential growth of the search space has been referred 

to as "curse of dimensionality." This obviously causes 

considerable computational problems for the usual feature 

selection approaches. Hence, feature selection methods need 

to balance two necessities: effective exploration of the solution 

space, on one hand, and keeping computational costs 

reasonable, on the other hand. 

A variety of efficient feature selection (FS) methods have 

been developed to tackle the issues posed by high-dimensional 

data. Prominent instances include feature selection 

methodologies using surrogate models [7], multi-objective 

feature selection utilizing differential evolution [8], cluster-

guided particle swarm optimization (PSO) for imbalanced 

datasets with absent values [9], and variable-length PSO-based 

approaches [10]. Feature selection approaches may be 

classified into three primary categories: filter-based, wrapper-

based, and embedded-based, based on their relationship with 

statistical or machine learning techniques. The filter-based 

approach identifies feature subsets by assessing intrinsic 

metrics, like distance, correlation, or information gain among 

features [11]. This method is computationally efficient since it 

excludes categorization models, hence decreasing time and 

computational expenses. Nonetheless, its drawback lies in the 

somewhat decreased categorization accuracy relative to other 

methods. 

The wrapper-based method evaluates feature subsets using 

exact classifiers, such as support vector machines (SVM), 

decision trees (DT), K-nearest neighbors (KNN), or artificial 

neural networks (ANN) [12]. This strategy often yields more 

accuracy; nonetheless, it entails increased computational 

expenses due to the need of continuously training the classifier 

on diverse feature subsets. To balance the advantages and 

disadvantages of these two techniques, researchers have 

suggested the embedded-based feature selection approach. 

This approach integrates feature selection inside the training 

phase of the learning model, using the classifier to evaluate the 

importance of each feature. Embedded strategies often exhibit 

more efficiency than wrapper-based methods, lowering 

computational costs; nonetheless, their effectiveness depends 

on the classifier used [13]. This dependence may limit the 

generalizability of the results, since the importance of selected 

parameters is influenced by the model's characteristics. 

In high-dimensional feature selection jobs, an effective 
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search method is crucial for enhancing the selection process. 

Evolutionary algorithms are often used because to their strong 

global search capabilities. Common algorithms include 

genetic programming (GP) [14], ant colony optimization 

(ACO) [15], genetic algorithms (GAs) [16], and particle 

swarm optimization (PSO) [17]. Particle Swarm Optimization 

(PSO) is particularly favored in feature selection because to its 

superior global search capabilities, lower computational 

requirements, and simple implementation compared to other 

evolutionary computing (EC) techniques. The effectiveness of 

PSO in feature selection has been extensively shown in 

previous researches [18, 19]. For instance, the study [20] 

introduced a variable-length PSO-based feature selection 

method that enables particles to have shorter and varied 

lengths, hence reducing the search space and enhancing 

efficiency. Similarly, the study [21] presented a PSO-based 

methodology that prioritizes the selection of features of 

intermediate importance, recognizing their capacity to 

improve population development. Surrogate models boost 

PSO performance by approximating fitness values and 

reducing the frequency of costly fitness checks. Despite the 

advantages of PSO, several PSO-based feature selection 

techniques are prone to local optima, particularly in high-

dimensional data contexts. This is mostly due to the vast 

number of features, which may limit the algorithm's ability to 

comprehensively explore the whole feature space. 

Evolutionary multitasking (EMT) has been a significant 

emphasis in optimization, facilitating the simultaneous 

resolution of several problems within a unified evolutionary 

framework. This approach improves global convergence by 

facilitating information sharing across tasks [22]. EMT has 

been effectively used in several optimization scenarios, such 

as parameter extraction [23] and vehicle routing [24], because 

to its robust global search abilities and efficient inter-task 

knowledge transfer mechanisms [25-27]. An essential 

mechanism in EMT for enabling information transfer is 

assortative mating, in which the random mating probability 

(rmp) governs the extent of cross-task evolution [28]. By 

adjusting the RMP, researchers may equalize the intensity of 

information transmission across related activities, therefore 

enhancing the overall optimization process. 

Pan et al. [29] presented a hybrid feature selection method 

using multifactor particle swarm optimization (MFPSO) to 

address high-dimensional classification challenges. This 

approach utilizes knowledge transfer across tasks to improve 

classification accuracy and reduce search time. By using EMT 

principles, particularly its cross-task evolutionary processes, 

MFPSO enhances the effectiveness of feature selection in 

high-dimensional spaces, becoming it a crucial tool for 

tackling complex classification problems. 

The variety and complexity of optimization projects mean 

that not all assignments benefit from knowledge transfer, thus 

impeding the optimization process. Knowledge transfer across 

similar or complementary roles positively influences the 

optimization process [30]. When activities have similar search 

regions or objectives, they are more likely to provide 

advantageous information for each other. Task selection 

algorithms are often categorized into two types: similarity-

based and feedback-based [28]. The similarity-based approach 

focuses on identifying activities with comparable search areas 

or objectives, hence enabling knowledge transfer across 

inherently related tasks. The feedback-driven method 

evaluates tasks after each iteration and finds those that might 

enhance the optimization process based on the progress made. 

This technology enables adaptive adjustments throughout the 

optimization process, ensuring that information is sent only 

when it is likely to improve outcomes. Both methods aim to 

ensure that only beneficial information is distributed, 

obstructing the transmission of extraneous or detrimental 

knowledge across unrelated tasks. 

This study introduces an innovative dual-task feature 

selection technique grounded on the BKA, which may 

improve classification accuracy by using a reduced subset of 

features. The specific contributions of this study are as 

follows: 

• Proposes an evolutionary feature selection method 

using multitasking for knowledge sharing in high-dimensional 

data. 

• Introduces population initialization based on feature 

probability using the maximum information coefficient (MIC) 

and random initialization for diversity. 

• Implements an inflection point selection strategy to 

divide features into frontier and non-redundant sets for 

separate task search spaces. 

• Develops a knowledge transfer strategy using global 

optimal location crossing with transfer intensity to guide 

knowledge sharing. 

• Optimizes the search process with an acceleration 

function to balance early exploration and late convergence for 

high-quality solutions. 

This document is organized as follows: Section 2 delineates 

pertinent literature. Section 3 delineates the recommended 

methodology. Section 4 delineates the experimental setup, 

while Section 4 examines the experimental outcomes and 

analysis. Ultimately, Section 5 presents the paper's conclusion.  

 

 

2. RELATED WORK 

 

2.1 Feature selection theory 

 

Feature selection is the process of discovering and choosing 

a subset of relevant characteristics for model development. Its 

objective is to enhance model performance by removing 

redundant or unnecessary data, mitigating overfitting, 

improving generalization, and decreasing computing 

expenses. Techniques including filter methods, wrapper 

methods, and embedded methods [4, 9]. Feature selection 

involves selecting a subset of characteristics from the original 

set to enhance the value of the goal function. In the 

classification problem, assume a dataset of M samples and D 

features, where feature selection is used to pick K features (K 

< D) from the original feature set to minimize the classification 

error rate F. Thus, the whole feature selection problem may be 

expressed as equation 1, where xi=1 indicates that the feature 

is selected; otherwise, it is not chosen. 

 

( )

. ( 1, 2, , ), (0,1), {1,2, , }

minF X

s tX x x xn xn i D




=  =   
 (1) 

 

Feature selection gets progressively more difficult in high-

dimensional datasets, where the quantity of features (D) may 

significantly surpass the number of samples (M). Such datasets 

often demonstrate sparsity, elevated noise levels, and intricate 

feature interactions, which might impair the efficacy of 

conventional feature selection techniques. Filter-based 

approaches may neglect feature interactions, but wrapper and 
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embedding methods might be computationally intensive 

owing to their repetitive processes. These problems highlight 

the need for innovative and effective feature selection methods 

designed for high-dimensional contexts. 

This study aims to address these challenges by leveraging 

the BKA to optimize feature selection in high-dimensional 

datasets. By focusing on both accuracy and computational 

efficiency, this work highlights the importance of adaptive and 

robust feature selection approaches to tackle the growing 

complexity of modern data. 

 

2.2 Literature survey of feature selection  

 

This section provides a succinct summary of current 

research focused on feature selection methodologies. A recent 

work [31] introduces a novel multiobjective approach called 

Multi-Objective Relative Discriminative Criterion (MORDC) 

for feature selection in datasets. MORDC aims to balance the 

minimization of redundant features with the augmentation of 

relevance to the target class. A new work [32] introduced a 

distinctive multi-label feature selection method termed 

MLACO, grounded in Ant Colony Optimization. MLACO 

aims to identify the most advantageous features inside the 

feature space by evaluating both relevance and redundancy 

variables. In the study [33], a sequence of filtering approaches 

is systematically used on synthetic data characterized by 

variations in the number of prominent features, the degree of 

output noise, the interactions between features, and a 

progressive rise in sample size. Information Gain is a notable 

approach for feature selection [34]. Information Gain involves 

evaluating the importance of attributes in data by analyzing 

their contribution to reducing uncertainty throughout the 

classification process. It is used in several research initiatives 

[35]. 

The particle swarm optimization (PSO) method has been 

widely used in the problem of feature selection. A novel 

method amalgamates genetic algorithms with particle swarm 

optimization (PSO) to ascertain the ideal set of attributes [17]. 

The main goal is to streamline and accelerate the finding of 

effective methods for feature selection from large datasets. In 

a distinct application of PSO, Qu et al. [36] provided an 

innovative approach for feature selection. It refines the 

problem by producing a set of salient qualities. This carefully 

selected set of attributes is effective in improving text 

classification performance while reducing execution time. In a 

hybrid PSO algorithm including an intelligent learning 

mechanism [17], researchers use a self-learning strategy to 

provide optimum exploration possibilities. Concurrently, they 

use a competitive learning-based prediction method to 

enhance the algorithm's application of existing information. 

This is used to achieve a balance between pursuing new 

possibilities and using existing ones. 

Ant Colony Optimization (ACO) has been widely used in 

the feature selection domain. In a recent application of Ant 

Colony Optimization (ACO) [15], researchers presented a 

novel approach for text feature selection using a wrapper 

technique, which is coupled with ACO to guide the feature 

selection process. Additionally, it utilizes KNN as a classifier 

to evaluate and generate a candidate subset of optimum 

features. The feature subset outcomes, obtained from the 

suggested ACO-KNN method, were used as input to identify 

and extract the necessary features. In the study [37], the Ant 

Colony Optimization (ACO) for feature selection utilizes a 

hybrid search approach that combines the benefits of both 

wrapper and filter approaches. To enable this mixed study, 

they set new laws and evaluated heuristic data. Concurrently, 

ants are guided along precise paths while creating subsets of 

the network, with a specified graph included at each phase of 

the method. 

 

2.3 BKA 

 

The BKA is an optimization algorithm derived by 

mimicking the hunting and scouting behaviors of Black-

Winged Kites (BWK) [38]. In BKA, each kite represents a 

potential solution to the problem, and all kites together form a 

set of candidate solutions. In a D-dimensional search space, at 

generation t, the current position vector of a kite can be 

represented as 𝑋𝑖
𝑡 = [𝑋𝑖1

𝑡 , 𝑋𝑖2
𝑡 , … , 𝑋𝑖𝐷

𝑡 ], and the velocity vector 

as 𝑉𝑖
𝑡 = [𝑉𝑖1

𝑡 , 𝑉𝑖2
𝑡 , … , 𝑉𝑖𝐷

𝑡 ]. The search process is guided by two 

positions: the individual best position of each kite gbest 𝑖
𝑡 =

[gbest 𝑖1
𝑡 , gbest 𝑖2

𝑡 , … , gbest 𝑖𝐷
𝑡 ] and the global best position 

gbest 𝑖
𝑡 = [gbest 1

𝑡 , gbest 2
𝑡 , … , gbest 𝐷

𝑡 ] among all kites up to 

the current generation [39]. The kites update their positions 

and velocities according to the following equations: 

 

𝑉𝑖𝑑
𝑡+1 = 𝜔 ∗ 𝑉𝑖𝑑

𝑡 + 𝑐1 ∗  𝑟1 ∗ (𝑔𝑏𝑒𝑠𝑡𝑖𝑑
𝑡 − 𝑋𝑖𝑑

𝑡 )  + 𝑐1

∗  𝑟1 ∗ (𝑔𝑏𝑒𝑠𝑡𝑖𝑑
𝑡 − 𝑋𝑖𝑑

𝑡 ) 
(2) 

 

𝑋𝑖𝑑
𝑡+1 = 𝑋𝑖𝑑

𝑡 + 𝑉𝑖𝑑
𝑡+1 (3) 

 

In this context, t denotes the current iteration number, ω 

signifies the inertia weight, c1 and c2 represent the acceleration 

coefficients for cognitive and social factors, respectively, 

while r1 and r2 are random values uniformly distributed 

between 0 and 1. 

 

2.4 Max information coefficient 

 

Mutual information is a statistic in information theory that 

quantifies the extent of dependency between two correlated 

random variables [40]. Mutual information quantifies the 

extent to which knowledge of one random variable, X or Y, 

diminishes the uncertainty associated with the other variable. 

Mutual information is characterized as: 

 

𝐼(𝑋, 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦) 𝑙𝑜𝑔
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)

⬚

𝑥∈𝑋

⬚

𝑦∈𝑌

 (4) 

 

In this context, p(x) and p(y) represent the marginal 

probabilities of the variables x and y, respectively, whereas 

p(x,y) denotes their joint probability. The Maximum 

Information Coefficient (MIC) is a non-parametric technique 

grounded on mutual information, applicable to both linear and 

nonlinear data relationships. MIC is determined by dividing 

the data space into grids and assessing the mutual information 

across various grid resolutions, as specified by: 

 

𝑀𝐼𝐶(𝑥, 𝑦) = 𝑚𝑎𝑥|𝑋||𝑌|<𝐵

𝐼(𝑋, 𝑌)

𝑙𝑜𝑔2(min (|𝑋||𝑌|))
 (5) 

 

where, B is the upper limit on the number of grid cells, usually 

set to the power of 0.6 of the data size. 
 

2.5 Evolutionary multitasking optimization 

 

Evolutionary Multitasking Optimization (EMTO) [41] is an 
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innovative method in evolutionary optimization designed to 

improve global search efficacy via the exchange of 

information across various activities throughout the 

evolutionary process. The mathematical representation of 

multitasking optimization is:  

 

{{𝑋1
∗, 𝑋2

∗, … , 𝑋𝐾
∗ }}

= {𝑎𝑟𝑔𝑚𝑖𝑛𝑓1(𝑥1), 𝑎𝑟𝑔𝑚𝑖𝑛𝑓2(𝑥2), …, 𝑎𝑟𝑔𝑚𝑖𝑛𝑓𝐾(𝑥𝐾)} 
(6) 

 

where, 𝑋𝐾
∗  denotes the optimal solution for task K. 

Multifactorial Optimization (MFO) is a specific form of 

EMTO, where multiple tasks are assigned to separate search 

spaces. This approach allows for simultaneous handling of 

multiple tasks, which may operate either independently or 

interactively. MFO aims to uncover useful knowledge through 

parallel searches, treating each task as a factor influencing the 

overall evolution process.  

EMTO and MFO are optimization approaches that enable 

the exchange of genetic material (solutions) across jobs. Each 

task is regarded as a unique optimization problem, and the 

evolutionary method is designed to facilitate this interaction. 

The concept is that tasks may include intrinsic similarities, and 

insights gained from one work may aid in resolving another. 

MFO, a specific form of EMTO, assigns several tasks to 

distinct search regions, seeing each task as a separate factor 

influencing the overall evolutionary process. The main idea is 

to do concurrent searches across several tasks, enabling the 

discovery of pertinent information that can be shared and used 

to improve the optimization process. The primary advantage 

of EMTO and MFO is in their ability to proficiently tackle 

complex, high-dimensional optimization problems by using 

synergies across tasks. This makes them particularly suitable 

for scenarios necessitating the concurrent resolution of many 

interconnected problems, such as feature selection in high-

dimensional datasets or multi-objective optimization. 

 

 

3. PROPOSED FRAMEWORK 

 

Enhancing feature selection with the BWK algorithm 

entails emulating the predatory behavior of BWK. The 

program begins with a collection of solutions (kites) and 

iteratively adjusts their placements according to exploration 

and exploitation methodologies. Kites identify subsets of ideal 

characteristics by balancing exploration (global search) with 

exploitation (local search). The method assesses feature 

subsets using a fitness function reliant on classification 

accuracy and several performance measures that will be 

elaborated upon subsequently. Through iterations, the kites 

converge on the most relevant feature subsets, therefore 

lowering dimensionality and improving model performance. 

The versatility and resilience of BWK make it efficient in 

intricate feature selection tasks across several fields. 

The BKA is a nature-inspired optimization method that 

emulates the predatory behavior of BWK to address feature 

selection challenges. 

 

3.1 Initialization in BKA 

 

The initialization phase in the BKA is critical as it 

establishes the foundation for the optimization process. Let the 

dataset D be defined as D={X,y}, where X is the feature matrix 

and y is the target class vector. The feature matrix X∈Rn×m, 

consists of n samples and mmm features, each represented as 

X={x1,x2,…,xm}. The primary goal of the BWK algorithm in 

feature selection is to determine the optimal feature subset 

Xs⊆X, that maximizes model performance while minimizing 

the number of selected features. 

During this phase, a population of N agents, designated as 

BWK, is started, with each agent symbolizing a possible 

feature subset represented as a binary vector V∈{0,1}m. Each 

bit in the vector represents a feature, with 1 indicating 

inclusion and 0 indicating exclusion of the feature. The 

starting population is produced randomly to provide diversity 

across the feature subsets inside the feature space. 

Mathematically, the initial position 𝑉𝑖
0  of each agent i at 

iteration t=0 is defined as: 

 

𝑉𝑖
0 = {𝑣𝑖1

0 , 𝑣𝑖2
0 , … , 𝑣𝑖𝑚

0 }, 𝑣𝑖𝑗
0  ∈ {0,1} (7) 

 

The initialization entails specifying essential parameters, 

including the population size N, the maximum number of 

iterations T, and the fitness function f(V), often grounded in 

classification accuracy or an alternative model performance 

indicator. This stage guarantees that the algorithm starts with 

a varied array of candidate solutions for effective exploration 

and exploitation of the feature space in later rounds. 

 

3.2 Fitness evaluation in BWK 

 

The fitness of each agent in the population is evaluated 

based on the performance of the selected feature subset. Let 

f(Vi) denote the fitness function of agent i, where Vi represents 

the feature subset selected by that agent. The objective of the 

fitness function is to optimize the balance between minimizing 

the number of selected features and maximizing the 

classification performance of the model. The fitness function 

can be mathematically formulated as: 

 

𝑓(𝑉𝑖) =  𝛼. 𝐴(𝑉𝑖) −  𝛽.
|𝑉𝑖|

𝑚
 (8) 

 

where, 

• A(Vi) is the accuracy (or any performance metric) of 

the classifier trained on the selected features Vi, 

• ∣Vi∣ represents the number of features in the selected 

subset, 

• m is the total number of features in the dataset, 

• α and β are weight parameters controlling the trade-

off between classification accuracy and the size of the 

feature subset. 

Each agent i encodes its feature subset as a binary vector 

Vi∈{0,1}m, where 1 indicates that the corresponding feature is 

selected, and 0 indicates that it is excluded. For each agent, the 

selected feature subset Xs⊆X is used to train a classification 

model. The performance of the model, usually measured in 

terms of accuracy, precision, or F1-score, is then used to 

calculate the fitness score f(Vi). 

In reality, the parameters 𝛼 and 𝛽 may be ascertained by 

empirical calibration to get the optimal equilibrium between 

precision and feature subset magnitude. Commence by 

establishing 𝛼 = 1 and 𝛽 = 0.5, thereafter modifying according 

to the empirical findings. In balanced settings, a common 

selection is 𝛼 = 1 and 𝛽 = 1, which equally prioritizes accuracy 

and feature reduction. If accuracy is deemed twice as 

significant as feature reduction, then 𝛼 = 2 and 𝛽 = 1 are 

established. If feature reduction is prioritized, then 𝛼 = 1 and 

𝛽 = 2 are used. 
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3.3 Exploration in BWK (third phase) 

 

In the third phase of the BKA, the emphasis shifts to 

exploration, when the agents (kites) traverse the feature space 

to discern potential subsets of features. The exploration phase 

is essential for averting early convergence to local optima and 

guaranteeing that the algorithm covers a wide area of the 

solution space. Let Vi
t represent the location of the i-th agent 

(feature subset) at iteration t. Agents are prompted to advance 

into uncharted regions of the search space by applying random 

perturbations to their existing locations. 

The movement of each agent during exploration is modeled 

by updating its feature subset 𝑉𝑖
𝑡  using a probabilistic 

approach. The new position 𝑉𝑖
𝑡+1  is generated based on the 

current position and a random factor that allows the agent to 

explore new feature combinations. Mathematically, the 

position update for each agent is defined as: 

 

𝑉𝑖
𝑡+1 =  𝑉𝑖

𝑡 +  𝛾. 𝑅 (9) 

 

where, 

• γ is the exploration factor, controlling the intensity of 

the random search, 

• R is a random vector with elements drawn from a 

uniform distribution R∈{−1,0,1}m, which introduces 

random changes to the current feature subset. 

To ensure that the updated feature subset remains valid (i.e., 

binary values), the new position 𝑉𝑖
𝑡+1 is typically normalized 

using a sigmoid or threshold function: 

 

𝑉𝑖
𝑡+1 =  {

1 𝑖𝑓 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑉𝑖
𝑡+1) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                        
 (10) 

 

This transformation guarantees that each agent maintains a 

binary feature selection vector, with 1 denoting feature 

selection and 0 signifying exclusion. 

The exploration phase enables agents to extensively 

investigate the solution space, uncovering a variety of feature 

subsets. By creating novel feature combinations, the algorithm 

circumvents local minima and sets the stage for the next 

exploitation phase, during which more promising areas of the 

search space will be optimized. 

 

3.4 Exploitation in BWK (fourth phase) 

 

In the fourth phase of the BKA, attention transitions from 

exploration to exploitation, as agents hone their search in 

attractive regions of the feature space. Exploitation guarantees 

that agents use the most advantageous feature subsets 

discovered during the exploration phase. This approach entails 

optimizing the agents' placements (i.e., chosen feature subsets) 

to enhance their fitness ratings. The objective of exploitation 

is to get an optimum or near-optimal collection of features that 

improves classification efficacy. 

Let 𝑉𝑖
𝑡 be the position of the i-th agent at iteration t, and let 

𝑉𝑏𝑒𝑠𝑡
𝑡  represent the position of the best-performing agent in the 

population at the same iteration. During exploitation, agents 

adjust their positions to move closer to 𝑉𝑏𝑒𝑠𝑡
𝑡 , thereby focusing 

on refining feature subsets that have demonstrated superior 

performance. The position update rule for exploitation can be 

expressed as: 

 

𝑉𝑖
𝑡+1 =  𝑉𝑖

𝑡 +  𝜂. (𝑉𝑏𝑒𝑠𝑡
𝑡 − 𝑉𝑖

𝑡) + 𝛿. N(0,1) (11) 

 

where, 

• η is the exploitation factor that controls the 

convergence speed toward the best solution, 

• 𝑉𝑏𝑒𝑠𝑡
𝑡  is the position of the best-performing agent in 

the population, 

• N(0,1) is a Gaussian random variable that introduces 

small stochastic perturbations for local search, 

• δ is a scaling factor for the Gaussian noise. 

The exploitation process encourages agents to refine their 

feature subsets by learning from the best solutions discovered 

so far, while small perturbations allow agents to explore 

nearby solutions. The updated position 𝑉𝑖
𝑡+1  is again 

normalized to maintain a binary vector, ensuring that only 

valid feature subsets are considered. In addition to moving 

toward the best agent, a subset of agents may also exchange 

information with neighboring agents in the population. This 

cooperative method enables agents to exchange insights on 

optimal feature subsets, hence expediting convergence. The 

exploitation phase guarantees that agents concentrate on 

enhancing the quality of their feature subsets via incremental 

modifications, thereby refining the solutions discovered 

during the exploration phase. The equilibrium between 

exploitation and exploration is essential for the efficacy of the 

BWK algorithm, as it guarantees a comprehensive search of 

the solution space and convergence to an optimum solution. 

 

3.5 Population update in BWK 

 

The fifth step in the BKA involves population updating, 

where agents update their positions (feature subsets) based on 

both individual performance and the collective knowledge of 

the population. This step consolidates the results of the 

exploration and exploitation phases by adjusting the positions 

of agents (i.e., their selected feature subsets) to reflect 

improvements. The goal is to guide agents toward better 

solutions while maintaining diversity in the population to 

prevent premature convergence. Let 𝑉𝑖
𝑡+1  represent the 

updated position of the i-th agent (feature subset) at iteration 

t+1. The fitness of each agent is re-evaluated using the same 

fitness function f(Vi) as described earlier. Based on the new 

fitness values, the population is updated using the following 

strategies: 

1. Selection of the Best Agent: The agent with the 

highest fitness score 𝑉𝑏𝑒𝑠𝑡
𝑡+1  is identified. This agent 

serves as a reference for guiding the movement of 

other agents in subsequent iterations. 

 

𝑉𝑏𝑒𝑠𝑡
𝑡+1 = arg max 𝑓(𝑉𝑖

𝑡+1), 𝑖 = 1,2, … , 𝑁 (12) 

 

2. Agent Position Update: Each agent adjusts its 

position based on both its own current position and 

the position of 𝑉𝑏𝑒𝑠𝑡
𝑡+1 . The position update equation is 

the same as in the exploitation step: 

 

𝑉𝑖
𝑡+1 =  𝑉𝑖

𝑡 +  𝜂. (𝑉𝑏𝑒𝑠𝑡
𝑡 − 𝑉𝑖

𝑡) + 𝛿. N(0,1) (13) 

 

This update ensures that each agent moves closer to the best 

solution while also introducing minor stochastic variations to 

maintain diversity in the population. 

3. Maintaining Population Diversity: To avoid 

premature convergence to suboptimal solutions, a 

diversity mechanism is introduced. Agents that are 

too close to 𝑉𝑏𝑒𝑠𝑡
𝑡+1  may be perturbed to explore new 

regions of the search space. This can be achieved by 
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randomly flipping some bits in the binary vector 

representation of their feature subset 𝑉𝑖
𝑡+1:    

 

𝑉𝑖𝑗
𝑡+2 =  {

1 − 𝑉𝑖𝑗
𝑡+1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑓𝑙𝑖𝑝

𝑉𝑖𝑗
𝑡+1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                             

 (14) 

 

Here, 𝑝𝑓𝑙𝑖𝑝  is a small probability that ensures controlled 

randomness, allowing agents to explore new feature subsets 

without completely losing focus on the best solutions. 

4. Replacement of Poor Solutions: Agents exhibiting 

significantly low fitness ratings compared to the 

population average may be replaced by newly 

initiated random agents. This stage facilitates the 

introduction of new possible solutions into the 

population and augments global search capacity. 

The algorithm repeats Steps 3 through 5 until one of the 

following stopping criteria is met: 

Maximum number of iterations T is attained. Convergence: 

The disparity between the fitness values of successive ideal 

solutions falls within a specified threshold for a designated 

number of iterations, suggesting that the algorithm has 

probably reached an optimal solution. 

This population update step ensures that the BWK 

algorithm continues refining the search for an optimal feature 

subset, balancing between improvement of current solutions 

and exploration of new possibilities. Once any of the stopping 

criteria is met, the algorithm terminates, and the best feature 

subset 𝑉𝑏𝑒𝑠𝑡
𝑡  found up to the current iteration is returned as the 

final solution. This feature subset represents the most optimal 

balance between minimizing the number of selected features 

and maximizing the classification performance according to 

the fitness function. 

 

 

4. EXPERIMENTAL DESIGN  

 

The experimental approach entails assessing the efficacy of 

the BKA in optimizing feature selection using benchmark 

datasets, juxtaposing classification accuracy and computing 

efficiency with other feature selection techniques. 

 

4.1 Dataset study 

 

This research employs five high-dimensional datasets, 

available at http://featureselection.asu.edu. Table 1 presents a 

comprehensive overview of the datasets, including the 

quantity of samples, characteristics, and classes. A 

characteristic common to all datasets is their elevated feature-

to-sample ratio, including several attributes with a limited 

sample size. The imbalance poses a considerable difficulty for 

precise classification, as the elevated dimensionality amplifies 

task complexity, while the restricted sample size limits the 

data available for training and validation. Thus, these datasets 

are optimal for assessing feature selection techniques under 

demanding circumstances. 

To enhance comprehension of the datasets and their 

relevance to the proposed method, we performed statistical 

studies on the characteristics and samples within each dataset. 

All datasets have continuous numerical features that denote 

gene expression levels or other high-dimensional biological 

data, with features assessed on a comparable scale, making 

them appropriate for direct comparison without significant 

adjustment. The numerical ranges differ among datasets: the 

11 Tumor dataset features range from 0 to 1,000, 

predominantly clustering between 0 and 100, signifying sparse 

high-intensity signals; the DLBCL dataset features span 0 to 

800, with a median around 150, indicating moderate 

variability; the Brain Tumor 2 dataset displays highly skewed 

numerical ranges, peaking near 900 with most values below 

200, reflecting heterogeneous data distributions; the Lung 

Cancer 2 dataset presents a more uniform distribution, with 

values ranging from 0 to 1,200, denoting diverse expression 

levels; and the Leukemia 3 dataset showcases a broad range 

from 0 to 1,500, with a dense concentration of features beneath 

200. Initial analysis indicates significant inter-feature 

correlation across all datasets, with redundancy ratios over 

30%, highlighting the need for efficient feature selection 

techniques to reduce unnecessary or duplicated features. Class 

imbalance is apparent, particularly in the DLBCL and 

Leukemia 3 datasets, where certain classes predominate in the 

sample distribution, underscoring the need for strong 

assessment criteria to address unbalanced data. Moreover, the 

feature-to-sample ratios for these datasets surpass 60:1 in 

every instance, with the Brain Tumor 2 dataset exhibiting the 

highest ratio of 207:1. This presents dimensionality challenges 

that intensify the risks of overfitting and computational 

difficulties, highlighting the necessity of effective feature 

selection. 

 

Table 1. Fundamental information of five datasets 

 
Dataset Class Sample Features 

11 Tumor 11 174 12533 

DLBCL 2 77 5469 

Brain Tumor 2 4 50 10367 

Lung Cancer2 5 203 12600 

Leukemia 3 3 72 11225 

 

4.2 Classification accuracy 

 

Classification accuracy is a crucial parameter for evaluating 

the effectiveness of feature selection methods in high-

dimensional classification problems. Enhanced classification 

accuracy signifies that certain attributes are more 

advantageous for the classification task. This study compares 

the suggested method with two widely used intelligent 

optimization algorithms for feature selection, namely PSO and 

GA, which have been employed by researchers over the last 

five years to illustrate its superiority. Refer to the results table 

for more information. 

 

Table 2. Mean and standard deviation of classification 

accuracy (mean ± standard deviation) obtained by the 

intelligent optimization and BWK-FS algorithms over 25 

independent runs on the 5 datasets 

 
Dataset PSO GA BWK-FS 

11 Tumor 83.44±3.22(+) 87.57±2.64(+) 93.24±2.71 

DLBCL 92.65±3.12(+) 94.28±3.02(+) 98.13±1.01 

Brain Tumor 2 84.76±2.42(+) 85.48±3.23(+) 91.85±4.32 

Lung Cancer2 88.85±4.10(+) 93.33±5.34(+) 96.98±2.11 

Leukemia 3 93.96±2.88(+) 91.44±2.92(+) 99.22±0.55 

 

Table 2 displays the mean and standard deviation of 

classification accuracy across five datasets, using three distinct 

algorithms: Particle Swarm Optimization (PSO), Genetic 

Algorithm (GA), and Black-Winged Kite-based Feature 

Selection (BWK-FS). The results are derived from 25 separate 
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trials, illustrating the reliability and efficacy of each method. 

In every dataset, BWK-FS surpasses both PSO and GA 

regarding classification accuracy, exhibiting markedly higher 

mean values and smaller standard deviations, which signifies 

its resilience and enhanced optimization proficiency. In the 11 

Tumor dataset, BWK-FS attains a mean accuracy of 93.24%, 

exceeding PSO and GA by about 10%. In the DLBCL dataset, 

BWK-FS achieves an accuracy of 98.13%, surpassing GA by 

over 4%. This indicates that BWK-FS proficiently identifies 

essential elements to enhance classification efficacy. 

The standard deviation of BWK-FS is consistently lower 

than or equivalent to that of other algorithms, notably evident 

in the Leukemia 3 dataset, where BWK-FS exhibits a 

deviation of just 0.55, compared to GA's 2.92. This signifies a 

more consistent performance over several executions, which 

is essential for guaranteeing dependability in practical 

applications. The outcomes indicated by "(+)" for PSO and 

GA imply their comparatively competitive but inferior 

performance relative to BWK-FS. BWK-FS exhibits 

substantial improvements in classification accuracy across all 

datasets, validating its efficacy as an intelligent optimization 

technique in feature selection endeavors. 

BWK-FS is a strong and dependable feature selection 

approach that demonstrates reduced standard deviation values 

across all datasets, signifying its dependability and strength. 

The reduced standard deviation signifies the variability in 

accuracy across 25 separate trials, demonstrating enhanced 

consistency in performance. In the 11 Tumor Dataset, BWK-

FS attains a standard deviation of 2.71, which is lower than 

that of PSO (3.22) and similar to GA (2.64), indicating its 

stability despite the dataset's large dimensionality. In the 

DLBCL Dataset, BWK-FS has the lowest standard deviation 

(1.01) relative to PSO (3.12) and GA (3.02), indicating its 

resilience in managing lower sample numbers. The stability of 

BWK-FS in the Leukemia 3 Dataset is notably shown by its 

standard deviation of just 0.55, which is much lower than that 

of PSO (2.88) and GA (2.92). The combination of elevated 

mean accuracy and minimal standard deviation illustrates 

BWK-FS's efficacy as an intelligent optimization technique 

for feature selection, guaranteeing consistent performance 

throughout several iterations, hence making it a more 

dependable option than PSO and GA. 

To facilitate comprehension, Figure 1 presents histograms 

of feature distributions for each dataset, emphasizing the 

numerical ranges and skewness of the features. These 

visualizations depict the variety and sparsity within the 

datasets, which are essential factors for assessing feature 

selection approaches. 

 

 
 

Figure 1. Provide histograms of feature distributions for each dataset 

 

4.3 Training time 

 

Training time of the algorithm is one of the critical factors 

in assessing the effectiveness of any feature selection 

approach. When compared over five datasets, the training time 

for the proposed optimization method is better than that of the 

other algorithms. Table 3 examines the number of selected 

features through the work of three different optimization 

algorithms, including PSO, GA, and BWK-FS in five different 

datasets. This table helps to highlight how well an individual 

method could reduce feature space while directly having 

impacts on the reduction of computational complexity and 

raising the model's performances. 

In fact, among all datasets, the significant fewer feature 

choices made by BWK-FS compared to those by PSO and GA 

in this experiment suggest the better feature reduction 

capability of BWK-FS. For example, BWK-FS selected 289 

features on 11 Tumor but PSO and GA choose 6234 and 6003, 
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respectively. This huge reduction indicates that BWK-FS can 

identify the most informative features for classification 

without performance degradation, which can also be seen from 

the accuracy values in Table 2 formula. This trend is the same 

on the rest of the datasets, for example, on the DLBCL dataset, 

BWK-FS identifies only 165 features against 2195 and 2415 

selected by PSO and GA, respectively. This indicates that 

BWK-FS has higher efficiency on many data sets with much 

better reductions on feature sets. 
 

Table 3. Quantity of features picked by the smart 

optimization and BWK-FS methods across the five datasets 

 
Dataset PSO GA BWK-FS 

11 Tumor 6234 6003 289 

DLBCL 2195 2415 165 

Brain Tumor 2 4256 4450 285 

Lung Cancer2 6034 5878 245 

Leukemia 3 3222 5250 346 

 

This reduction drastically cuts overfitting risk and boosts 

computational efficiency, thus allowing for faster training and 

testing times. This feature selection scheme keeps or even 

improves the accuracy of classification, observed from Table 

2. Therefore, the BWK-FS will be powerful machinery in 

intelligent optimization applied to feature selection tasks, as 

this method allows it to find a small group of very informative 

features. 

Table 4 describes the training time in seconds taken by PSO, 

GA, and BWK-FS for five datasets. The table depicts the 

computational efficiency of each technique, which is a very 

important feature in real-world applications, especially when 

large datasets are involved or high-speed processing is 

required. BWK-FS has always shown the minimum training 

time compared to PSO and GA in all datasets. On the 11 

Tumor dataset, the training of BWK-FS was completed in 

824.2 seconds, far faster than PSO at 1945.22 seconds and GA 

at 1588.42 seconds. The reduction in training time is probably 

due to BWK-FS selecting fewer features—as shown in Table 

3—reducing the computational burden of the model. 
 

Table 4. The training duration used by two intelligent 

optimization methods and BWK-FS across five datasets 

(unit: seconds). 
 

Dataset PSO GA BWK-FS 

11 Tumor 1945.22 1588.42 824.2 

DLBCL 107.25 217.85 78.46 

Brain Tumor 2 328.36 227.89 172.4 

Lung Cancer2 1928.41 2210.93 858.93 

Leukemia 3 398.67 275.24 89.02 

 

On the Lung Cancer2 dataset, the training time taken by 

BWK-FS is 858.93 s, which is less than half compared to PSO 

(1928.41 s) and GA (2210.93 s). For smaller datasets such as 

DLBCL, BWK-FS completes its training in less than 78.46 s, 

whereas PSO and GA take approximately 107.25 s and 217.85 

s, respectively. The performance of BWK-FS is very 

impressive on those datasets where GA and PSO take a longer 

training time. It is due to the reduction of computational 

complexity along with the capability of BWK-FS for selecting 

fewer features that enhanced its performance in terms of 

training time. Thus, BWK-FS is not only more accurate, as 

depicted from Table 2, but it is also much faster, which creates 

a trade-off between the accuracy and computational efficiency 

for the feature selection tasks. 

The ability of BWK-FS to select fewer but more relevant 

features can be attributed to two main factors: the algorithmic 

mechanism and problem characteristics. 

 Focused Exploration and Exploitation: The BWK-

FS algorithm draws inspiration from the foraging 

behavior of BWK, effectively balancing global 

exploration with local exploitation. This mechanism 

guarantees that the search process discovers the most 

promising feature subsets while avoiding needless 

investigation of irrelevant domains. 

 Adaptive Fitness Function: The fitness function in 

BWK-FS aims to maximize two conflicting objectives: 

enhancing classification accuracy and reducing the 

number of chosen characteristics. This dual-objective 

methodology intrinsically penalizes the use of 

irrelevant or redundant characteristics, prompting the 

algorithm to concentrate on more compact, impactful 

subsets. 

 Feature Interdependency Handling: BWK-FS 

incorporates inter-agent communication mechanisms 

that facilitate the exchange of information among 

agents to effectively capture and manage the complex 

interdependencies between features, thereby enhancing 

the overall feature selection process and improving 

model performance. 

Tables 2 and 3 detail the performance metrics of the 

algorithms across five datasets. Notably, BWK-FS achieves 

the highest classification accuracy in all datasets, with a peak 

accuracy of 98.13% in the DLBCL dataset, outperforming 

PSO and GA by substantial margins. For example, in the 11 

Tumor dataset, BWK-FS attains 93.24% accuracy compared 

to 83.44% and 87.57% by PSO and GA, respectively. Table 4 

presents the number of features selected by each algorithm. 

BWK-FS identifies significantly fewer features, selecting only 

289 in the 11 Tumor dataset compared to 6234 and 6003 for 

PSO and GA, respectively. Similar reductions are observed 

across other datasets, including DLBCL, where BWK-FS 

selects 165 features versus 2195 and 2415 for PSO and GA. 

The efficiency of BWK-FS in reducing training time is evident 

in Table 4. For the 11 Tumor dataset, BWK-FS requires only 

824.2 seconds to train the model, considerably less than the 

1945.22 and 1588.42 seconds required by PSO and GA, 

respectively. Similar trends are observed in datasets like 

DLBCL and Leukemia 3, where BWK-FS demonstrates faster 

model training. 
 
 

5. CONCLUSION 

 

Relative effectiveness and efficiency of the three 

optimization techniques—Particle Swarm Optimization 

(PSO), Genetic Algorithm (GA), and Black-Winged Kite-

based Feature Selection (BWK-FS)—are shown via 

comparative study. The BWK-FS routinely exceeds PSO and 

GA in terms of classification accuracy, therefore displaying 

strong and consistent performance across several datasets. 

This highlights its potential to maintain stability across many 

runs and enhance categorization results. Furthermore, very 

beneficial is BWK-FS in significantly reducing the 

dimensionality of the feature collection. Using fewer but more 

important features helps BWK-FS lower overfitting in 

addition to improve model interpretability. Reduced 

dimensionality directly lowers computer complexity by 

enabling quicker training durations and preservation of 

suitable classification accuracy. By besting the trade-off 
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between model complexity and predictive performance, 

BWK-FS offers usually a robust option for feature selection. 

In high-dimensional data processing, its remarkable accuracy 

with less features and faster training cycles makes it a useful 

tool. 

Notwithstanding its robust performance, BWK-FS has 

limits that need more examination. Although it efficiently 

diminishes features in moderately high-dimensional datasets, 

its scalability for very high-dimensional data (e.g., over 

100,000 features) has yet to be evaluated, necessitating more 

investigation. Moreover, BWK-FS exhibits sensitivity to 

hyperparameters such as 𝛼 and 𝛽 inside its fitness function, 

indicating a need for automated or adaptive tuning 

methodologies to improve usability. It may also encounter 

difficulties with significantly skewed datasets, when accuracy 

alone is inadequate; integrating measures such as F1-score or 

MCC might enhance performance. While evaluated on 

biological data, its applicability to fields such as text mining, 

image processing, or finance necessitates more assessment and 

possible modifications. Finally, the initialization step, which 

encompasses candidate solution creation, may be 

computationally expensive for big datasets, underscoring the 

need for more efficient methods to mitigate overhead. 

Mitigating these constraints might substantially improve the 

application and performance of BWK-FS. 

In conclusion, BWK-FS is the most successful algorithm of 

the three, offering enhanced classification accuracy, a notable 

decrease in the number of chosen features, and expedited 

training periods across all datasets. The amalgamation of 

superior accuracy, feature efficiency, and computational 

velocity renders BWK-FS an exceptionally advantageous 

instrument for intelligent optimization in feature selection 

endeavors. Its capacity to equilibrate performance and 

efficiency establishes it as a formidable method for addressing 

intricate machine learning challenges. 
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